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Abstract

Contracts often take the form of options: deals can be reneged on, bridges may not be built,
and acquired firms might go bankrupt. This paper considers the auctioning of a dynamic
option, where post–auction information interacts additively with private information but
is allowed to take any stochastic form. The revenue maximising auction consists of an
up–front bid and a contingent payment (strike price). The contingent payment equals the
opportunity cost of exercising the contract plus a rent–tax that is time– and state–invariant
and inversely related to the up–front payment. The rent–tax is designed in a Pigouvian
manner so that the agents’ choice of exercise decision maximises the seller’s revenue; it can
also be interpreted as a generalised reservation price. The revenue maximising mechanism
induces a dynamic distortion: the option is exercised later than under the comparable
welfare maximising mechanism.

1 Introduction

This paper derives the optimal method to sell an option, a contract that when exercised yields a
state–dependent payoff. The designer of such a sales procedure has a lot of flexibility. Payment
can depend on whom the good is awarded to, when the option is exercised (if ever), and the
information revealed after the sale. Allowing for all these possibilities, the optimal auction is
derived with only an additivity restriction on the post–auction information. Moreover, this
optimal contract takes a very simple form.

The model can be applied to any kind of option, whether it is physical or financial, real or
surreal. After a timber auction, the winner has the right to harvest the trees at a date of their
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choosing, depending upon the market price of lumber.1 A firm that has recently been taken
over may be liquidated in a sufficiently bad state of nature.2 Hollywood studios buy options
on books and make further contingent payments if they decide to make a film.3 Oil fields are
often sold in auctions yet can be abandoned if the oil price sinks low enough.4 Options are also
the canonical example of a state–dependent decision, providing a base for more complicated
decision problems.

In order to fix ideas, suppose N agents compete over the right to build houses on a disused
industrial site. Before the auction, the agents have private information about their revenue from
house sales, which may have common value elements. After the auction, the winning agent’s
costs evolve as input prices change, and as they discover more about the cost of clearing up
the plot. At any time after the auction the winning agent can commence construction, or they
may choose to abandon the site.

This paper considers mechanisms in which the payment to the seller consists of two compo-
nents: an up–front charge and a contingent fee paid when the houses are built. The contingent
payment is allowed to depend upon (1) who wins the good; (2) all the agents’ types; (3) when
the option is exercised; and (4) any information revealed after the auction.

The crucial difference between up–front and contingent payments is that the latter intro-
duces a distortion. Up–front payments are sunk and do not affect when the houses are built.
In comparison, a positive contingent payment will delay construction (Proposition 1). Welfare
is therefore maximised by setting contingent payments equal to zero and using an up–front
scheme, such as an English auction (Theorem 1).

In contrast, the revenue maximising auction involves a positive contingent payment (The-
orem 2). For a loose intuition, notice that a high value agent is more likely to exercise the
option than a low value agent, and therefore cares more about the size of the contingent pay-
ment. Making low types pay a contingent fee thus helps the seller separate agents, reducing
the incentive for a high value agent to copy a low value agent.

More precisely, contingent fees have the effect of reducing information rents. An agent’s
payoff is independent of their private information when they do not exercise the option, so
agents extract information rents only when they choose to exercise. Since rents are increasing
in the probability of exercising the option, raising contingent payments makes the option less

1For a description of this market see Haile (2001).
2In 1990 a banking consortium, Old Bond Street Holdings, bought Yardley, a struggling British cosmetics

company. In 1999, after failing to rebrand its image, the owners called in the receivers. In a similar story, ITV
Digital paid £315 million for the right to broadcast Football League games. In 2002 the owners, two other TV
companies, put the firm into administration after subscriptions fell below expectations.

3These options normally last for one or two years while the producer arranges for a cast, crew and acceptable
screenplay. If filming goes ahead, the option is usually exercised on the first day of principal photography;
otherwise the property rights revert back to the author (Litwak (1999)).

4Over 1954–79, 22% of 5–year OCS wildcat leases expired without any wells being drilled (Porter (1995)).
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desirable, lowering the probability of exercise and reducing rents.
Contingent payments thus lower welfare by distorting the exercise decision, but reduce

information rents, giving rise to a tradeoff. An agent chooses an exercise time to maximise their
valuation minus the contingent payment, while revenue from this agent equals the valuation
minus the expected information rent. Setting the contingent payment equal to this information
rent thus aligns incentives in the style of a Pigouvian tax. The agent’s choice of exercise
time then maximises revenue—an act of perfect delegation. Moreover, this revenue maximising
contingent fee is (1) positive, (2) declining in valuations, (3) independent of when the option is
exercised, and (4) independent of post–auction information. This last property is particularly
attractive: it means the seller does not have to observe post–auction data in order to implement
the optimal mechanism. Moreover, if the seller can commit to release extra information they
will always choose to do so, even if they cannot observe its effect. Hence the seller of the
industrial site should commit to release any reports on the levels of contamination.

The revenue maximising auction introduces inefficiencies. In addition to an excessive reser-
vation price and a bias against larger agents, the positive contingent payment means the option
will be exercised later than is socially optimal (Proposition 2). This extends a result of Stokey
(1979) in the context of durable goods monopolies.

The paper considers two extensions of the basic model.
The first extension is to allow the good to be allocated to different agents depending upon

the state of the world. The welfare maximising mechanism can be implemented by the welfare
maximising auction in Theorem 1 if the auction is held at the right time. It can also be
implemented via a Vickrey mechanism when agents have private values. Similar results apply
to the revenue maximising auction.

The second extension allows for non–additive valuations. If the seller can observe the state
of the world, the revenue maximising mechanism sets the contingent payment equal to the
agent’s information rent. Unlike the additive case, revenue will generally be reduced if the
seller cannot observe the state of the world. However, in special cases, the mechanism without
observability can attain the maximal revenue with observability.

The paper is structured as follows: Section 2 introduces the model. Section 3 derives the
welfare and revenue maximising auctions, and discusses the interpretation. Section 4 explores
the two extensions, and Section 5 concludes. Omitted proofs are contained in Appendix A.

1.1 Literature

Milgrom and Weber (1982) show revenue is increased when the sale price is linked to information
correlated with agents’ private information. Riley (1988) used this linkage principle to prove
royalties can increase revenue in mineral rights auctions. An extreme example of this was given
by Hansen (1985) where the winning agent’s valuation was ex–post observable, leading to full-
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extraction. In contrast to these models, post–auction information will tell the seller nothing
about the agent’s private information; however, the act of exercising the option will.

The paper is most closely related to the optimal regulation literature. Baron and Myerson
(1982) consider procuring from a supplier with unknown cost. This is extended by Baron and
Besanko (1984) who suppose the supplier’s cost may change after the contract is signed. The
optimal procurement auction is considered by McAfee and McMillan (1987), Laffont and Tirole
(1987) and Riordan and Sappington (1987) who show that the problem separates—the contract
should be given to the best type, and then the optimal single–agent regulation contract should
be implemented. Analogous reasoning is applied to price discrimination by Mussa and Rosen
(1978) and Courty and Li (2000). Section 3.8 considers these related ideas in more detail.

The problem of selling an option is identical to the problem of selling a durable good where
agents’ valuations vary over time. When there is one agent, the model of this paper can thus be
interpreted as the optimal sales contract for a durable good monopolist with elastic demand. To
illustrate, consider a car manufacturer whose sales depend on the (uncertain) level of interest
rates. Rather than charging a sequence of prices, Theorem 2 suggests the manufacturer may
do better by asking for a down–payment when a new model first comes out in exchange for a
reduced sale price. This problem was first considered by Conlisk (1984). More recently, Laffont
and Tirole (1996) and Biehl (2001) have derived the optimal rental contracts for such a durable
goods monopolist in a two–period model.

Other authors have considered constrained mechanisms. Stokey (1979) analyses a multi–
period model, but assumes payments are only contingent, i.e. the firm charges a sequence of
prices. Hansen (1988), Board (2003), and DeMarzo, Kremer, and Skrzypacz (2004) also analyse
contingent payment schemes, while Waehrer (1995) supposes that the contingent payment is
independent of types.

