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Abstract

Contracts often take the form of options: oil fields can be abandoned, planning permission may go unused,
and acquired firms can be liquidated. We consider a seller who auctions a dynamic option among N agents.
After the auction, the economy evolves and the winning bidder chooses both if and when to execute the
option. The revenue-maximising auction consists of an up-front bid and a contingent fee, where the latter
is chosen in a Pigouvian manner, so the winning agent’s choice of exercise time maximises the seller’s
revenue. This contingent payment is time- and state-invariant, so the seller does not have to observe post-
auction information in order to implement the optimal auction. The revenue-maximising mechanism induces
a dynamic distortion: the option is exercised later than under the comparable welfare-maximising mechanism.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In many economically important environments, a seller auctions the right to use an asset. After
the auction, as the economy evolves, the winning bidder has to decide both whether to exercise
this right and when to do so. The seller of such an option contract has a lot of flexibility: the price
can depend on the bids of the agents, the date the option is exercised (if ever), and the information
revealed after the sale. This paper solves for the seller’s optimal mechanism, allowing for all these
possibilities.

To illustrate, consider the problem faced by the Government of Alberta, owner of 97% of
the Alberta oil sands, the world’s second largest oil reserve. The Government first auctions a
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given lease among bidders who differ in their expected extraction costs. After the auction, the
winner then chooses when to initiate production, depending on the evolution of the oil price. This
exercise decision is particularly important for the oil sands since the majority of fields are only
marginally profitable at current prices. Using our model, we show that the Alberta Government’s
revenue-maximising auction is remarkably simple. The mechanism consists of an up-front bid
and a positive contingent payment, where the latter is independent of both the time of extraction
and the post-auction information. Practically, this means that the Government should not fine
bidders who delay extraction. It should also refrain from taxing “windfall profits” derived from
increases in the oil price. 1

This paper makes two main contributions. First, we allow the seller of the good to choose both
who the good is awarded to and when this allocation takes place. This intertemporal decision is
important whenever the good being sold is durable, and is particularly relevant for commodities
such as oil, land and timber. Second, with the aid of Milgrom and Segal’s envelope theorem [10],
we integrate the theory of optimal stopping with the theory of mechanism design.

1.1. Outline of the paper

Suppose that N agents compete for the option to use an asset, such as a plot of land. Before the
auction, the agents have private information about their revenue from the asset. After the auction,
the winning bidder’s cost changes over time, either due to changes in the state of the world or due
to the arrival of new information. As his cost evolves, the winner must then decide both whether
to exercise the option and when to do so. 2

Without loss of generality, we break the payment to the seller into two components: an up-front
charge and a contingent fee, paid when the option is executed. This contingent fee (or strike price)
depends upon: (1) all the agents’ bids; (2) when the option is exercised; and (3) any information
revealed after the auction.

The crucial difference between up-front and contingent payments is that the latter introduces a
distortion. Up-front payments are sunk and do not affect when the option is executed. In contrast,
an increase in the contingent payment lowers the value of the option and delays execution. Welfare
is therefore maximised by setting the contingent fee equal to zero and using an up-front scheme,
such as an English auction.

The revenue-maximising auction, in contrast, involves a positive contingent payment. This
contingent fee is: (1) declining in the winner’s bid and independent of losers’bids; (2) independent
of when the option is exercised, and (3) independent of post-auction information. This last property
means the seller does not have to observe post-auction data in order to implement the optimal
mechanism. The positive contingent fee also induces a dynamic distortion: the option is exercised
later than under the welfare-maximising auction.

The optimal contingent payment is chosen in a particularly simple fashion that makes the prob-
lem very tractable. The winning agent chooses an exercise time to maximise his valuation minus

1 There are a number of other important applications where a seller auctions the right to use an asset. When an upstream
firm sells a scarce resource, the downstream firms bidding in the auction may not yet know their demand. The competitors
thus bid for the right to be supplied at some future date, and subsequently choose whether or not to exercise this option
after uncertainty has been resolved. Similarly, when a parent company sells a failing subsidiary, the purchaser has the
right to liquidate their acquisition if they cannot turn it around. This option is frequently used: close to one-third of British
private-equity-backed businesses go bankrupt.

2 The seller is female, while buyers are male.
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the contingent payment. In comparison, the seller’s revenue equals the winning bidder’s valuation
minus his information rent. Setting the contingent payment equal to the winner’s information rent
thus aligns incentives in the style of a Pigouvian tax. The agent’s choice of exercise time then
maximises revenue—an act of perfect delegation.

The auction mechanism has one notable restriction: the allocation decision is determined at time
0, independent of the post-auction information. This auction mechanism is optimal if post-auction
information has a similar effect on all agents, but may be inefficient if costs evolve differently. The
final part of the paper extends the set of mechanisms to allow the identity of the winner, in addition
to the exercise time, to depend on cost realisations. First, we characterise the optimal mechanism
when costs are observable. Second, we extend the handicap auction of Eso and Szentes [5] to
show that the seller can achieve the same revenue when she cannot observe costs.

This paper is most closely related to the literature on multi-period mechanism design. Baron
and Besanko [1] and Courty and Li [4] analyse a two-period model where agents initially have an
imperfect signal of their valuations, and only observe their types after signing the contract. Riordan
and Sappington [12] extend the model to allow an auction between the imperfectly informed agents
in the first period. They show that the problem separates: the seller first awards the good to the
agent with the highest valuation and subsequently implements the optimal single-agent contract.
Eso and Szentes [5] show that the seller would be better off if she waits to allocate the good in the
second period, after agents have learned their types. However, as our paper highlights, the seller
cannot simply wait to allocate the good if she does not know when the buyer wishes to use it.

2. Model

Time is discrete, t ∈ {0, . . . , T }, where we allow T = ∞. At time t = 0, N risk-neutral
agents bid for an option. The winning bidder then has the right to exercise this option at any time
t ∈ {1, . . . , T }. Each agent has a net valuation consisting of two elements: an ex-ante valuation,
observed before the auction, and a time-varying ex-post cost.

