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REPUTATION FOR QUALITY

BY SIMON BOARD AND MORITZ MEYER-TER-VEHN1

We propose a model of firm reputation in which a firm can invest or disinvest in
product quality and the firm’s reputation is defined as the market’s belief about this
quality. We analyze the relationship between a firm’s reputation and its investment
incentives, and derive implications for reputational dynamics.

Reputational incentives depend on the specification of market learning. When con-
sumers learn about quality through perfect good news signals, incentives decrease in
reputation and there is a unique work–shirk equilibrium with ergodic dynamics. When
learning is through perfect bad news signals, incentives increase in reputation and there
is a continuum of shirk–work equilibria with path-dependent dynamics. For a class of
imperfect Poisson learning processes and low investment costs, we show that there ex-
ists a work–shirk equilibrium with ergodic dynamics. For a subclass of these learning
processes, any equilibrium must feature working at all low and intermediate levels of
reputation and shirking at the top.

KEYWORDS: Reputation, monitoring processes, firm dynamics, investment.

1. INTRODUCTION

IN MOST INDUSTRIES, firms can invest in the quality of their products through
human capital investment, research and development, and organizational
change. Often these investments and the resulting quality are imperfectly ob-
servable, giving rise to a moral hazard problem. The firm then invests so as to
build a reputation for quality, justifying premium prices in the future. This pa-
per analyzes the investment incentives in such a market, examining how they
depend on the current reputation of the firm and the information structure of
market observations.

The key innovation of our paper is to adopt a capital-theoretic approach
to modeling both quality and reputation. Specifically, our model considers a
firm that can invest or disinvest in product quality and whose revenue depends
on its reputation, which is defined as the market’s belief about this quality.
This setting seems realistic in many contexts: car makers engage in research
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and development to increase safety, with customers updating from news re-
ports; electronics firms organize production to increase reliability, with buy-
ers learning through product reviews; academics invest in their human capital,
with employers inferring their ability from publications. In traditional models
of reputation, a firm’s reputation is the market’s belief about some exogenous
type, and the firm exerts effort to signal this type, for example, Kreps, Mil-
grom, Roberts, and Wilson (1982). In our model, the firm’s quality serves as an
endogenous type and the firm invests to actually build this type. As the firm’s
quality is persistent, the effects of investment are long lasting and firm revenue
is less sensitive to the market’s belief about its actions than in traditional rep-
utation models. Hence investment today yields rewards tomorrow, even if the
firm is believed to be shirking tomorrow.

The model gives rise to simple Markovian equilibria in which investment in-
centives are determined by the present value of future reputational dividends.
We investigate these incentives for a class of Poisson learning processes and
determine when a firm builds a reputation, when it invests to maintain its rep-
utation, and when it chooses to deplete its reputation. Our results suggest that
incentives for academics, where the market learns through good news events
like publications, are different from the incentives for clinical doctors, where
the market learns through bad news events like malpractice suits.2

In the model, illustrated in Figure 1, one long-lived firm sells a product of
high or low quality to a continuum of identical short-lived consumers. Product
quality is a stochastic function of the firm’s past investments. More specifi-
cally, technology shocks arrive with Poisson intensity λ. If there is no technol-
ogy shock at time t, the firm’s quality at time t is the same as its quality at time
t − dt; if there is a technology shock at time t, then the firm’s quality becomes
high if it is investing/working and low if it is disinvesting/shirking. Thus, quality
at time t is an additively separable function of quality at t − dt and investment
at time t. Consumers’ expected utility is determined by the firm’s quality, so
their willingness to pay equals the market belief that quality is high; we call
this belief the reputation of the firm and denote it by xt .