Haile (2001, 2003) and McAfee, Takacs, and Vincent (1999) consider a two–period game
where a good is sold in period 1. New information then becomes available and, in period 2,
agents may engage in resale. This is a hard problem since the opportunity to purchase in
the resale market affects bidding in the original auction. The optimal auctions are, however,
more straightforward. Welfare is maximised by selling the good in the second period, after the
uncertainty has resolved. Similarly, revenue is maximised by running an auction in the second
period and also demanding the winner make a contingent payment equal to their information
rent (Eso and Szentes (2003) and Section 4.1). However this solution is not without problems.
Schwarz and Sonin (2001) observe that the seller cannot simply wait until the second period if
an agent must make investments before they can harvest the tract. In addition, as this paper
highlights, the seller cannot simply wait if they do not know when the agents will exercise their
option.
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2 Model

Suppose each of N agents has a net valuation consisting of two elements: an ex–ante valuation
and an ex–post cost.

The ex–ante valuation of agent i is determined by their privately observed type θi ∈ [θ, θ].
Agents’ types are mutually independent, where θi is distributed according to Fi(θi) with density
fi(θi). Agent i’s ex–ante valuation is denoted vi(θi, θ−i), where θ−i := (θ1, . . . , θi−1, θi+1, . . . , θN ).
The function vi(·) has several standard properties: it is continuously differentiable in all argu-
ments, its derivative ∂vi/∂θi is strictly positive and bounded above, and ∂vj/∂θi ≤ ∂vi/∂θi for
j 6= i. This formulation includes private values (vi(θ) = θi) and common values (vi(θ) =

∑
j θj)

as special cases, where θ := (θ1, . . . , θN )
The ex–post cost evolves over time, which is discrete and finite, t ∈ {1, . . . , T}. The cost of

each agent i constitutes a sequence {ci,t} of random variables, determined by the state of the
world, ω ∈ Ω. These costs are unrestricted in their dependence across time and across agents,
although they are independent of the agents’ types. The information about costs possessed by
agent i after the sale is described by a filtered space (Ω,F , {Fi,t}, Q), where Ω are the states
of the world, F the measurable sets, {Fi,t} the information partitions, which grow finer over
time, and Q the probability measure. At each time t, the agent knows their current costs,
{ω : ci,t ≤ c} ∈ Fi,t for each c ∈ <. That is ci,t is Fi,t–measurable (∀t), or more simply, ci,t

is Fi,t–adapted. Let Ft = ∩iFi,t be the total information available at time t, and assume Ft

contains no more information about i’s costs than Fi,t, i.e. E [ci,t′ | Ft] = E [ci,t′ | Fi,t] for t′ ≥ t

(∀i), where “E” denotes the expectation over ex–post costs.
In terms of the example, mentioned in the Introduction, of a firm who has the right to build

a housing estate on a piece of land, one can think of vi(θ) as the revenue from the sale of the
houses. The cost ci,t can either be interpreted as (a) the material cost of starting construction
at time t, or (b) the time–t estimate of the ultimate clean–up cost c∗i , where ci,t = E [c∗i | Fi,t].

Denote the common discount factor by δ ≤ 1. If agent i exercises the option in period t ≤ T

their net valuation is
(vi(θ)− ci,t)δt

and if they never exercise the option, they receive 0. This additive formulation is important for
the simplicity of the revenue maximising auction. Section 4.2 examines the robustness of the
results to relaxing this assumption.

Absent any payments, the problem of an agent i, who knows their valuation vi(θ), is to
choose a stopping time (exercise time) τi to solve the problem:

max
τi

E [(vi(θ)− ci,τi)δ
τi ]
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The stopping time depends upon the random sequence of costs, so is itself a random variable
taking values in {1, . . . , T} ∪ {∞}, where τi = ∞ means that the option is never exercised. In
addition, the decision to stop at time t can depend only on information available at time t,
{ω : τi ≤ t} ∈ Fi,t (∀t). Abusing terminology slightly, we will say the such a stopping time τi

is Fi,t–adapted. Since Fi,t is as informative about agent i’s costs as Ft, the agent’s choice of
stopping time also maximises utility amongst the class of Ft–adapted stopping rules.

Now consider the seller’s problem of designing a sales procedure. The seller observes the
evolution of costs, {Ft}, and chooses a three–part direct revelation mechanism 〈Pi, yi, zi〉 con-
sisting of an allocation function, an up–front payment and a contingent payment. After the
mechanism is determined, each agent i of type θi reports θ̃i, where the vector of reports is
denoted θ̃. After the the option is awarded to an agent and the up–front fees are paid, the seller
publicly releases the reports θ̃.5 The winning agent then chooses whether and when to exercise
the option, making a contingent payment when they do so. More formally, the mechanism is
defined as follows:

• The allocation function Pi : [θ, θ]N → [0, 1] is the probability that agent i wins the object,
where

∑
i Pi(θ̃) ≤ 1.

• The up–front payment function yi : [θ, θ]N → < is a transfer to the seller made by agent
i immediately after the auction and is independent of post–auction costs.

• The contingent payment function zi,t : [θ, θ]N × Ω → < is a Ft–adapted transfer made
by agent i if they win and exercise the option in period t. One should note that the
contingent payment is allowed to depend upon: (i) the identity of the agent, (ii) all the
agents’ reports, (iii) the time the option is exercised, and (iv) the entire history of the
stochastic process. This contingent payment can also be interpreted as the strike price.
Let zi = {zi,t}t.

An equivalent, and more standard, way to formulate the problem is to have the seller choose
a direct revelation mechanism 〈Pi, xi, τi〉 consisting of an allocation function Pi : [θ, θ]N → [0, 1]
determining which agent obtains the good, a payment function xi : [θ, θ]N → <, and a Ft–
adapted stopping time τi : [θ, θ]N × Ω → {1, . . . , T} for the winning agent. The equivalence of
these mechanisms follows from the revelation and taxation principles and proved in Appendix
A.1. This latter mechanism, however, is harder to interpret and implement than the contingent
payment mechanism, 〈Pi, yi, zi〉.

5Releasing this information will always make the seller better off since they can contract on θ̃. Any allocation
implemented when θ̃ is not released can be implemented when θ̃ is released by choosing appropriate payments.
When agents have private values (vi(θ) = θi) there is no need for the seller to release these reports.
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The mechanism 〈Pi, yi, zi〉 contains one notable restriction: the allocation of the good does
not depend upon post–auction costs. This restriction may be serious if the winner turns out to
have substantially higher costs than a losing agent. However, if the agents’ post–auction costs
are similar, reallocation will not be desirable. The issue is further explored in Section 4.1.

If all agents report truthfully and the option is allocated to agent i, who exercises the option
using stopping rule τi, they obtain ex–post utility

ui(θ, zi, τi) := E [(vi(θ)− ci,τi − zi,τi(θ))δ
τi ] (2.1)

The auction mechanism can be summarised by the following steps:

• Time t = −1. Each agent i observes type θi. The seller chooses the mechanism 〈Pi, yi, zi〉
to maximise welfare or revenue (as defined in Section 3).

• Time t = 0. Each agent i reports their type θ̃i. The good is allocated to agent i with
probability Pi(θ̃) and they make up–front payment yi(θ̃). The seller then reveals θ̃ to the
winning agent.

• Time t ∈ {1, . . . , T}. After the auction, costs {ci,t} are revealed, while the agent observes
Fi,t. Agent i may then choose exercise at time t and make contingent payment zi,t(θ̃), or
they may choose never to exercise the option.

2.1 Optimal Stopping Problem

Before analysing the mechanism design problem, it will be useful to establish some properties of
the winning agent’s optimal exercise decision. In stage 3 of the game, the mechanism 〈Pi, yi, zi〉
has been determined, and the option has been awarded to some agent i. This agent must then
choose a stopping time τi to maximise their ex–post utility (2.1).

Denote the set of maximisers by τ̂i. The set of stopping rules forms a lattice, where τH ≥ τL

if τH(ω) ≥ τL(ω) (a.e. ω ∈ Ω). Comparing two sets of stopping rules, τ̂H ≥ τ̂L in strict set
order if τ ′ ∈ τ̂H and τ ′′ ∈ τ̂L imply that τ ′ ∨ τ ′′ ∈ τ̂H and τ ′ ∧ τ ′′ ∈ τ̂L.

Proposition 1. The solution τ̂ of agent i’s optimal stopping problem (2.1) has the following
properties:
(a) τ̂i is a nonempty sublattice containing a greatest and least element.
(b) τ̂i is decreasing in θi in strict set order.
(c) Fix zi,t and consider charging a contingent payment zi,t + K (∀t), for a constant K. Then
τ̂i is increasing in K in strict set order.