Agent i’s ex-ante valuation is given by a privately known type �i ∈ [�, �]. Agents’ types are
independent and distributed according to F(�i ) with density f (�i ). Let � := (�1, . . . , �N) and
�−i := (�1, . . . , �i−1, �i+1, . . . , �N).

The ex-post cost evolves over time, t ∈ {1, . . . , T }. Agent i’s cost is given by a sequence of
random variables {ci,t }. Let the history of i’s costs be denoted ct

i := (ci,1, . . . , ci,t ), and the entire
history of costs be ct := (ct

1, . . . , c
t
N ). These costs are independent of bidders’ ex-ante types

and are publicly verifiable. We place two restrictions on the stochastic structure of costs. First,
ci,t are bounded below. Second, when predicting i’s future costs, agent i’s past costs, ct

i , are a
sufficient statistic for all past costs, ct . Fluctuations in these costs can be interpreted as changes
in the state of the world (e.g. input prices) or as the result of new information concerning the true
cost c∗

i , where ci,t = Et [c∗
i ]. Sometimes it will also be useful to assume costs are symmetrically

distributed across agents.

Assumption (SYM). The joint distribution Prob(cT
1 , . . . , cT

N) is invariant to permutations of
{1, . . . , N}.

An agent’s net valuation equals his ex-ante valuation minus his ex-post cost, discounted at rate
� ∈ (0, 1). If agent i exercises the option in period t �T , he thus obtains

(�i − ci,t )�
t .

If agent i never exercises the option, he receives 0.
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Fig. 1. Timeline.

The seller uses a direct revelation mechanism 〈Pi, yi, zi〉 that consists of an allocation function,
an up-front payment and a contingent payment. At time t = 0, each agent i announces his type
�̃i . Immediately after the announcements, agent i makes up-front payment yi(�̃) and is awarded
the option with probability Pi(�̃), where

∑
i Pi(�̃)�1. If agent i wins the auction and chooses

to execute the option in period t, he makes contingent payment zi,t (�̃, ct ), where zi(�̃, cT ) :=
{zi,t (�̃, ct )}t . This contingent payment is very general and can depend upon agents’ reports, the
time of execution and the history of costs.

If agent i wins the auction, he subsequently chooses an exercise time, �i ∈ {1, . . . , T , ∞}.
The exercise time is a random variable, where the decision to stop at t can only depend on
the information available at time t. 3 If an agent never exercises the option, he is said to
choose �i = ∞. Agent i’s optimisation problem is thus to choose �i to maximise his ex-post
utility

ui(�i , zi , �i ) := Ec[(�i − ci,�i
− zi,�i

(�̃, c�i ))��i ], (1)

where Ec is the expectation at the start of period t = 1, taken over all costs. Let �∗
i (�i , zi) denote

an optimal stopping rule: Lemma 1 in Section 3 shows that such a stopping rule exists.
If the seller awards the good to agent i, her revenue equals the sum of up-front payments from

the agents plus the discounted contingent payment from the winner. If the seller does not award
the object, her revenue equals the sum of up-front payments from the agents plus the value she
places on the option, v0. Putting this together, the seller’s revenue, when agents report truthfully,
is given by

E�,c

[∑
i

yi(�) +
∑

i

Pi(�)��∗
i (�i ,zi )zi,�∗

i (�i ,zi )(�, c�∗
i (�i ,zi )) +

(
1 −

∑
i

Pi(�)

)
v0

]
,

where E�,c is the expectation at time t = 0, taken over both agents’ costs and agents’ types. The
timing of the game is summarised in Fig. 1.

3. Agent’s optimal stopping problem

After the auction, the winning agent chooses an exercise time �i to maximise his ex-post
utility (1). Denote the set of maximisers by �̂i (�i , zi). The set of stopping rules forms a lattice,
where �H ��L if �H stops later than �L for almost all sequences of costs. Comparing two sets of
stopping rules, �̂H � �̂L in strict set order if �′ ∈ �̂H and �′′ ∈ �̂L imply that �′ ∨ �′′ ∈ �̂H and
�′ ∧ �′′ ∈ �̂L. 4

3 We make the natural assumption that the information available at time t equals the sigma-algebra generated by ct .
This restriction is unnecessary for our results. See Chow et al. [3] for a formal treatment of stopping times.

4 The join ∨ is the least upper bound, while the meet ∧ is the greatest lower bound.
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Lemma 1. Agent i’s optimal exercise decision (1) has the following properties:

(a) �̂i (�i , zi) is a nonempty sublattice and contains a greatest and least element.
(b) Every selection from �̂i (�i , zi) is decreasing in �i .
(c) Fix zi,t and consider charging a contingent payment zi,t + K (∀t), for a constant K > 0.

Then every selection from �̂i (�i , zi + K) is increasing in K.

Proof. (a) Since � < 1 and costs are bounded below, nonemptiness of �̂i (�i , zi) follows from
Klass [8, Theorem 1]. The set of optimal rules is characterised by Klass [8, Theorem 6] and
contains a least and greatest element. Since the set of stopping times is a lattice and ui(�i , zi , �i )

is (weakly) supermodular in �i , the set of maximisers is a sublattice by Topkis [14,
Theorem 2.7.1].

(b) ui(�i , zi , �i ) has strictly decreasing differences in (�i , �i ), since � < 1, and is supermodular
in �i . Hence every optimal selection is decreasing by Topkis [14, Theorem 2.8.4].

(c) ui(�i , zi + K, �i ) satisfies strictly increasing differences in (K, �i ), since � < 1, and
is supermodular in �i . Hence every optimal selection is increasing by Topkis
[14, Theorem 2.8.4]. �

Lemma 1(a) examines the basic properties of the agent’s choice set. For example, the least
element can be found by using the rule: stop when current utility is weakly greater than the
continuation utility. Lemma 1(b) says that agents with high valuations are more impatient and
choose to stop earlier. Intuitively, an agent with a high valuation has an option that is more in the
money, is therefore less risk-loving and is less likely to delay execution. 5 Similarly, Lemma 1(c)
says that a uniform reduction in agent i’s contingent payment is equivalent to an increase in his
valuation, causing him to stop earlier.