Consumers observe neither quality nor investment directly, but learn about
the firm’s quality through signals with Poisson arrival times. A signal arrives at
rate μH if the firm has high quality and rate μL if the firm has low quality. If the
net arrival rate μ := μH − μL is positive, the signal is good news and indicates
high quality; if μ is negative, the signal is bad news and indicates low quality.
Market learning is imperfect if the signal does not reveal the firm’s quality per-
fectly. Together with the market’s belief about firm investment, the presence
and absence of signals determines the evolution of the firm’s reputation.

2Other examples for good news learning include the bio-tech industry when a trial succeeds
and actors when they win an Oscar. Other examples for bad news learning include the computer
industry when batteries explode and the financial sector when a borrower defaults. MacLeod
(2007) coined the terms “normal goods” for experience goods that are subject to bad news learn-
ing and “innovative goods” for experience goods that are subject to good news learning.
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FIGURE 1.—Timeline. Quality is persistent and depends stochastically on past investments.
The market learns about the firm’s quality through Poisson signals. Reputation then evolves as
a function of market learning and equilibrium beliefs about the firm’s investments. As quality
is persistent, today’s investment affects all future signals, generating a stream of reputational
dividends.

In Section 3 we characterize the firm’s investment incentives. By investing,
the firm raises its quality in the event of a technology shock; investment incen-
tives are thus governed by the difference in value between a high and a low
quality firm, which we term the value of quality. As quality is persistent and
controls the arrival of future signals, we can represent the value of quality as a
present value of future reputational dividends. This representation differs from
traditional reputation models in which an increase in effort leads to a one-time
boost in reputation.

In Section 4, we characterize equilibria under perfect Poisson learning. For
perfect good news, where high quality gives rise to product breakthroughs that
boost its reputation to x= 1, reputational dividends and investment incentives
decrease in the firm’s reputation. Equilibrium therefore must be work–shirk in
that the firm works when its reputation lies below some cutoff x∗ and shirks
above this cutoff. Intuitively, a firm with low reputation has stronger incentives
to invest in quality because it benefits more from the reputational boost due
to a breakthrough. Reputational dynamics are ergodic in a work–shirk equilib-
rium because believed investment induces an upward drift for low reputations
and a downward drift for high reputations. When technology shocks are suffi-
ciently frequent, this work–shirk equilibrium is unique.

For perfect bad news signals, where high quality insures the firm against
product breakdowns that destroy its reputation, reputational dividends and in-
vestment incentives increase in the firm’s reputation. Equilibrium therefore
must be shirk–work in that the firm works when its reputation lies above some
cutoff x∗ and shirks below this cutoff. Intuitively, a firm with high reputation
has a stronger incentive to invest in quality because it has more to lose from the
collapse in reputation following a breakdown. Reputational dynamics are path-
dependent in a shirk–work equilibrium because the firm’s reputation never re-
covers after a breakdown, while a high quality firm that keeps investing can
avoid a breakdown with certainty. There may be a continuum of shirk–work
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equilibria: the multiplicity is caused by the divergent reputational drift around
the cutoff that creates a discontinuity in the value functions and investment in-
centives. Intuitively, the favorable beliefs above the shirk–work cutoff give the
firm strong incentives to invest and protect its appreciating reputation, creating
a self-fulfilling prophecy.

In Section 5, we analyze imperfect Poisson learning processes when the
cost of investment is low. Bayesian learning based on imperfect signals ceases
for extreme reputations and reputational dividends tend to be hump-shaped.
While this suggests a shirk–work–shirk equilibrium, we surprisingly show the
existence of a work–shirk equilibrium. The work–shirk result relies on a funda-
mental asymmetry between investment incentives at high and low reputations.
For x≈ 1, work is not sustainable: If the firm is believed to work, its reputation
stays high and reputational dividends stay small, undermining incentives to ac-
tually invest. For x≈ 0, work is sustainable: If the firm is believed to work, its
reputation drifts up and reputational dividends increase, generating incentives
to invest. Crucially, a firm with a low reputation works not because of the small
immediate reputational dividends, but because of the larger future dividends it
expects after its reputation has drifted up. Thus, the work–shirk incentives are
sustained by a combination of persistent quality and endogenous reputational
drift.