Proof. (a) Nonemptiness follows from backwards induction (e.g. Chow, Robbins, and Siegmund
(1971, Theorem 3.2)). This construction also implies the set of maximisers has a greatest and
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least element. To find the least (greatest) element use the rule: stop when current payoffs are
weakly (strictly) larger than the continuation utility. Since the set of stopping times is a lattice
and ui(θ, zi, τi) is modular in τi, the set of maximisers is a sublattice by Topkis (1998, Theorem
2.7.1).

(b) ui(θ, zi, τi) satisfies decreasing differences in (θi, τi), since δ ≤ 1, and is modular in τi.
Hence the optimal solution is decreasing by Topkis (1998, Theorem 2.8.1).

(c) ui(θ, zi + K, τi) satisfies increasing differences in (K, τi), since δ ≤ 1, and is modular in
τi. Hence the optimal solution is increasing by Topkis (1998, Theorem 2.8.1).

Proposition 1(b) says that agents with high valuations are more impatient and choose to
stop earlier.6 Similarly, Proposition 1(c) says that when the contingent payment decreases the
agent’s effective valuation increases and they stop earlier. Let τ∗i be the least element from τ̂i.
From Proposition 1, this exists, is decreasing in θi and increasing in K.

3 Optimal Auctions

This section characterises the mechanisms 〈Pi, yi, zi〉 that maximise revenue and welfare.

3.1 Information Rents

Agent i chooses their stopping time τi and their reported type θ̃i to maximise interim utility

Eθ−i

[
Pi(θ̃i, θ̃−i) E

[(
vi(θi, θ̃−i)− ci,τi − zi,τi(θ̃i, θ̃−i)

)
δτi

]
− yi(θ̃i, θ̃−i)

]

where Eθ−i is the expectation over other agent’s types. Truthful revelation is a Bayesian Nash
equilibrium if the direct revelation mechanism satisfies incentive compatibility and individual
rationality. From agent i’s perspective, if the other agents report truthfully, their interim utility
given type θi, report θ̃i and stopping time τi is,

Ui(θi, θ̃i, τi) = Eθ−i

[
Pi(θ̃i, θ−i) E

[(
vi(θ)− ci,τi − zi,τi(θ̃i, θ−i)

)
δτi

]
− yi(θ̃i, θ−i)

]
(3.1)

Incentive compatibility then says Ui(θi, θi, τ
∗
i ) ≥ Ui(θi, θ̃i, τ

∗
i ), while individual rationality states

Ui(θi, θi, τ
∗
i ) ≥ 0.

In order to examine how utility is affected by a change in θi, we would like to use an
envelope theorem where the agent optimises over (θ̃i, τi). The space of stopping times is too
complicated for the usual envelope theorem on <N to be applied, so we will use the generalised

6There is empirical support for Proposition 1(b). In OCS wildcat auctions, Porter (1995) observes that the
first tracts to be drilled were those with high bids; these tracts also led to higher oil revenues.
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envelope theorem of Milgrom and Segal (2002).7 Interim utility, when the agent chooses the
optimal stopping rule, τ∗i , and reports their type truthfully, θ̃i = θi, can then be expressed as
the integral equation,

Ui(θi, θi, τ
∗
i ) = Eθ−i

[∫ θi

θ
Pi(s, θ−i)E [δτ∗i ]

∂

∂θi
vi(s, θ−i) ds

]
+ Ui(θi, θi, τ

∗
i ) (3.2)

Equation (3.2) implies that an agent’s information is useful only when they execute the
option, so this is the only time when they collect rents. Thus by delaying when the agent
exercises, the seller can reduce the agent’s utility and potentially increase revenue.

Incentive compatibility implies that interim utility can be expressed by the integral repre-
sentation (3.2). It also implies that interim utility Ui(θi, θ̃i, τ

∗
i ) is supermodular in (θi, θ̃i). This

is the monotonicity condition and implies that

Eθ−i

[
Pi(θ̃i, θ−i)E [δτ∗i ]

∂

∂θi
vi(θ)

]
(3.3)

is increasing in θ̃i. Together, (3.2) and (3.3) are necessary and sufficient for incentive com-
patibility, as shown in Appendix A.2. Generally, the monotonicity condition might be very
complicated (e.g. if contingent payments differ over time), but is simple for the optimal mech-
anism.

Individual rationality states that interim utility is positive, Ui(θi, θi, τ
∗
i ) ≥ 0 (∀θi). Since

transferring money from the seller to the agents will not improve welfare or revenue, we hence-
forth assume that incentive compatibility binds for the lowest type, Ui(θi, θi, τ

∗
i ) = 0.

Taking expectations with respect to type θi and integrating by parts yields ex–ante utility:

Eθi
[Ui(θi, θi, τ

∗
i )] = Eθ

[
Pi(θ)E [δτ∗i ]

∂

∂θi
vi(θ)

1− Fi(θi)
fi(θi)

]

3.2 Seller’s Payoffs

Consider selling a tract of land to an oil company, a logging firm, or a construction company,
that goes to waste if not used. The seller’s payoff equals the sum of the up–front and contingent
payments when the option is sold. When the option is not sold the seller obtains v0, which may

7The theorem requires three conditions be met: (1) Ui is differentiable with respect to θi, which holds because
vi is differentiable, (2) The derivative Ui is bounded, which holds because ∂vi(θ)/∂θi is bounded, (3) The
maximum is attained. Proposition 1(a) says the stopping rule attains its supremum for any given θ̃i while, in a
Bayesian Nash equilibrium, the agent’s payoff is maximised at θ̃i = θi by the revelation principle.
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be stochastic, but is independent of θ. To summarise, the payoffs are:

Agent i Seller

Not Awarded 0 v0

Exercised at t (vi − ci,t − zi,t) δt − yi zi,tδ
t + yi

Not Exercised −yi yi

Some examples may have different payoff structures. This is discussed in Section 3.7.

3.3 Welfare Maximisation

Define welfare as the sum of the agents’ utilities and the seller’s revenue. This equals the value
of the option:

Welfare = Eθ

[∑

i

Pi(θ) E [(vi(θ)− ci,τ∗i )δτ∗i ]

]
+ Eθ

[(
1−

∑

i

Pi(θ)

)
E [v0]

]
(3.4)

The welfare maximisation problem is to maximise (3.4) subject the to monotonicity condition
(3.3) and τ∗i maximising ex–post utility ui(θ, zi, τi), as defined by (2.1). Notice that if there is
no contingent payment then utility coincides with welfare and τ∗i is welfare–optimal. Hence:

Theorem 1. Suppose either: (a) agents have private values, or (b) the distribution of costs is
the same for all agents. Then welfare is maximised by a mechanism with contingent payments
zW
i,t (θ) = 0 (∀θ) and allocation

PW
i (θ) =





1 if ui(θ, zW
i , τ∗i ) > uj(θ, zW

j , τ∗j ) ∀j 6= i

and ui(θ, zW
i , τ∗i ) > E(v0)

0 otherwise

(3.5)

Proof. See Appendix A.3.

Corollary 1 (Symmetry). Suppose the valuation function vi(·) and the distribution of costs are
the same for all agents. Then welfare is maximised by awarding the option to the agent with
the highest type, θi, if the ex–post utility (2.1) from the option exceeds the value to the seller.

Proof. Under symmetry, θi ≥ θj implies ui(θ, zW
i , τ∗i ) ≥ uj(θ, zW

j , τ∗j ).

Contingent payments distort the winning agent’s optimal stopping problem, delaying the
exercise time. Hence the welfare maximising auction sets contingent payments to zero and
awards the object to the agent with the highest ex–post utility.
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With private values the seller can use any mechanism that awards the good to the agent
with the highest utility, such as an English or second price auction. If agents are symmetric
(as is Corollary 1) the seller can use any standard auction that allocates the good to the agent
with the highest type, such as a first price, second price, or all–pay, even is there are common
value components. With asymmetries and common values one can use the scheme of Dasgupta
and Maskin (2000).

For the welfare maximising mechanism to satisfy the monotonicity condition (3.3) we require
that the probability i is awarded the good to increase in i’s reported type. This is equivalent to
assuming ui(θ, zW

i , τ∗i )−uj(θ, zW
i , τ∗j ) is quasi–increasing in θi (∀θ−i).8 While the conditions in

Theorem 1 are sufficient for monotonicity to be satisfied, the efficient auction may be impossible
to implement with asymmetric costs and common values.