Denote agent i’s choice of stopping rule by �∗
i (�i , zi) ∈ �̂i (�i , zi). From Lemma 1, �∗

i (�i , zi+K)

is decreasing in �i and increasing in K.

4. Optimal auctions

4.1. Information rents

If all other agents report truthfully, agent i chooses his report �̃i and exercise time �i to maximise
interim utility,

Ui(�i , �̃i , �i ) = E�−i

[
Pi(�̃i , �−i )Ec

[(
�i − ci,�i

− zi,�i
(�̃i , �−i , c

�i )
)

��i

]
−yi(�̃i , �−i )

]
. (2)

Truthful revelation is a Bayesian Nash equilibrium if interim utility (2) satisfies incentive com-
patibility

Ui(�i , �i , �
∗
i (�i , zi(�i , �−i , c

T )))�Ui(�i , �̃i , �
∗
i (�i , zi(�̃i , �−i , c

T ))) (3)

5 There is empirical support for Lemma 1(b). In OCS wildcat auctions, Porter [11] observes that the first tracts to be
drilled were those with high bids; these tracts also led to higher oil revenues.
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and individual rationality

Ui(�i , �i , �
∗
i (�i , zi(�i , �−i , c

T )))�0. (4)

Denote the equilibrium utility of i by Vi(�i ) := Ui(�i , �i , �∗
i (�i , zi(�i , �−i , c

T ))).
To examine how agent i’s utility changes with �i , we wish to apply an envelope theorem where

agents maximise over both their report, �̃i , and their stopping time, �i . The space of stopping
times is too complicated for the usual envelope theorem on �N to be applied, so we will use the
generalised envelope theorem of Milgrom and Segal [10].

Milgrom and Segal suppose an agent chooses x ∈ X to maximise �(x, �), where � ∈ [0, 1]
and X is arbitrary. Denote the set of maximisers by x̂(�) := argmaxx�(x, �) and let �(�) =
supx∈X �(x, �).

Lemma 2 (Milgrom and Segal [10, Theorem 2]). Suppose (a) �(x, �) is differentiable and ab-
solutely continuous in � (∀x); (b) |��(x, ��)| is uniformly bounded (∀x)(∀�), and (c) x̂(�) is
nonempty. Then, for any selection x∗(�) ∈ x̂(�),

�(�) =
∫ �

0
��(x∗(�), �) �� d� + �(0). (5)

Letting � = �i and x = (�̃i , �i ), we can apply Milgrom and Segal’s result. To verify the
conditions of Lemma 2 observe that: (a) Ui(�i , �̃i , �i ) is linear in �i , and hence differentiable and
absolutely continuous; (b) the partial derivative is bounded by 1, and (c) the set of maximisers
is nonempty by Lemma 1(a). Applying the revelation principle, the optimal choice of �̃i is �i .
Hence equilibrium utility is

Vi(�i ) = E�−i

[∫ �i

�
Pi(�, �−i )Ec

[
��∗

i (�,zi (�,�−i ,c
T ))
]
d�

]
+ Vi(�). (6)

Eq. (6) says that agent i only obtains rents when he exercises the option. Intuitively, it is only in
these states where i’s information is useful. Eq. (6) also has the important implication that the
seller can reduce i’s rents by delaying the time when he exercises the option.

We will solve the seller’s problem in two stages. First, we form the relaxed problem, replacing
the incentive compatibility constraint with the integral equation (6) and replacing the individual
rationality constraint with Vi(�)�0. We then solve for the optimal solution of the relaxed prob-
lem. Second, we check that this optimal solution satisfies incentive compatibility and individual
rationality. Lemma 3 provides sufficient conditions to complete this second step.

Lemma 3. The mechanism 〈Pi, yi, zi〉 satisfies incentive compatibility (3) and individual ratio-
nality (4) if the following three conditions hold:

(a) Equilibrium utility Vi(�i ) satisfies (6);
(b) The lowest type has positive utility, Vi(�)�0; and
(c) The monotonicity condition holds. That is,

�
��i

Ui(�i , �̃i , �
∗
i (�i , zi(�̃i , �−i , c

T ))) = E�−i

[
Pi(�̃i , �−i )Ec

[
��∗

i (�i ,zi (�̃i ,�−i ,c
T ))
]]

(7)

is increasing in �̃i .
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Proof. To verify incentive compatibility (3), pick (�i , �̃i ), where �i > �̃i wlog.

Ui(�i , �̃i , �
∗
i (�i , zi(�̃i , �−i , c

T ))) = V (�̃i ) +
∫ �i

�̃i

�
��i

Ui(�, �̃i , �
∗
i (�, zi(�̃i , �−i , c

T ))) d�

� V (�̃i ) +
∫ �i

�̃i

�
��i

Ui(�, �, �∗
i (�, zi(�, �−i , c

T ))) d�

= V (�i ),

where the inequality comes from the monotonicity condition (7) and the last line from (6). To
verify individual rationality (4), note that (6) implies Vi(�i ) is increasing in �i . Hence Vi(�)�0
implies Vi(�i )�0 (∀�i ). �

The monotonicity condition is satisfied if reporting a higher type increases the probability of
winning the object and means the option is exercised sooner. The latter aspect of the monotonicity
condition might be very complicated in general, but will be simple to verify in the optimal
mechanism.