If learning is such that the firm’s reputation may rise even when it is believed
to be shirking, then any equilibrium must feature work at low and intermediate
levels of reputation and shirking at the top. This condition, that we call HOPE,
is satisfied if learning is either via good news or if learning is via bad news
and signals are sufficiently frequent. Under HOPE, putative shirk–work–shirk
equilibria unravel as the favorable beliefs in the work region guarantee high
investment incentives for a firm in a neighborhood of the shirk–work cutoff.
In contrast, if HOPE is not satisfied, adverse beliefs below a shirk–work cutoff
are self-fulfilling and can support a shirk region at the bottom.

1.1. Literature

The key feature that distinguishes our paper from traditional models of rep-
utation and models of repeated games is that product quality is a function of
past investments rather than current effort. This difference is important. In
classical models, the firm exerts effort to convince the market that it will also
exert effort in the future. In our model, a firm’s investment increases its qual-
ity; since quality is persistent, this increases future revenue even if the firm is
believed to be shirking in the future.

The two reputation models closest to ours are Mailath and Samuelson (2001)
and Holmström (1999), both of which model reputation as the market’s belief
about an exogenous state variable. The mechanisms that link effort, types, and
signals are illustrated in Figure 2. In Mailath and Samuelson (2001), a compe-
tent firm can choose to work so as to distinguish itself from an incompetent firm
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This paper Mailath and Samuelson Holmström

FIGURE 2.—Comparison of reputation models. The literature generally models reputation
as belief over some exogenous type. This type affects consumer utility either directly, as in
Holmström (1999), or indirectly through the cost of effort, as in Mailath and Samuelson (2001).
In contrast, our firm controls its endogenous type through its investment.

that always shirks. A reputation for competence benefits the firm to the degree
that the market expects a competent firm to work. With imperfect monitoring,
a firm with a high reputation shirks because updating is slow; effort then un-
ravels from the top, since a firm just below a putative work–shirk cutoff finds it
unprofitable to further invest in its reputation. In our model, persistent quality
prevents this unraveling because current investment affects the firm’s future
reputation and revenue, regardless of beliefs about its future investments.

Holmström’s (1999) signal-jamming model is similar to ours in that the firm’s
type directly affects consumers’ utility. In his model, the firm works to induce
erroneous market beliefs that its exogenous ability type is higher than in reality.
This is in contrast to our model, where a firm invests to actually improve its
endogenous quality type.

In both of these papers, learning about a fixed type eventually vanishes, as do
reputational incentives. These are instances of a more general theme: Cripps,
Mailath, and Samuelson (2004) show that with imperfect monitoring and fixed
types, reputation is a short-run phenomenon. Long-run relevance of reputa-
tion requires “some mechanism by which the uncertainty about types is contin-
ually replenished.” Stochastic investment in quality, as featured in our paper,
is a natural candidate for this mechanism. Unlike models of exogenous shocks
(e.g., Mailath and Samuelson (2001), Holmström (1999)) in which reputation
trails the shocks, the reputational dynamics of our model are endogenously
determined by the forward-looking reputational incentives.3

There is a wider literature on life cycle effects in reputation models, as sur-
veyed in Bar-Isaac and Tadelis (2008). Some of these results can be understood
through our analysis of different learning processes: with perfect good news
learning, firms with low reputation try to build or buy a reputation, as in Tadelis
(1999). With perfect bad news learning, firms with high reputation have high

3Liu (2011) gave an alternative explanation of long-run reputational dynamics where uncer-
tainty is replenished by imperfect, costly recall.
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incentives to maintain them, as in Diamond (1989). With imperfect learning,
reputational incentives are hump-shaped, as in Benabou and Laroque (1992)
and Mailath and Samuelson (2001).