Example 1. Suppose a European option, where T = 1, is auctioned to two agents, A and B,
who have common values. Assume only agent A has any post–auction uncertainty. Payoffs are

uA = E max{θA + θB − c, 0} and uB = θA + θB

where c may be negative. Define θ∗ by

EθA
[E max{θA + θ∗ − c, 0}] = EθA

[θA + θ∗] (3.6)

The welfare maximising auction then sets contingent payments to zero and allocates the contract
to A if θB ≤ θ∗, and to B if θB > θ∗. This allocation function is independent of A’s type.9 4

3.4 Revenue Maximisation

Expected revenue equals welfare minus agents’ total utility.

Revenue = Eθ

[∑

i

Pi(θ) E [(vi(θ)− ci,τ∗i )δτ∗i − v0]−
∑

i

Ui(θi, θi, τ
∗
i )

]
+ E [v0]

= Eθ

[∑

i

Pi(θ) E [(MRi(θ)− ci,τ∗i )δτ∗i − v0]

]
+ E [v0] (3.7)

where we follow Bulow and Roberts (1989) in denoting i’s marginal revenue (or virtual utility)
by

MRi(θ) := vi(θ)− 1− Fi(θi)
fi(θi)

∂vi(θ)
∂θi

(3.8)

8A function f : < → < is quasi increasing if f(x) ≥ 0 implies f(y) ≥ 0 for y ≥ x. This condition is relatively
common, e.g. Dasgupta and Maskin (2000).

9See Appendix A.4 for a proof.
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Equation (3.7) yields a revenue equivalence result: any mechanism that has the same allocation
function Pi(·), gives the lowest type no surplus and induces the same optimal stopping rule
yields the same revenue. Consequently the revenue maximising auction will not be able to pin
down the up–front payment scheme, just the expected up–front payment.

With this in mind, the seller’s aim is to pick 〈Pi, zi〉 to maximise revenue (3.7) subject to
the monotonicity condition (3.3) and τ∗ maximising ex–post utility (2.1).

Assumption (MON). The information rent (or marginal consumer surplus)

1− Fi(θi)
fi(θi)

∂vi(θ)
∂θi

is differentiable and decreasing in θi. If vi(θ) is concave in θi (∀ θ−i), (MON) is implied by the
usual monotone hazard condition.

The winning agent’s ex–post utility (2.1) equals their net valuation minus their contingent
payment. Revenue (3.7) equals the winning agent’s net valuation minus their information rent.
Hence setting the contingent payment equal to the information rent term induces the agent to
choose the optimal stopping rule.

Theorem 2. Suppose (MON) holds and either: (a) agents have private values, or (b) the
distribution of costs is the same for all agents and MRi(θ) −MRj(θ) is quasi–increasing in θi

(∀i, j). Then revenue is maximised by a mechanism with contingent payments

zR
i,t(θ) =

1− Fi(θi)
fi(θi)

∂vi(θ)
∂θi

(3.9)

and allocation

PR
i (θ) =





1 if ui(θ, zR
i , τ∗i ) > uj(θ, zR

j , τ∗j ) ∀j 6= i

and ui(θ, zR
i , τ∗i ) > E(v0)

0 otherwise

(3.10)

Proof. (a) Contingent payments. Setting contingent payments according to (3.9) implies

τ∗i ∈ arg max E [(vi(θ)− ci,τi − zR
i,τi

(θ))δτi ]

∈ arg maxEθ

[∑

i

Pi(θ)E [(MRi(θ)− ci,τi)δ
τi − v0]

]
+ E [v0]

so when agents choose τi to maximise ex–post utility (2.1) they also maximise revenue (3.7).
(b) Allocation rule. The option should be awarded to the agent who induces the highest

revenue, subject to this value exceeding the seller’s valuation, yielding equation (3.10).

12



(c) Finally, we need to check the monotonicity condition (3.3). This is done through three
claims.

Claim 1: E [δτ∗i ] is increasing in θ̃i.
Proof: An increase in θ̃i reduces zR

i,t uniformly across time, by (MON). By Proposition 1(c),
this reduces τ∗i and therefore increases E [δτ∗i ].

Claim 2: PR
i (θ̃i, θ−i) is increasing in θ̃i.

Proof: In the revenue–maximising auction ex–post utility is

ui(θ, zR
i , τ∗i ) = E

[
(MRi(θ)− ci,τ∗i )δτ∗i

]

Let us establish two facts.
(1) ui(θ, zR

i , τ∗i ) is increasing in θi. The envelope theorem implies

ui(θi, θ−i, z
R
i , τ∗i ) = ui(θ, θ−i, z

R
i , τ∗i ) +

∫ θi

θ

∂

∂θi
MRi(s, θ−i)E [δτ∗i (s,θ−i)] ds

which is increasing in θi since marginal revenue MRi(θ) is increasing in θi, by (MON).
(2) ui(θ, zR

i , τ∗i )− uj(θ, zR
j , τ∗j ) is quasi–increasing in θi. Applying the envelope theorem to

uj(θ, zR
j , τ∗j ),

uj(θi, θ−i, z
R
j , τ∗j ) = uj(θ, θ−i, z

R
j , τ∗j ) +

∫ θi

θ

∂

∂θi
MRj(s, θ−i)E [δτ∗j (s,θ−i)] ds

If agents have private values then uj(θ, zR
j , τ∗j ) is constant in θi, so (1) implies (2). Next,

suppose all types have the same distribution of costs and ui(θ, zR
i , τ∗i ) = uj(θ, zR

j , τ∗j ) > 0.
Then MRi(θ) = MRj(θ) and E [δτ∗i ] = E [δτ∗j ]. The assumption that MRi(θ)−MRj(θ) is quasi–
increasing in θi means ∂

∂θi
[MRi(θ) −MRj(θ)] ≥ 0 so that ∂

∂θi
[ui(θ, zR

i , τ∗i ) − uj(θ, zR
j , τ∗j )] ≥ 0

which implies (2).
Claim 3: Ui(θi, θ̃i, τ

∗
i ) is supermodular in (θi, θ̃i).

Proof: The two claims then imply that ∂
∂θi

Ui(θi, θ̃i, τ
∗
i ) = Eθ−i

[
PR

i (θ̃i, θ−i)E [δτ∗i ] ∂
∂θi

vi(θ)
]

is

increasing in θ̃i, as required. ¤

Corollary 2 (Symmetry). Suppose (MON) holds, the valuation function vi(·), the distribution
of types Fi(θi) and the distribution of costs are the same for all agents, and MRi(θ)−MRj(θ)
is quasi–increasing in θi. Then revenue is maximised by awarding the option to the agent with
the highest type, if the ex–post utility (2.1) from the option exceeds the value to the seller.

Proof. Under symmetry, θi ≥ θj implies ui(θ, zR
i , τ∗i ) ≥ uj(θ, zR

j , τ∗j ). ¤

Theorem 2 states that the optimal contingent payment is set according to equation (3.9),
and the option then allocated to the agent with the highest ex–post utility. There is more
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flexibility over the up–front payment which can be determined in any number of ways so long
as interim utility (3.1) equals the integral equation, (3.2).

If agents have private values the mechanism can be implemented by a second price auction
which reveals the highest agent’s type and allocates the good to the agent with the highest
ex–post utility. If agents are also symmetric (as in Corollary 2), the seller can use any standard
auction that reveals the winning agent’s type, such as a first price, second price or all–pay
auction (but not an English auction). The optimal contingent payment can then be deduced
from the winner’s up–front bid. With common values, the seller needs to use a mechanism that
reveals all agents’ types. Under symmetry, the first price, second price and all–pay auctions
also satisfy this criterion.

The optimal mechanism in Theorem 2 is not unique. For example, the usual mechanism
design approach is to derive the optimal stopping time τ∗i and to use a forcing contract, demand-
ing the agent pay an infinite amount if they choose anything other than τ∗i . This mechanism,
however, is hard to interpret, harder to implement, and depends on post–auction costs.

In contrast, the contingent payment in Theorem 2 is independent of post–auction costs.
This means that the optimal mechanism can be implemented when the seller cannot observe,
or cannot contract on, cost data.