Taking expectations over i’s type, �i , and integrating (6) by parts yields ex-ante utility

E�i
[Vi(�i )] = E�

[
Pi(�)Ec

[
��∗

i (�i ,zi (�i ,�−i ,c
T ))
] 1 − F(�i )

f (�i )

]
+ Vi(�). (8)

4.2. Welfare maximisation

Define welfare as the sum of the agents’ utilities and the seller’s revenue. This equals the
expected value of the option

Welfare = E�

[∑
i

Pi(�) Ec

[
(�i − ci,�∗

i
)��∗

i

]
+
(

1 −
∑

i

Pi(�)

)
v0

]
. (9)

The welfare maximisation problem is to choose 〈Pi, yi, zi〉 to maximise (9) subject to incen-
tive compatibility (3) and individual rationality (4), where the agent chooses �∗

i (�i , zi(�, cT )) to
maximise ex-post utility (1).

Theorem 1. Welfare is maximised by the following mechanism:

(a) The contingent payment is zW
i,t (�, ct ) = 0.

(b) The good is allocated to the agent with the largest ex-post utility ui(�i , z
W
i , �∗

i ), if greater
than v0. Otherwise the good is not awarded.

(c) The up-front payment yW
i (�) is such that, when �̃i = �i and �i = �∗

i , interim utility (2) equals
equilibrium utility (6) and Vi(�)�0.

Proof. Same as proof of Theorem 2. �

Contingent payments distort the winning agent’s optimal stopping problem, delaying the ex-
ercise time. Hence the welfare-maximising auction sets contingent payments to zero and awards
the object to the agent with the highest ex-post utility.

To implement the welfare-maximising auction, the seller needs to allocate the good to the agent
with the highest ex-post utility. The seller can thus use an English or second-price auction. If costs



S. Board / Journal of Economic Theory 136 (2007) 324–340 331

obey (SYM), the seller can use any auction that allocates the good to the agent with the highest
type, such as a first-price auction. 6

4.3. Revenue maximisation

Expected revenue equals welfare (9) minus agents’ utility (8),

Revenue = E�

[∑
i

Pi(�) Ec

[
(�i − ci,�∗

i
)��∗

i

]
+
(

1 −
∑

i

Pi(�)

)
v0 −

∑
i

Vi(�i )

]

= E�

[∑
i

Pi(�) Ec

[
(MR(�i ) − ci,�∗

i
)��∗

i

]
+
(

1 −
∑

i

Pi(�)

)
v0

]
−
∑

i

Vi(�),

(10)

where we follow Bulow and Roberts [2] in denoting agent i’s marginal revenue by

MR(�i ) := �i − 1 − F(�i )

f (�i )
.

The revenue maximisation problem is to choose 〈Pi, yi, zi〉 to maximise revenue (10) subject to
incentive compatibility (3) and individual rationality (4), where the agent chooses �∗

i (�i , zi(�, cT ))

to maximise ex-post utility (1).

Assumption (MH). The inverse hazard rate [1 − F(�i )]/f (�i ) is decreasing in �i .

Theorem 2. Suppose (MH) holds. Revenue is maximised by the following mechanism:

(a) The contingent payment is zR
i,t (�, ct ) = [1 − F(�i )]/f (�i ).

(b) The good is allocated to the agent with the largest ex-post utility ui(�i , z
R
i , �∗

i ), if greater than
v0. Otherwise the good is not awarded.

(c) The up-front payment yR
i (�) is such that, when �̃i = �i and �i = �∗

i , interim utility (2) equals
equilibrium utility (6) and Vi(�) = 0.

Proof. Consider the seller’s relaxed problem of choosing 〈Pi, yi, zi〉 to maximise revenue (10)
subject to �∗

i (�i , zi(�, cT )) maximising ex-post utility (1), the integral equation (6) and Vi(�)�0.
The optimal relaxed mechanism is characterised as follows.

(a) Contingent payment: The contingent payment only enters revenue (10) via the agent’s
stopping rule �∗

i (�i , zi(�, cT )). Hence it is optimal to set zi,t (�, ct ) = [1 − F(�i )]/f (�i ), since
the agent’s choice of stopping rule, chosen to maximise ex-post utility (1), also maximises revenue
(10).

(b) Allocation: Setting zi,t (�, ct ) = [1 − F(�i )]/f (�i ), revenue (10) can be written as

E�

[∑
i

Pi(�)ui

(
�i , z

R
i (�, cT ), �∗

i (�i , z
R
i (�, cT ))

)
+
(

1 −
∑

i

Pi(�)

)
v0

]
−
∑

i

Vi(�).

6 In a second-price auction, it is a dominant strategy for each bidder i to bid his ex-post utility ui(�i , 0, �∗
i
), by Krishna [9,

Proposition 2.1]. If costs obey (SYM), then each agents’ ex-post utility ui(�i , 0, �∗
i
) is increasing in �i and symmetrically

distributed. An increasing symmetric first-price equilibrium then exists by Krishna [9, Proposition 2.2].
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The revenue-maximising mechanism will thus award the good to the agent with the highest ex-post
utility, subject to it exceeding v0.

(c) The up-front payment. Revenue (10) is decreasing inVi(�), so the seller should setVi(�) = 0.
The up-front payment does not enter revenue (10) directly, so the seller can then choose yi(�) so
that equilibrium utility is given by (6) and Vi(�) = 0.

We must now verify that the relaxed mechanism does indeed satisfy incentive compatibility
and individual rationality. Parts (a) and (b) of Lemma 3 are satisfied by construction. To verify
the monotonicity condition (7) we break the analysis into two parts.

First, we claim that Pi(�̃i , �−i ) is increasing in �̃i . The auction is awarded to the agent with the
highest ex-post utility. Given reports (�̃i , �−i ), the seller calculates i’s ex-post utility to be

ui

(
�̃i , z

R
i (�̃i , �−i , c

T ), �∗
i (�̃i , z

R
i (�̃i , �−i , c

T ))
)

= sup
�i

Ec[(MR(�̃i ) − ci,�i
)��i ]. (11)

Assumption (MH) implies MR(�̃i ) is increasing in �̃i , so Ec[(MR(�̃i ) − ci,�i
)��i ] is increasing in

�̃i . By the envelope theorem, ex-post utility (11) is also increasing in �̃i , and thus Pi(�̃i , �−i ) is
increasing in �̃i , as required.