Compared to the repeated games literature (e.g., Fudenberg, Kreps, and
Maskin (1990)), our model is distinguished by an evolving state variable. In-
vestment directly feeds through to future reputation and revenue in our model,
rather than preventing deliberate punishment by a counterparty.

Our model is related to other literatures. Rob and Fishman (2005) used
a repeated game with imperfect monitoring to explain the dynamics of firm
size. In the contract design literature, models with persistent effort have been
studied by Fernandes and Phelan (2000) and Jarque (2010). The contrast be-
tween classical reputation models and our model is analogous to the differ-
ence between models of industry dynamics with exogenous types (Jovanovic
(1982) and Hopenhayn (1992)) and those with endogenous capital accumula-
tion (Ericson and Pakes (1995)). Finally, with its focus on Poisson signals, our
paper is related to the strategic learning literature, for example, Keller, Rady,
and Cripps (2005), Keller and Rady (2010), Klein and Rady (2011).

Our model has clear empirical predictions concerning reputational dynam-
ics. While there is a growing empirical literature concerning reputation, sur-
veyed in Bar-Isaac and Tadelis (2008), most of these papers are static and fo-
cus on quantifying the value of reputation. One notable exception is Cabral
and Hortaçsu (2010), who showed that an eBay seller who receives negative
feedback becomes more likely to receive additional negative feedback and is
more likely to exit. This is consistent with our bad news case, where a seller
who receives negative feedback stops investing.

2. MODEL

Players and actions: There is one firm and a competitive market of identical
consumers. Time t ∈ [0�∞) is continuous. At every time t, the firm chooses an
investment level at ∈ [0�1] and sells one unit of its product to consumers. Fol-
lowing Holmström (1999) and Mailath and Samuelson (2001), we do not model
consumers’ actions explicitly, but rather assume directly that at any time t they
purchase the firm’s single unit of output at a price equal to expected quality
(see below).

At time t, the firm’s product quality is θt ∈ {L�H}, where L= 0 and H = 1.
Initial quality θ0 is exogenous; subsequent quality depends on investment and
technology shocks. Specifically, shocks are generated according to a Poisson
process with arrival rate λ > 0. Quality θt is constant between shocks and is
determined by the firm’s investment at the most recent technology shock s ≤ t;
that is, θt = θs and Pr(θs =H)= as.

Information: Consumers observe neither quality nor investment, but learn
about quality through public signals. Given quality θ, public signals are gener-
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ated according to a Poisson process with arrival rate μθ.4 A public history ht at
time t consists of a sequence of past signal arrival times 0 ≤ t1 ≤ · · · ≤ tn ≤ t; we
write h for infinite histories and ∅ for the history with no signal. We say that
learning is via good news if the net arrival rate μ := μH −μL is strictly positive,
perfect good news if μH > μL = 0, bad news if μ < 0, and perfect bad news if
μL > μH = 0. Learning is imperfect if μL�μH > 0 and μ �= 0.

In addition to public signals, the firm observes product quality and chooses
an investment plan a = {at}t≥0 that is predictable with respect to the associ-
ated filtration. Intuitively, the firm conditions investment on realizations of
quality θt− := {θs}s∈[0�t) and public signals ht− up to but not including time t,
at = at(θt−�ht−). The market’s belief about the firm’s investment ã= {ãt}t≥0 is
predictable with respect to public histories; intuitively, ãt = ãt(ht−).

From the markets’ perspective, believed investment ã and the exogenous
initial belief about quality x0 ∈ [0�1] control the joint distribution of quality
{θt}t≥0 and histories h; we write E

ã�x0 for expectations under this measure. The
market’s belief about product quality at time t is called the firm’s reputation
and is denoted by xt = xt(x0�h� ã) := E

ã�x0[θt |ht]. We will also use two other
probability measures in the paper. From the firm’s perspective, actual invest-
ment a and initial quality θ0 control the distribution over {θt}t≥0 and h; we
write E

a�θ0 for the firm’s expectation. Finally, we write E
θ for the expectation

over histories h when signals arrive at constant rate μθ.
Payoffs: The firm and consumers are risk-neutral and discount future pay-

offs at rate r > 0. At time t, the firm produces one unit with flow value θt .
Given the public information ht−, consumers’ willingness to pay is then given
by E

ã�x0[θt |ht−]; this equals the firm’s reputation xt as long as no signal arrives
at t. We assume that the price equals the willingness to pay, so consumers’ ex-
pected utility is 0. Investment has a marginal flow cost of c > 0. The firm’s flow
profits are thus given by xt − cat for almost all t.