Suppose the seller has some extra information about costs {ci,t} not possessed by the agents.
That is, the seller knows F ′t ⊃ Ft. If the seller can contract on F ′t then they should automatically
release this information since they can always implement the outcome without revelation by
choosing appropriate payments. After the information is released, the revenue maximising
mechanism is given by Theorem 2, which is independent of costs. Consequently the seller
always wishes to release cost information, even when they cannot observe the information they
are releasing.

The revenue maximising auction introduces two distortions. First, the strike price is too
high. Second, the good may be allocated to the wrong agent (if agents are asymmetric) or
not awarded at all. This tells us about the type of dynamic distortion that market power can
induce.

Proposition 2. If the distribution of costs is the same for all agents then the option will be
exercised earlier under the welfare maximising auction (Theorem 1) than under the revenue
maximising auction (Theorem 2).

Proof. Suppose agent i wins the welfare maximising auction and let τ̂W
i be the set of stopping

rules that maximise ex–post utility (2.1). Similarly, suppose agent j (who may be the same as
i) wins the revenue maximising auction and let τ̂R

j be the set of stopping rules that maximise
ex–post utility (2.1). Since the distribution of costs is the same for all agents, vi(θ) ≥ vj(θ) ≥
MRj(θ). Proposition 1(b) then implies that τ̂R

j ≥ τ̂W
i in strict set order, and the least stopping

time is greater under the revenue maximising mechanism. ¤
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Setting N = 1, Proposition 2 implies that a durable goods monopolist with varying demand
(or varying costs) always sells later than a perfectly competitive firm. This extends the result of
Stokey (1979), who assumes the sequence of costs {ci,t} is deterministic and gradually decreases.

3.5 Interpretation

Theorem 2 says that the problem separates. The option is first allocated to the agent with
the highest ex–post utility (2.1). In the second stage, the contract implements the optimal
single–agent contract, where the contingent payment (strike price) is positive, declining in the
agent’s type, independent of post–auction costs, and independent of the time of execution.

The revenue–optimal mechanism works in a simple way. Information rents drive a wedge
between welfare and revenue. When the agent chooses the stopping time they are interested
in maximising their discounted valuation, whereas the seller is interested in maximising their
discounted marginal revenue. Inserting a Pigouvian tax equal to the expected information rents
means the agent’s and seller’s problems coincide—an act of perfect delegation.

As shown in Section 3.1, agents collect rents only when they exercise the option. Thus the
Pigouvian tax, the rent–tax, will be charged only when an agent executes the option, and can
be fully captured by the contingent payment. Rents are smaller for higher types, since there
are fewer agents who wish to copy them, so agent i’s contingent payment is decreasing in θi.
Consequently the highest type makes no contingent payment (i.e. no distortion at the top).
Rents are linear in the discount factor, so the contingent payment is independent of time. And
post–auction costs are additive, so rents do not depend on the cost, nor does the contingent
payment.

3.6 Some Numbers

The contingent payment can be substantial. Figure 1 shows the revenue–maximising first–
price bidding locus for a European option (T = 1) with private values (vi(θ) = θi), where
ci, θi ∼ U [0, 1], v0 = 0, and δ = 1. In this example, the contingent payment is larger than the
up–front payment for many types of agents.

While this provides some indication about the size of the optimal contingent payment, it
says nothing about the welfare and revenue effects of running such a mechanism. For example,
consider a European option (T = 1) with private values (vi(θ) = θi), where ln ci ∼ N(0, 1),
θi ∼ exp(1), v0 = 0 and δ = 1. The following table compares the welfare–maximising auction
(Theorem 1) and the revenue–maximising auction (Theorem 2):10

10These numbers are based on 10,000 simulations.
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Figure 1: First Price Bidding Locus for a European Option

Revenue Welfare
#of agents 2 10 50 2 10 50

Revenue–Max 0.28 0.95 2.18 0.55 1.60 3.05
Welfare–Max 0.25 0.89 2.16 0.69 1.70 3.08
Change +12.8% +6.1% +1.1% −20.1% −5.7% −1.0%

3.7 Generalising the Seller’s Payoff

In Section 3.2 we assumed the seller’s payoffs are fully captured by the transfer payments.
However, this is not always the case. If a oil company fails to drill within five years of acquiring
an OCS lease, the tract returns to the government. Similarly, before a financial option is
exercised the dividends accrue to the seller. Instead, suppose payoffs are given by:

agent Seller

Not Awarded 0 v0

Exercised in t (vi − ci,t − zi,t) δt − yi at + zi,tδ
t + yi

Not Exercised −yi b + yi
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where b and at may be random and are independent of agent’s types.
When the agent chooses to stop at time t the seller loses b− at, so the welfare maximising

auction inserts a Pigouvian tax equal to the opportunity cost of the option.

zW
i,t (θ) = E [b− at|Ft]

The contingent payment may now depend on time and the post–auction costs. Similarly, the
optimal contingent payment under revenue maximisation is

zR
i,t(θ) =

1− Fi(θi)
fi(θi)

∂vi(θ)
∂θi

+ E [b− at|Ft] (3.11)

Hence the revenue maximising strike price equals the opportunity cost plus the rent–tax.

3.8 Discussion

The idea of a rent–tax can also be used to reinterpret the solutions to a number of other classic
economic problems.

First, consider the textbook monopolist, where consumer i has valuation, θi, distributed
according to F (θi). The profit maximising solution is to sell to the agent if marginal revenue
exceeds costs, MR(θi) ≥ c. The usual way to implement this outcome is to charge a price
MR−1(c). Alternatively the firm could set a contingent payment zi = c + (1− F (θi))/f(θi) in
addition to an up–front fee. Agents would then purchase if θi − zi ≥ 0, i.e. if MR(θi) ≥ c.

Similarly, one can use the rent–tax to interpret the reserve price in a standard auction as
an option contract. The seller should charge a contingent payment zi = v0 + (1− F (θi))/f(θi)
and then award the good to the highest agent without a reserve price. Agents will then only
execute the option if θi − zi ≥ 0, i.e. if MR(θi) ≥ v0. Hence a reserve price is a special case of
an option. Moreover, this mechanism is robust to additive uncertainty. In addition, if a price
is more credible than an allocation, this method of implementation might help overcome the
Coase conjecture (McAfee and Vincent (1997)).11

Theorem 2 can be used to derive the optimal contingent payment in a oil tract auction.
Suppose agent i has estimate, θi ∼ Fi, of the extraction cost, ki(θ), which may have common
value components. Oil prices, pt, are uncertain, while the amount of oil in the ground is
normalized to 1. Given contingent payments zi,t(θ), suppose agent i’s ex–post utility from
extracting the oil using exercise rule τi is ui(θ, zi, τi) := E [(pτi − ki(θ) − zi,τi(θ))δ

τi ]. This
equation is just a relabeling of (2.1) and, correspondingly, the revenue maximising contingent

11For example, selling an option is likely to give the winning agent a lot of bargaining power. In comparison,
not awarding the good keeps any bargaining power in the hands of the seller.
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payment is

zR
i,t(θ) =

Fi(θi)
fi(θi)

∂ki(θ)
∂θi

The winning agent chooses τi to maximise ui(θ, zR
i , τi) = E [(pτi−ki(θ)−zR

i,t(θ))δ
τi ]. In compar-

ison, the OCS wildcat auctions use a contingent payment of zi,t = pt/6 (Porter (1995)). The
winning agent then chooses τi to maximise ui(θ, zR

i , τi) ∝ E [(pτi − (6/5)ki(θ))δτi ]. While the
optimal exercise decisions may coincide, there is no reason to believe they will do so.

Next, consider a second–degree price discriminating monopolist who can award different
quality, q, to different agents. Suppose that for agent i the marginal benefit from quality is
θi ∼ F (θi), and the cost of quality is given by the convex function c(q). Mussa and Rosen
(1978) show the principal equates marginal costs to marginal benefit minus the information
rent:

c′(q) = θi − 1− F (θi)
f(θi)

This outcome can be implemented by charging a price, zi(q) = c(q) + q(1 − F (θi))/f(θi),
equal to cost plus the rent–tax, in addition to an up–front payment. Once the rent–tax has
been imposed, the principal’s problem has been perfectly delegated and the agent’s choice of q

maximises the principal’s revenue.
Baron and Myerson (1982) consider a principal who is trying to procure quantity q of an

input from an agent with unknown cost. If V (q) is the principal’s benefit and θi the marginal
cost, this is the reverse of the price discrimination story. The optimal solution can then be
implemented by paying zi(q) = V (q)− qF (θi)/f(θi) for quantity q, and setting an appropriate
up–front payment. This is an adjusted version of the “selling the firm” strategy suggested by
Loeb and Magat (1979) and induces the agent to supply the optimal quantity.