Second, we claim that �∗
i (�i , z

R
i (�̃i , �−i , c

T )) is decreasing in �̃i . Applying (MH), an increase

in �̃i leads to a decrease in zR
i,t (�̃i , �−i , c

t ) that is uniform across time. Lemma 1(c) implies that

�∗
i (�i , z

R
i (�̃i , �−i , c

T )) then decreases. Putting the two claims together shows that (7) is increasing

in �̃i , as required. �

Theorem 2 states that the optimal contract can be separated into two parts. First, the seller
awards the option to the agent with the highest ex-post utility (1). Second, the seller implements
the optimal single-bidder contract, where the contingent payment is set equal to the winning agent’s
information rent term. Notably, the optimal contingent payment is declining in the winner’s type,
independent of other bidder’s types, independent of the time of execution, and independent of
post-auction costs.

The revenue-maximising mechanism works in a simple way. Information rents drive a wedge
between welfare and revenue. The winning bidder would like to choose the exercise time to
maximise his valuation minus the contingent payment. In comparison, the seller would like to
choose the exercise time to maximise the winner’s valuation minus his information rent. Setting
the contingent payment equal to the winner’s information rent thus aligns incentives in the style
of a Pigouvian tax. Under the optimal contingent payment, the winning agent then chooses his
exercise time to maximise the seller’s revenue—an act of perfect delegation.

As stated above, the optimal contingent payment is independent of ex-post costs. This has two
important implications. First, the seller can implement the optimal auction even when she does
not observe cost data. Second, the seller will always release any information about future costs,
whether or not she can observe the information she is releasing. Intuitively, under the revenue-
maximising auction, the winning agent chooses his stopping time to maximise the seller’s revenue,
so giving the agent more information makes the seller better off. 7

The revenue-maximising auction introduces two welfare distortions. First, the strike price is
too high. Second, the good may be allocated to the wrong agent (if agents are asymmetric) or not
awarded at all. This implies that market power induces the following dynamic distortion.

7 See Eso and Szentes [5] for a related result.
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Corollary 1. Suppose (MH) and (SYM) hold. Then the option will be exercised earlier un-
der the welfare-maximising auction (Theorem 1) than under the revenue-maximising auction
(Theorem 2). 8

Proof. Suppose the good is awarded under the revenue-maximising auction (else there is nothing
to prove). Since zR

i,t (�, ct )�0, the good is also awarded under the welfare-maximising auction and,
using (SYM), the agent with the highest type will win both auctions. Lemma 1(c) then implies that,
for any optimal exercise rule, the winning agent will exercise later under the revenue-maximising
auction. �

To implement the revenue-maximising mechanism, the seller needs to: (i) award the good to
the agent with the highest ex-post utility; (ii) ensure the lowest type gets no rents and (iii) be able
to back-out the winner’s type in order to calculate the correct contingent payment. If costs obey
(SYM), these objectives can be achieved by a first-price or second-price auction. First, consider
the first-price auction. Assuming agents use an increasing symmetric bidding strategy, b(�i ),
Theorem 2(c) implies 9

b(�i ) = Ec

[(
�i − zR(�i ) − ci,�∗

i (�i ,z
R(�i ))

)
��∗

i (�i ,z
R(�i ))

]

−
∫ �i

� Ec[��∗
i (�,zR(�))]FN−1(�) d�

FN−1(�i )
,

where zR(�i ) = [1−F(�i )]/f (�i ). Under (MH) one can verify that b(�i ) is increasing, as initially
assumed. Since b(�i ) is increasing, a higher up-front bid leads to a lower contingent fee, as shown
in Fig. 2. 10

Next, consider the second-price auction. Assuming agents use an increasing symmetric bidding
strategy, B(�i ), Theorem 2(c) implies

B(�i ) = Ec

[(
�i − zR(�i ) − ci,�∗

i (�i ,z
R
i (�i ))

)
��∗

i (�i ,z
R
i (�i ))

]
−Ec

[
��∗

i (�i ,z
R(�i ))

] dzR(�i )

d�i

F (�i )

(N − 1)f (�i )
.

If zR(�i ) = [1 − F(�i )]/f (�i ) is decreasing and concave, and F(�i )/f (�i ) is increasing, then
the bidding strategy B(�i ) is increasing, as initially assumed. These assumptions are satisfied
if, for example, �i is uniformly distributed. Observe that, since zR(�i ) is decreasing, agents bid
more than their ex-post utility: intuitively, a higher bid does not affect the up-front price paid,
conditional on winning, but does reduce the contingent fee.

Finally, as an application of Theorem 2, consider the oil sands example discussed in the In-
troduction. Suppose the extraction cost �i ∼ F(·) differs among bidders, while the oil price pt

is common to all bidders and varies over time. If the seller uses a mechanism 〈Pi, yi, zi〉 then
agent i’s ex-post utility is ui(�i , zi , �i ) = Ep[(p�i

− �i − zi,�i
)��i ] if he uses exercise strategy �i .

8 By convention, we say the option is exercised at time t = ∞ if the good is not awarded.
9 The strategy satisfies the assumptions of Lemma 3, by construction, and thus constitutes an equilibrium.

10 Fig. 2 shows the revenue-maximising first-price bidding locus for a European option (T = 1) where ci , �i ∼ U [0, 1],
v0 = 0, and � = 1. In this example, the contingent payment is substantial and exceeds the up-front payment for many
types of agents.
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Fig. 2. First-price bidding locus for a European option (T = 1).

This is relabelling of (1), so the revenue-maximising contingent payment is 11

zR
i,t (�, pt ) = F(�i )

f (�i )
. (12)

In comparison, the OCS wildcat auctions use a contingent payment which equals 1/6th the agent’s
revenue, i.e. zi,t = pt/6 [11]. Lemma 1(c) thus implies that, under the OCS payment scheme,
bidders will be mining inefficiently late when their costs are low or the oil price is high. 12 ,13

5. State-dependent allocation

In Sections 2–4, the seller awards the option to an agent who subsequently chooses an exercise
time. This mechanism has one notable restriction: the allocation is chosen at time t = 0 and does
not depend on post-auction information.