Given the firm’s investment strategy a= {at}t≥0 and the market’s belief about
this strategy ã= {ãt}t≥0, the firm’s expected present value equals

E
a�θ0

[∫ ∞

t=0
e−rt(xt − cat)dt

]
�

The believed investment process ãt = ãt(h
t−) determines the firm’s revenue

xt = xt(x0�h� ã)= E
ã�x0[θt |ht] for a given history h, while the actual investment

4Formally, we consider a probability space (Ω�F�P) together with the following independent
random variables: (i) an {L�H}-valued random variable that determines initial quality θ0 with
Pr(θ0 = H) =: x0; (ii) a sequence of uniform [0�1] random variables whose realizations con-
trol quality at the technology shocks (jointly with investment at those times); (iii) three Poisson
processes—the technology shock process with rate λ and two processes that generate unobserv-
able “θ events” with rates μθ for θ ∈ {L�H}. An observable public signal realizes at time t if a θt
event arrives at time t.
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process at = at(θ
t−�ht−) determines the distribution over quality {θt}t≥0 and

histories h.5

2.1. Markov Perfect Equilibrium

To define equilibrium in a concise way, we first introduce some convenient
notions that pertain to reputational dynamics and analyze optimal investment.

Reputational dynamics: We assume that market beliefs about investment are
Markovian and depend on calendar time and public history only via the left-
sided limit of reputation xt− = limε→0 xt−ε.6 That is, there exists a function
Ã : [0�1] → [0�1] such that ãt = Ã(xt−). To analyze the trajectory of reputation
{xt}t≥0, suppose Ã is continuous at xt ∈ [0�1]. If no signal arrives in [t� t + δ],
then Bayes’ rule implies

xt+δ = λδÃ(xt)+ (1 − λδ) xt(1 −μHδ)
xt(1 −μHδ)+ (1 − xt)(1 −μLδ) + o(δ)�(2.1)

The term λδÃ(xt) reflects the possibility that quality switches in [t� t + δ] and
is newly determined based on Ã(xt). The second term reflects market learning
about quality based on the absence of a signal in [t� t+δ]. In the limit as δ→ 0,
reputation xt (in the absence of signals) is then governed by the autonomous
ordinary differential equation (ODE) ẋ= g(x), where reputational drift is given
by

g(x)= λ(Ã(x)− x) −μx(1 − x)�(2.2)

We next impose an assumption on beliefs Ã to ensure that ẋ= g(x) admits
a solution. Inspired by Klein and Rady (2011), we say that Ã is admissible at
x∗ ∈ [0�1] if Ã and the associated drift g satisfy one of the following three
conditions

(a) g(x∗)= 0
(b) g(x∗) > 0 and Ã (and therefore g) is right-continuous at x∗7

(c) g(x∗) < 0 and Ã (and therefore g) is left-continuous at x∗.

5Below, we restrict attention to investment functions that are independent of realized quality.
Then xt and at only depend on histories h and we reinterpret Ea�θ0 as expectation over h with
respect to the marginal distribution of h.