Since a durable good is an option, Theorem 2 derives the optimal sales contract for a
single durable good with stochastic valuations. The optimal sales contract for a durable goods
monopolist with elastic supply can then be obtained by setting N = 1, where v0 is interpreted
as the marginal cost. Agent i is awarded an option if ui(θi, z

R
i , τ∗i ) ≥ v0. The contract then

consists of a contingent payment zR
i,t(θ) along with an up–front payment such that interim

utility (3.1) equals the integral equation, (3.2).
This sales contract can be compared with Laffont and Tirole (1996) and Biehl (2001) who

analyse the optimal rental contract with stochastic valuations. Their models allow for non–
additive valuations and consider only two periods, however, for the sake of comparison suppose
the rental value each period t is (1 − δ)(θi − ct). Using the rent–tax approach, the optimal
rental contract then charges a contingent payment zi = (1 − δ)(1 − F (θi))/f(θi) every period
the good is rented, along with an up–front fee.12

12The choice between a rental and sale contract depends upon the circumstances. While renting will generally
be preferred to selling, it may not be possible. Many goods are irreversible: once a bridge has been built there
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These examples show how the rent–tax approach can be used in a variety of different situ-
ations. In the simple examples, such as textbook monopoly pricing, there are simpler schemes.
However, in more complex problems, rent–taxation seems appealing and has the advantage that
it is independent of additive shocks to valuations.

4 Extensions

This section looks at two extensions of the basic model. Section 4.1 considers the question of
auction timing and the optimal state–dependent allocation function. Section 4.2 analyses the
payoffs with non–additive valuations.

The section paints a general picture of these extensions, but will only consider the relaxed
problems, omitting the monotonicity condition. This caveat should be born in mind when
interpreting the results, but should not affect the basic intuition.

4.1 Auction Timing and State–Dependent Allocation

One advantage of a multi–period model is that is allows us to analyse when the auction should be
held. Suppose the seller contracts at time 0 (as in Section 3), but chooses to hold the auction at
time s, which itself is an Ft–adapted stopping time, {ω : s ≤ t} ∈ Ft.13 Define the information
available at the start of the auction to be Fs := {A : A∩ {s = t} ∈ Ft ∀t}. The mechanism can
be described by the triple 〈Pi, yi, zi〉, where Pi : [θ, θ]N → [0, 1] is a Fs–measurable allocation
function, yi : [θ, θ]N → < is the up–front payment made at time 0, and zi,t : [θ, θ]N ×Ω → < is
a Ft–adapted contingent payment. As in Section 3, the revenue maximisation problem is

Revenue = EθE
[∑

i

Pi(θ)E
[
(MRi(θ)− ci,τ∗i )δτ∗i − v0 | Fs

]]
+ E [v0]

s.t. τ∗i ∈ arg max
τi≥s

E [(vi(θ)− ci,τi − zi,τi)δ
τi ]

where MRi(θ) is defined by (3.8). Given a starting time s, revenue is maximised by the policy
is Theorem 2. The contingent payment is set equal to the information rent (3.9), and the good
given to the agent with the highest time–s ex–post utility, E [(vi(θ)− ci,τi − zi,τi(θ))δ

τi | Fs].14

With private values this can be implemented using the handicap auction of Eso and Szentes

is little point in taking it down in the off–season. Other goods are one–time experiences: watching Citizen Kane
is a certainly durable event yet can only be rented if the agent suffers from severe amnesia.

13The fact the contract is signed at time 0 is important and means that the agents do not gain rents from
knowledge of post–auction costs.

14Similarly, welfare is maximised by the policy in Theorem 1 when implemented at time s.
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(2003). At time 0 each agent is assigned contingent payment zR
i,t(θ) and makes up–front payment

ŷi(θ) chosen so that incentive compatibility holds. At time s the auctioneer than holds a second
price auction that allocates the good to the agent with the highest time–s ex–post utility.

When choosing the starting time s, there are two main effects at work.
First, the decision effect. By delaying the auction the agent may have missed good oppor-

tunities to execute the option, reducing revenue.
Second, the allocation effect. By delaying the auction, information is revealed and the seller

increases revenue.
In the case of a timber auctions, contract terms are generally longer than the time needed to

harvest, so most agents wait until the until the end of their contract (Haile (2001)). By delaying
the auction, a more efficient allocation would be possible. However, delaying the auction may
also mean some tracts were harvested too late.

The begs the question: when is the best time to hold the auction? In order to answer this,
let us consider the optimal state dependent mechanism.

4.1.1 State Dependent Allocation

Define the state–dependent mechanism by a pair 〈σi, xi〉. The exercise function σi : [θ, θ]N×Ω →
{1, . . . , T} ∪ {∞} describes when agent i exercises the object, where {ω : σi(θ̃) ≤ t} ∈ Ft. If
σi(θ̃) = ∞ then agent i never exercises, and

∑
i 1σi(θ̃)<∞ ≤ 1 since only one agent can win.15

Let the seller be agent 0. Payment is given by xi : [θ, θ]N → <.
In the Bayesian Nash equilibrium, agent i chooses their reported type θ̃i to maximise interim

utility
Ui(θi, θ̃i) = Eθ−iE [(vi(θ)− ci,σi(θ̃i,θ−i)

)δσi(θ̃i,θ−i) − xi(θ̃i, θ−i)]

Following Section 3, welfare is the sum of the seller’s and agents’ utilities,

Welfare =
∑

i

EθE [(vi(θ)− ci,σi(θ))δ
σi(θ)]

Let σW (θ) = {σW
i (θ)}i be the welfare–optimal stopping rule.16 Similarly, revenue equals welfare

minus rents,
Revenue =

∑

i

EθE [(MRi(θ)− ci,σi(θ))δ
σi(θ)]

15In Section 3 the allocation was determined by two functions: Pi(·) says which agent wins the option, and τi

says when the winning agent executes. The σi(·) formulation merges these two functions into one.
16Under private values the welfare maximising policy satisfies the monotonicity constraint, that Ui(θi, θ̃i) is

supermodular in (θi, θ̃i). Intuitively, when agent i’s type rises they are allocated the good more often and are
allocated it earlier (by Proposition 1)(b). With common value components, monotonicity will require other
assumptions, as in Theorem 1.
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where the seller’s marginal revenue is MR0(θ) = v0. Let σR(θ) be the revenue–optimal stopping
rule.

The welfare maximising rule can be implemented by the mechanism in Theorem 1 if the
auction is started at time s = mini{σW

i (θ)}.17 Similarly, the revenue maximising rule can be
implemented by the mechanism in Theorem 2 if the auction is started at time s = mini{σR

i (θ)}.
Intuitively, once the option is in the hands of the right agent they will execute at the time that
maximises the seller’s objective. The auctioneer thus delays the auction until they have enough
information to allocate the option to the right agents in the each state.

While it is easier to run an auction than directly implement the stopping function σ(θ), the
seller still requires a lot of knowledge. In particular, they need to know cost information, Ft, in
order start the auction at the correct time. The next section considers how to implement these
mechanisms when the seller cannot observe post–auction costs.

4.1.2 State Dependent Allocation with Unobservable State

The first task is to derive the welfare maximising mechanism when costs are not observable.
Recall that each agent observes information Fi,t, and assume agents have private values, vi(θ) =
θi.18

The welfare maximising mechanism, σW (θ), can then be implemented through a Vickrey
auction. Let {σ−j (θ−i)}j 6=i maximise welfare in a world without agent i. Suppose at time 0 each
agent i reports their type θ̃i. In every subsequent period, t ∈ {1, . . . , T}, agent i then reports
an information partition F̃i,t which implies reported costs c̃i,t. Eventually, if i is awarded the
good, they pay the externality they exert on agents j 6= i,

∑

j 6=i

[
(θ̃j − c̃j,σ−j

)δσ−j − (θ̃j − c̃j,σW
j

)δσW
j

]

Truthful revelation is a weakly dominant strategy in each period. See Appendix A.6 for a proof.
To implement the the revenue maximising mechanism, we can use a version of the handicap

mechanism of Eso and Szentes (2003) which is a natural compliment to the Theorem 2. At time
0 agents make a report of their types θi, are assigned a contingent payment zR

i (θi), equal to
the rent–tax (3.9), and make an up–front payment ˆ̂yi(θ) chosen so that incentive compatibility
holds. Once the contingent payment has been introduced each agent i acts as if their valuation
is MRi(θi), so we can run the above Vickrey auction where valuations θi are replaced by marginal
revenues MRi(θi).