This section extends the model to allow the allocation decision to depend on agents’ costs. This
extension is important if post-auction information affects different bidders in different ways. Sec-
tion 5.1 describes the revenue-maximising state-dependent mechanism when costs are observed
by the seller. Section 5.2 then describes how the seller can implement this revenue-maximising
mechanism if she cannot observe agents’ costs. This latter step relies on a dynamic variant of the
Vickrey–Clarke–Groves (VCG) mechanism which, as far as I am aware, is original to this paper.

11 Eq. (12) differs from that in Theorem 2 because, in the oil auction, utility is decreasing in �i .
12 For the Alberta oil sands, the Alberta government currently uses a royalty-only scheme: they charge 1% of gross

revenues before a project has recovered its fixed costs, and 25% of net revenues thereafter. This scheme has two problems:
first, it assumes firms truthfully report their costs; second, it may not attract the most efficient firms (see [6,13]).

13 This is clearly a highly stylised model of an oil auction, so caution is warranted. First, the bidders may have different
views about how much oil is in the ground. Second, the extraction decision is more complex than a simple option, involving
many investment decisions over a period of time.
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5.1. State-dependent allocation with observable costs

Consider the state-dependent mechanism 〈�i , xi〉 which works as follows:

• At time t = 0, agent i reports �̃i and pays xi(�̃).
• At time t �1, the seller observes the evolution of costs ct . She then allocates the object to agent

i at time �i (�̃, cT ), where we say �i (�̃, cT ) = ∞ if i is never allocated the good. The exercise
function �i (�̃, cT ) is a random variable, where the decision for i to exercise at time t can only
depend on the information available at time t. 14 There is only one object, so

∑
i 1�i (�̃,cT )<∞ �1.

For simplicity, we suppose that the seller has no use for the good. This means we do not have
to worry about the seller awarding the object to herself at some period t. This assumption implies
that v0 = 0.

In the Bayesian Nash equilibrium, agent i chooses his report �̃i to maximise interim utility

Ui(�i , �̃i ) = E�−i ,c

[(
�i − c

i,�i (�̃i ,�−i ,c
T )

)
��i (�̃i ,�−i ,c

T ) − xi(�̃i , �−i )
]
. (13)

Denoting the equilibrium utility by V (�i ) = Ui(�i , �i ), the envelope theorem implies

Vi(�i ) = E�−i ,c

[∫ �i

�
��i (�,�−i ,c

T ) d�

]
+ Vi(�). (14)

Lemma 4. The mechanism 〈�i , xi〉 satisfies incentive compatibility and individual rationality if
the following three conditions hold:

(a) Equilibrium utility Vi(�i ) satisfies (14);
(b) The lowest type has positive utility, Vi(�)�0; and
(c) The monotonicity condition holds. That is

�
��i

Ui(�i , �̃i ) = E�−i ,c

[
��i (�̃i ,�−i ,c

T )
]

(15)

is increasing in �̃i .

Proof. Same as Lemma 3. �

Welfare is the sum of the agents’ utilities and the seller’s revenue,

Welfare =
∑

i

E�,c

[(
�i − ci,�i (�,cT )

)
��i (�,cT )

]
. (16)

As in Section 4.3, revenue equals welfare (16) minus expected rents,

Revenue =
∑

i

E�,c

[(
MR(�i ) − ci,�i (�,cT )

)
��i (�,cT )

]
−
∑

i

Vi(�). (17)

The revenue maximisation problem is to choose 〈�i , xi〉 to maximise revenue (17) subject to
incentive compatibility, individual rationality and

∑
i 1�i (�,cT )<∞ �1. As in Section 4, we solve

14 That is, �i (�̃, cT ) is a stopping time.
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the problem in two steps. First, we form the relaxed problem, replacing the incentive compatibility
constraint with (14) and replacing the individual rationality constraint with Vi(�)�0. Second, we
verify the solution to the relaxed problem satisfies conditions (a)–(c) in Lemma 4, and thus solves
the full problem.

Theorem 3. Suppose (MH) holds. Among the class of state-dependent mechanisms 〈�i , xi〉, rev-
enue is maximised by the following:

(a) The exercise rule �R(�, cT ) is the earliest rule to maximise revenue (17) subject to
∑

i

1�i (�,cT )<∞ �1.

(b) The payment xR
i (�) is such that, when �̃i = �i , interim utility (13) equals equilibrium utility

(14) and Vi(�) = 0.

Proof. Let us first consider the relaxed problem, ignoring the monotonicity condition (15).
(a) Exercise rule: Let �R(�, cT ) = {�R

i (�, cT )}i be the earliest exercise-rule that maximises
revenue (17) subject to

∑
i 1�i (�,cT )<∞ �1. Such a stopping rule exists, is unique and is char-

acterised by the rule: stop when current utility is weakly greater than the continuation utility
[8, Theorems 1,3 and 6].

(b) Payment: The payment xi(�) does not enter revenue (17) directly. Hence, the seller can
choose xi(�) such that Vi(�) = 0 and equilibrium utility is given by (14).

Next, we must verify the monotonicity condition (15) in order to show the mechanism is
incentive compatible. Denote the time-t continuation value of the revenue maximisation problem
when each agent reports �̃i by

�t (�̃) := max
�� t+1

Et

[∑
i

(
MR(�̃i ) − ci,�i

)
��i−t

]
s.t.

∑
i

1�i<∞ �1.

Suppose that i reports �L
i and j 
= i report truthfully. In addition suppose that, with positive

probability, i is awarded the good at time t. Then the following three facts must hold:

(i) The good is not awarded to j 
= i in period s < t , MR(�j ) − cj,s < �s(�
L
i , �−i ). The strict

inequality comes from the fact that �R is the earliest optimal stopping time.
(ii) In period t, the good is awarded to i rather than j, MR(�L

i ) − ci,t �MR(�j ) − cj,t .
(iii) The good is awarded in period t rather than period s > t , MR(�L

i ) − ci,t ��t (�
L
i , �−i ).