17See Appendix A.5 for a proof.
18One may be able to extend the treatment to common values using mechanisms such as Dasgupta and Maskin

(2000).
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4.2 Options Without Additivity

So far we have assumed private information is additively separable from post–auction infor-
mation. Suppose instead that agent i’s net valuation in period t is given by the Fi,t-adapted
function vi,t : [θ, θ]N × Ω → <+.

The welfare maximising mechanism (Theorem 1) awards the option to the agent with the
highest ex–post utility and so is unaffected by dropping the additivity assumption. Similarly,
as shown in Section 4.2.1, if the seller can contract on the state then the revenue maximising
mechanism is essentially the same as Theorem 2. However, the optimal contingent payment
may now be state dependent. Therefore, if the seller cannot observe the state, the optimum
with observability can only be achieved in special cases.

4.2.1 Observable State

First suppose the total post–auction information, Ft = ∩iFi,t, is observed by the seller. Agents
choose their stopping time to maximise ex–post utility,

ui(θ, zi, τi) := E [(vi,τi(θ)− zi,τi(θ))δ
τi ] (4.1)

The derivation of revenue is the same as in Section 3 and is given by

Revenue = Eθ

[∑

i

Pi(θ) E
[(

vi,τ∗i (θ)− ∂vi,τ∗i (θ)
∂θi

1− Fi(θi)
fi(θi)

)
δτ∗i − v0

]]
+ E [v0] (4.2)

where τ∗i is chosen to maximise (4.1). Comparing equations (4.1) and (4.2) one can see that
the agent’s choice of stopping rule coincides with the seller’s choice if the contingent payment
equals information rents,

zO
i,t(θ) =

∂vi,t(θ)
∂θi

1− Fi(θi)
fi(θi)

where the “O” superscript stands for observable. So the optimal contingent payment is time
(state) independent if i’s rents are independent of the time (state).

4.2.2 Unobservable State

Next, suppose the state of the world is not observed by the seller. If the seller can learn agent
i’s state from agent j, then it is easy to implement the optimum under observability. To avoid
this trivial case, suppose the set of states is a product space, where ω = {ω1, . . . , ωN} and Fj,t

is independent of the sigma–algebra generated by ωi for j 6= i. In this situation revenue still is
given by equation (4.2); however, the contingent payment zi,t can no longer depend upon the
state. Consequently the optimum with observability may not be attainable.
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Example 2. Suppose the option is European (T = 1), agent i wins the auction, and their
state is represented by ωi = (ωi,1, ωi,2) ∈ [0, 1]2, while θi ∼ U [0, 1]. Let v(θi, ωi,1, ωi,2) =
θiωi,1 +ωi,2 so that MRi(θi, ωi,1, ωi,2) = (2θi−1)ωi,1 +ωi,2. The seller would then like to execute
if (2θi − 1)ωi,1 + ωi,2 ≥ 0, while the agent executes if θiωi,1 + ωi,2 ≥ zi, given some contingent
payment zi. With observability the optimum can be implemented by choosing zi = (1− θi)ωi,1;
however, there is no state independent contingent payment zi which will align these incentives.
Hence principal chooses zi to maximise E

[
[(2θi − 1)ωi,1 + ωi,2]1{θiωi,1+ωi,2≥zi}

]
. 4

Under some circumstances the maximum revenue with observability can be attained without
observability. For example, consider a European option (T = 1) where ωi ∈ [0, 1] and vi(θ, ωi)
is increasing in the state, ωi. Define the marginal revenue from agent i in state ωi to be

MRi(θ, ωi) := vi(θ, ωi)− ∂vi(θ, ωi)
∂θi

1− Fi(θi)
fi(θi)

If MRi(θ, ωi) is quasi–increasing in ωi then the states where the seller wishes to exercise, {ωi :
MRi(θ, ωi) ≥ 0}, is an increasing set of the form {ωi ≥ ωi}. The revenue maximising exercise
rule can then be implemented under non–observability by setting the contingent payment

zNO
i,t (θ) :=

∂vi,t(θ, ωi)
∂θi

1− Fi(θi)
fi(θi)

That is, the seller introduces a Pigouvian tax equal to the information rent in the marginal
state. Since vi(θ, ωi) is increasing in ωi, the winning agent will choose the revenue maximising
exercise decision in the infra–marginal states.19

The crucial assumption is that there is only one marginal state in the seller’s and agent’s
exercise decisions. Then the contingent payment can be chosen to align incentives in the
marginal states.

This approach can also be extended to multiple periods.20 Suppose agent i’s state is given
by ωi = (ωi,1, . . . , ωi,T ) ∈ [0, 1]T , and that payoffs are markov, so the decision to stop at time
t depends only on the state ωi,t. Also suppose that the seller’s and agents’ stopping problems
are monotone, so that {ωi,t : τ = t} are increasing sets. Intuitively, this means that payoffs
display “mean reversion,” so an increase in today’s state increases today’s payoff more than
future payoffs. Under these assumptions, the maximum revenue with observability can be
implemented without observability by choosing the contingent payments to align incentives in
these (unique) marginal states.

19This one–period result is similar to Baron and Besanko (1984), Laffont and Tirole (1996) and Courty and Li
(2000). These authors work with the induced distribution of valuations, rather than specifying the underlying
state–space.

20Monotone markov stopping problems are further examined by Friedman and Johnson (1997).

23



While this result is encouraging, it is also limited. States are often multi–dimensional, as
in Example 2 and in non–markov multi–period models. In addition, the assumption that the
stopping problems are monotone puts strong restrictions on the evolution of payoffs. The general
point is that once the additivity assumption is dropped the effect of observability depends upon
the nature of the optimal stopping problem.

5 Concluding Remarks

This paper has derived the optimal way to sell an option, where post–auction information
is allowed to follow any stochastic process. This introduces timing considerations into the
allocation decision, allowing the agents to choose both whether to initiate a project and when
to do so. In analysing this we have seen that the theory of optimal stopping is a natural
complement to the theory of mechanism design.

The revenue maximising auction consists of an up–front and contingent payment, in the style
of a two–part tariff. The contingent payment acts like a Pigouvian rent–tax so the winning
agent’s choice of stopping time is optimal for the seller. This perfect delegation property means
that the seller will always reveal information that is valuable to the agents. Under an additivity
assumption, we also showed that this contingent payment is time– and state–invariant, so the
seller does not need to contract on the post–auction information.

The introduction of multiple periods allows us to assess dynamic aspects of auction design.
In Proposition 2, we demonstrated that market power induces an allocative distortion whereby
the winning agent will exercise the option too late. We also analysed the optimal timing of
an auction, showing the seller could attain the maximum revenue available through a state–
dependent mechanism if they hold the auction at the right time.

There are other aspects of dynamic auction design that we have said little about. If the
seller cannot run the optimal mechanism they would wish to influence the winning agent’s
choice of execution time through bureaucratic means or by hiding information. We have also
said little about resale, which may enhance revenue by increasing efficiency while undermining
discrimination between agents.
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A Omitted Proofs

A.1 Equivalence of Mechanisms

Lemma 1. Any direct mechanism 〈Pi, xi, τi〉 can be replaced by an indirect mechanism 〈Pi, yi, zi〉
that has an equilibrium giving rise to the same outcome (expected payoffs, stopping time and al-
location). Conversely, any indirect mechanism 〈Pi, yi, zi〉 can be replaced by a direct mechanism
〈Pi, xi, τi〉 that has an equilibrium giving rise to the same outcome.

Proof. Consider three mechanisms:
Mechanism 1 consists of an allocation function Pi : [θ, θ]N → [0, 1], a Ft–adapted payment

xi : [θ, θ]N → <, and a Ft–adapted stopping time τi : [θ, θ]N × Ω → < for the winner.
Mechanism 2 allocates the object according to Pi : [θ, θ]N → [0, 1]. The seller then reveals

reported types θ̃ and charges a Ft–adapted payment x̂i : [θ, θ]N × {1, . . . , T} ∪ {∞} × Ω → <
for agent i, if they stop at time t. If the agent loses then let τi = ∞.

Mechanism 3 allocates the object according to Pi : [θ, θ]N → [0, 1], and charges an up–front
payment yi : [θ, θ]N → <. The seller then reveals reported types θ̃ and charges a Ft–adapted
contingent payment zi : [θ, θ]N × {1, . . . , T} × Ω → < for the winner.

Mechanisms 1 and 2 are equivalent by the taxation principle and the revelation principle
(Salanie (1997)). An outcome implemented by mechanism 3 can be implemented via mechanism
2 by setting x̂i,t = yi + zi,t. Next, take an outcome implemented under mechanism 2 and
construct the following payments. For a losing agent let yi(θ) = E [x̂i,∞(θ)]. For a winning
agent define yi and zi,t by

yi(θ) = E [x̂i,∞(θ)]

zi,t(θ) = δ−tE [x̂i,t(θ)− x̂i,∞(θ) | Ft]

This implements the same stopping time as mechanism 2 since, agent i’s ex–post utility is

ui(θ, zi, τi) = E [(vi(θ)− ci,τi)δ
τi − x̂i,τi ]

= E [(vi(θ)− ci,τi)δ
τi − x̂i,τi − x̂i,∞] + E [x̂i,∞]

= E [(vi(θ)− ci,τi − zi,τi)δ
τi ] + yi(θ)

The first inequality adds and subtracts x̂i,∞. The second equality comes from the definition of
zi,t and conditioning x̂i,∞ on Fτi , which we can do since this is the only part of x̂i,∞ relevant
for the stopping decision. ¤
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A.2 Necessary and Sufficient Conditions for Incentive Compatibility

Lemma 2. The mechanism is incentive compatible if and only if equation (3.2) holds and
Ui(θi, θi, τ

∗
i ) is supermodular in (θi, θ̃i).

Proof. Necessity. By the envelope theorem, (IC) implies equation (3.2). (IC) also implies

Ui(θi, θi, τ
∗
i )− Ui(θi, θ̃i, τ

∗
i ) ≥ 0 ≥ Ui(θ̃i, θi, τ

∗
i )− Ui(θ̃i, θ̃i, τ

∗
i )

which states Ui(θi, θ̃i, τ
∗
i ) is supermodular in (θi, θ̃i).

Sufficiency. Let θi ≥ θ̃i without loss. From equation (3.2)

Ui(θi, θi, τ
∗
i ) = Ui(θ̃i, θ̃i, τ

∗
i ) +

∫ θi

θ̃i

∂

∂θi
Ui(s, s, τ∗i ) ds

≥ Ui(θ̃i, θ̃i, τ
∗
i ) +

∫ θi

θ̃i

∂

∂θi
Ui(s, θ̃i, τ

∗
i ) ds

= Ui(θ̃i, θ̃i, τ
∗
i ) +

[
Ui(θi, θ̃i, τ

∗
i )− Ui(θ̃i, θ̃i, τ

∗
i )

]

= Ui(θi, θ̃i, τ
∗
i )

where the inequality comes from the supermodularity of Ui(θi, θ̃i, τ
∗
i ) in (θi, θ̃i). ¤

A.3 Proof of Theorem 1

(a) Contingent payments. Setting z = 0 implies

τ∗i ∈ arg max E [
(vi(θ)− ci,τi − zW

i,τi
(θ))δτi

]

∈ arg max Eθ

[∑

i

Pi(θ)E [(vi − ci,τi)δ
τi − v0]

]
+ E [v0]

so when agents choose τi to maximise ex–post utility (2.1) they will also maximise welfare (3.4).
(b) Allocation rule. The option should be awarded to the agent who has the largest addition

to welfare, subject to this value exceeding the seller’s valuation, yielding equation (3.5).
(c) Finally, we need to check the monotonicity condition (3.3). This is done through two

claims.
Claim 1: PW

i (θ̃i, θ−i) is increasing in θ̃i.
Proof: In the welfare–maximising auction ex–post utility is

ui(θ, zW
i , τ∗i ) = E

[
(vi(θ)− ci,τ∗i )δτ∗i

]

Let us establish two facts.
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(1) ui(θ, zW
i , τ∗i ) is increasing in θi. The envelope theorem implies

ui(θiθ−i, z
W
i , τ∗i ) = ui(θθ−i, z

W
i , τ∗i ) +

∫ θi

θ

∂

∂θi
vi(s, θ−i)E [δτ∗i (s,θ−i)] ds

and we are done since vi(θ) is increasing in θi

(2) ui(θ, zW
i , τ∗i )−uj(θ, zW

j , τ∗j ) is quasi–increasing in θi. Applying the envelope theorem to
ui(θ, zW

j , τ∗j ),

uj(θiθ−i, z
W
j , τ∗j )uj(θ, θ−i, z

W
j , τ∗j ) +

∫ θi

θ

∂

∂θi
vj(s, θ−i)E

[
δτ∗j (s,θ−i)

]
ds

If agents have private values then uj(θ, zW
j , τ∗j ) is constant in θi, and (1) implies (2). Next

suppose all types have the same distribution of costs and ui(θ, zW
i , τ∗i ) = uj(θ, zW

j , τ∗j ) > 0.
Then vi(θ) = vj(θ) and E [δτ∗i ] = E [δτ∗j ]. The assumption that ∂

∂θi
[vi(θ) − vj(θ)] ≥ 0 means

∂
∂θi

[ui(θ, zW
i , τ∗i )− uj(θ, zW

j , τ∗j )] ≥ 0 which implies (2).
Claim 2: Ui(θi, θ̃i, τ

∗
i ) is supermodular in (θi, θ̃i).

Proof: The above claim implies ∂
∂θi

Ui(θi, θ̃i, τ
∗
i ) = Eθ−i

[
PW

i (θ̃i, θ−i)E [δτ∗i ] ∂
∂θi

vi(θ)
]

is in-

creasing in θ̃i, as required. ¤

A.4 Derivation of Example 1

Let PA(θA, θB) be the probability that A is allocated the contract, and denote the difference is
expected utility by ∆ = max{θA + θB − c, 0} − [θA + θB]. Welfare maximisation is equivalent
to maximising, EθPA(θA, θB)E [∆], subject to the monotonicity condition (3.3). Notice E [∆]
is decreasing in θA, while monotonicity implies PA(θA, θB) is increasing in θA. Consequently,
PA(θA, θB) will be independent of θA in the welfare maximising auction.

The principal should set zA = 0 so that the choice of stopping time maximises E [∆]. Welfare
is thus maximised by allocating the contract to B when EθA

E [∆] < 0 which can be rewritten
as (3.6). Since E [∆] is decreasing in θB, B’s monotonicity condition is satisfied. ¤

A.5 State Dependent Allocation and Auction Timing

Suppose in a given state the welfare maximising mechanism, σW (θ), awards the good to agent
i in period s. Since this is welfare maximising we know

(vi(θ)− ci,s)δs = max
σj(θ)≥s

∑

j

E [(vj(θ)− cj,σj(θ))δ
σj(θ) | Fs] (A.1)
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Now consider starting the mechanism in Theorem 1 at time s. Equation (A.1) has two impli-
cations. First, agent i will win the auction since, (∀j 6= i),

(vi(θ)− ci,s)δs ≥ max
σj(θ)≥s

E [(vj(θ)− cj,σj(θ))δ
σj(θ) | Fs]

Second, agent i will execute immediately since

(vi(θ)− ci,s)δs ≥ max
σi(θ)≥s

E [(vi(θ)− ci,σi(θ))δ
σi(θ) | Fs]

Thus we implement the optimal allocation under the state dependent allocation function. ¤

A.6 Vickrey Auction

To show that truthful revelation is a weakly dominant strategy under the Vickrey auction
suppose agents j 6= i pretend to have type θ̃j and costs c̃j,t. Suppose agent i lies about their
information and induces allocation σ′(θ). Their benefit from doing this at time t is the induced
change in expected welfare,

N∑

j=1

E
[
(θ̃j − c̃j,σW

j
)δσW

j − (θ̃j − c̃j,σ′j )δ
σ′j | Ft

]

This is negative by the definition of the welfare maximising mechanism, σW (θ). ¤
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