Next, suppose i reports a higher valuation, �H
i > �L

i . It must be that:

(I) The good is not awarded to j 
= i in period s < t , MR(�j ) − cj,s < �s(�
H
i , �−i ). This

follows from (i) and the fact that �s(�
H
i , �−i )��s(�

L
i , �−i ), for s < t .

(II) If the good is awarded in period t, then it is awarded to bidder i rather than bidder j, MR(�H
i )−

ci,t > MR(�j ) − cj,t . This follows from (ii).
(III) If the good has not been awarded prior to period t, then it will be awarded in period t,

MR(�H
i ) − ci,t > �t (�

H
i , �−i ). To see this observe

�t (�
H
i , �−i ) = Et

⎡
⎣(MR(�H

i ) − ci,�H
i

)
��H

i −t +
∑
j 
=i

(
MR(�j ) − cj,�H

j

)
��H

j −t

⎤
⎦ ,

�t (�
L
i , �−i ) � Et

⎡
⎣(MR(�L

i ) − ci,�H
i

)
��H

i −t +
∑
j 
=i

(
MR(�j ) − cj,�H

j

)
��H

j −t

⎤
⎦ , (18)
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where �H maximises �t (�
H
i , �−i ) subject to

∑
i 1�i<∞ �1. Hence

�t (�
H
i , �−i ) − �t (�

L
i , �−i ) �

[
MR(�H

i ) − MR(�L
i )
]
��H

i −t < MR(�H
i ) − MR(�L

i ),

(19)

where the first inequality comes from (18), and the second comes from � < 1. The result
then follows from (19) and (iii).

Putting (I)–(III) together, the good is thus awarded to agent i at or before period t. Thus, the exer-
cise rule has the property that �R

i (�H
i , �−i , c

T )��R
i (�L

i , �−i , c
T ), and satisfies the monotonicity

condition (15). �

Theorem 3 characterises the seller’s revenue-maximising exercise rule as the solution to a
dynamic programming problem. If the same agent is allocated the good for all sequences of costs,
such as in the oil example, this can be implemented by the auction in Theorem 2.

The revenue-maximising exercise rule �R(�, cT ) introduces two kinds of distortions relative to
the exercise rule that maximises welfare (16). First, the object will tend to be exercised inefficiently
late, as in Corollary 1. 15 Second, under (MH), allocation is biased towards agents with higher
ex-ante valuations. 16 Intuitively, biasing the allocation towards high types reduces the incentive
for an agent to under-report his type. While these intertemporal and intratemporal distortions
seem to be quite general, one can construct examples where these effects interact and cancel each
other out.

5.2. State dependent allocation with unobservable costs

This section shows that the seller can obtain the revenue from Theorem 3 even if she cannot
observe post-auction information. This mechanism is an extension of the handicap auction of Eso
and Szentes [5].

Consider the four-part mechanism 〈I, wi, yi, zi〉 consisting of an allocation function and three
payments, as summarised in Fig. 3. This mechanism works as follows.

• At time t = 0, each agent i publicly reports his type �̃i . The seller chooses the up-front payment
yi(�̃) and the contingent payment z(�̃i ) = [1 − F(�̃i )]/f (�̃i ).

• At time t �1, each agent i again publicly reports his type �̂i along with his history of costs, ĉt
i .

These reports may differ from previous reports. The seller uses ĉt
i to predict i’s future costs and

15 For example, if ci,t = ct (∀i), then Corollary 1 applies directly.
16 For example, suppose T = 1 and �i > �j . Then the revenue-maximising rule allocates the object to the low agent,

MR(�j )−cj,1 �MR(�i )−ci,1, only if the welfare-maximising rule also allocates it to the low agent, �j −cj,1 ��i −ci,1.
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decides whether to award the good to one of the agents. Denote this time-t allocation decision
by It (�̃, �̂, ĉt ) ∈ {0, 1, . . . , N}, where It = 0 means the good is not awarded.

◦ If It (�̃, �̂, ĉt ) = i, for i ∈ {1, . . . , N}, then i obtains utility �i − ci,t and pays contingent fee
z(�̃i ). Each agent j 
= i also receives a VCG award wj,t (�̃, �̂, ĉt ) = �̂i − z(�̃i ) − ĉi,t , equal
to i’s reported ex-post utility. The game then ends.

◦ If It (�̃, �̂, ĉt ) = 0, then the seller forgets the reports made in period t and the game proceeds
to period t + 1.

The allocation decision It (�̃, �̂, ĉt ) is chosen as follows. Define the time-t continuation value
by

�t (�̃, �̂, ĉt ) := max
�� t+1

E

[∑
i

(�̂i − z(�̃i ) − ĉi,�i
)��i−t

∣∣∣∣∣ ĉt

]
s.t.

∑
i

1�i<∞ �1. (20)

The seller’s allocation decision is then given by

It (�̃, �̂, ĉt ) = i if �̂i−z(�̃i )−ĉi,t � �̂j−z(�̃j )−ĉj,t

and �̂i−z(�̃i )−ĉi,t ��t (�̃, �̂, ĉt ),

It (�̃, �̂, ĉt ) = 0 otherwise.

(21)

The allocation decision thus maximises the sum of agents’ utilities. With the correct contingent
payment, this will also maximise revenue. First, Lemma 5 shows that, given this allocation rule,
the VCG payments ensure that agents tell the truth in each period, t �1.

Lemma 5. Take the initial reports �̃ as given. It is a sequential equilibrium for each agent to
truthfully report his information (�̂i , ĉ

t
i ) = (�i , c

t
i ) in each period, t �1.

Proof. Suppose we are in period t �1 and the good has not yet been awarded. Suppose also that
agents are playing according to the posited (truthful) strategies and agent i considers a one-period
deviation. That is, i reports (�̂i , ĉ

t
i ) in period t, before returning to the truthtelling strategy in

period t + 1.

Agent i’s deviation payoff =

⎧⎪⎨
⎪⎩

�i − z(�̃i ) − ci,t if It (�̃, �̂i , �−i , ĉ
t
i , c

t
−i ) = i,

�j − z(�̃j ) − cj,t if It (�̃, �̂i , �−i , ĉ
t
i , c

t
−i ) = j,

�t (�̃, �, ct ) if It (�̃, �̂i , �−i , ĉ
t
i , c

t
−i ) = 0.

Using the definition of It (�̃, �̂, ĉt ), it is therefore an ex-post best-response for i to report (�̂i , ĉ
t
i )

truthfully. Hence, truthtelling is a best-response for any beliefs i holds about his opponents’ types
and costs, and the posited strategies form a sequential equilibrium by the one-deviation principle
[7]. �

Given Lemma 5, we can represent the equilibrium allocation strategies It (�̃, �, ct ) by the
corresponding exercise times, �i (�̃, �, cT ) = min{t : It (�̃, �, ct ) = i}. By construction, this
exercise time �(�̃, �, cT ) maximises the expected sum of ex-post utilities,

Ec

[∑
i

(
�i − z(�̃i ) − c

i,�i �̃,�,cT

)
��i �̃,�,cT

]
(22)
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subject to
∑

i 1�i (�̃,�,cT )<∞ �1. Turning to period t = 0, suppose i reports �̃i while agents −i are

truthful. Agent i’s interim utility is

Ui(�i , �̃i ) = E�−i ,c

[(
�i − z(�̃i ) − c

i,�i (�̃i ,�−i ,�,cT )

)
��i (�̃i ,�−i ,�,cT ) − y(�̃i , �−i )

]

+E�−i ,c

⎡
⎣∑

j 
=i

(
�j − z(�j ) − c

j,�j (�̃i ,�−i ,�,cT )

)
��j (�̃i ,�−i ,�,cT )

⎤
⎦ , (23)

where the last term comes from i’s VCG award. Using the fact �(�̃, �, cT ) maximises (22), Eq.
(23) can be rewritten as

Ui(�i , �̃i ) = max
�

E�−i ,c

⎡
⎣(�i − z(�̃i ) − ci,�i

)
��i

+
∑
j 
=i

(
�j − z(�j ) − cj,�j

)
��j − y(�̃i , �−i )

⎤
⎦ (24)

subject to
∑

i 1�i<∞ �1. To examine how a change in �i affects equilibrium utility, V (�i ) :=
U(�i , �i ), we will apply an envelope theorem to (24). Since both �̃i and � are chosen to maximise
Ui(�i , �̃i ), we again use Milgrom and Segal [10, Theorem 2]. This yields

Vi(�i ) = E�−i ,c

[∫ �i

�
��i (�,�−i ,�,�−i ,c

T ) d�

]
+ Vi(�). (25)

Lemma 6. The mechanism 〈I, wi, yi, zi〉 satisfies incentive compatibility and individual ratio-
nality if the following three conditions hold:

(a) Equilibrium utility Vi(�i ) satisfies (25);
(b) The lowest type has positive utility, Vi(�)�0; and
(c) The monotonicity condition holds. That is,

�
��i

Ui(�i , �̃i ) = E�−i ,c

[
��i (�̃i ,�−i ,�i ,�−i ,c

T )
]

(26)

is increasing in �̃i .

Proof. Same as proof of Lemma 3. �

As in Eq. (17), revenue equals welfare minus expected rents,

Revenue =
∑

i

E�,c

[(
MR(�i ) − ci,�i (�,�,cT )

)
��i (�,�,cT )

]
−
∑

i

Vi(�). (27)

Theorem 4. Suppose (MH) holds. The seller can obtain the same revenue as when costs are
observable (Theorem 3) by using the mechanism 〈I, wi, yi, zi〉, where

(a) The contingent payment is z(�̃i ) = [1 − F(�̃i )]/f (�̃i ).
(b) The allocation rule It (�̃, �̂, cT ) is set according to (21).
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(c) The VCG payment is wi,t (�̃, �̂, cT ) = �̂j − z(�̃j ) − ĉj,t when It (�̃, �̂, ĉt ) = j and j 
= i.
(d) The up-front payment yi(�̃) is such that, when �̃i = �i , interim utility (23) equals equilibrium

utility (25) and Vi(�) = 0.

Proof. Suppose agents tell the truth each period, t �0. The mechanism 〈I, wi, yi, zi〉 has two
properties. First, the lowest type obtains no rents, Vi(�) = 0. Second, given the contingent fee
z(�i ) = [1 − F(�i )]/f (�i ), the allocation It (�, �, cT ) induces a stopping time �(�, �, cT ) that
maximises revenue (27) s.t.

∑
i 1�i (�,�,cT )<∞ �1. Hence, revenue equals that in Theorem 3.

We must now check agents tell the truth in each period and that the mechanism is individually
rational. At time t �1, truthtelling is a sequential equilibrium by Lemma 5, for any time 0 reports.
At time t = 0, we must verify conditions (a)–(c) in Lemma 6. Conditions (a)–(b) are satisfied by
choice of the up-front payment yi(�̃). To verify the monotonicity condition (26) one can use the
same approach as in Theorem 3, using the fact that z(�̃i ) is decreasing in �̃i . �

Intuitively, the seller first chooses the up-front payment so that agent i truthfully reveals his type,
and assigns i a contingent payment equal to his information rent. Once this contingent payment
has been fixed, the agent acts as if his valuation is MR(�i ), so his incentives coincide with those
of the seller. That is, the exercise time that maximises the seller’s revenue also maximises the sum
of agents’ ex-post utilities (22). This property means that, at time t �1, the seller can use a VCG
mechanism to elicit cost information.
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