6By definition, x0− = x0; note that xt− = xt for almost all t.
7Note that g(x∗) > 0 implies x∗ < 1, so right continuity at x∗ is well defined. Similarly, g(x∗) <

0 implies x∗ > 0.
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We call Ã admissible if there is a finite number of cutoffs x∗
i with 0 ≤

x∗
1 < · · · < x∗

n ≤ 1, such that Ã is Lipschitz-continuous on any interval
[0�x∗

1)� � � � � (x
∗
i � x

∗
i+1)� � � � � (x

∗
n�1] and Ã is admissible at every cutoff.8

For admissible beliefs Ã, we show in Appendix A.1 that for any initial rep-
utation x0, there exists a solution to the ODE ẋ = g(x), that is, a trajectory
{x∅

t }t≥0 such that s 
→ g(x∅

s ) is Riemann-integrable and x∅

t = x0 + ∫ t

0 g(x
∅

s ) ds
for all t ≥ 0; the superscript ∅ indicates a history with no signals, so we have
x∅

t = xt(x0�∅� Ã). If there are multiple solutions, we select the unique solution
{x∅

t }t≥0 that is consistent with a discrete-time approximation. We also show in
the Appendix that believed investment as a function of time in the absence of
signals, t 
→ Ã(x∅

t ), is right-continuous.9
If there is a signal at time t, then reputation jumps from the limit of the

reputation before the jump xt− to xt = j(xt−), where the jump function j is
given by Bayes’ rule

j(x) := μHx

μHx+μL(1 − x) = x+ μx(1 − x)
μHx+μL(1 − x)�(2.3)

With good news, the signal indicates high quality and j(x) > x for x < 1; with
bad news, we have j(x) < x for x > 0; with perfect good (resp. bad) news, we
have j(x)= 1 (resp. j(x)= 0) for any x ∈ [0�1].

Optimal investment: Given beliefs Ã, we can write the firm’s continuation
value at time t as a function of its current reputation and quality:

Vθt (xt)= sup
a={as}s≥t

E
a�θt

[∫ ∞

s=t
e−r(s−t)(xs − cas)ds

]
�(2.4)

Let D(x) = VH(x)− VL(x) be the value of quality. Truncating the integral ex-
pression (2.4) for Vθ0(x0) at the first arrival of a technology shock, we get

Vθ0(x0)

= sup
a

E
θ0

[∫ ∞

0
e−(r+λ)t[xt − cat + λ(atVH(xt)+ (1 − at)VL(xt)

)]
dt

]

= sup
a

E
θ0

[∫ ∞

0
e−(r+λ)t[xt + at(λD(xt)− c) + λVL(xt)

]
dt

]
�(2.5)

8We view admissibility as a mild restriction on beliefs Ã. Specifically, we show in Section 3.3
that any cutoff x∗ ∈ (0�1) is compatible with admissibility in a sense made precise in that section.

9This definition of admissibility differs from Klein and Rady (2011) in two respects. First,
our admissibility condition pertains to believed investment Ã rather than actual investment a.
Second, we impose explicit conditions on the function Ã : [0�1] → [0�1] that ensure not only that
ẋ= g(x) admits a solution, but also that t 
→ Ã(x∅t ) is right-continuous, which we will use in the
proof of Lemma 1.
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where E
θ is the expectation over histories when signals arrive at constant

rate μθ.
Now consider a strategy {at}t≥0 that satisfies at = 1 if λD(xt−) > c and at = 0

if λD(xt−) < c. For any history h, such a strategy maximizes the integrand in
(2.5) pointwise for all t with xt− = xt , that is, all t except at the discrete signal
arrival times. Hence, any measurable function A : [0�1] → [0�1] that satisfies

A(x)=
{

1� if λD(x) > c�
0� if λD(x) < c� for all x ∈ [0�1](2.6)

defines an optimal strategy {A(xt−)}t≥0. Thus, for any admissible Ã, there exists
a quality-independent Markovian strategy A that maximizes firm value; we
simplify our analysis by restricting attention to equilibria in such strategies.

Intuitively, condition (2.6) compares the marginal cost and benefit of invest-
ment. The marginal cost of investment over [t� t + dt] is c dt. The marginal
benefit of investment equals the probability λdt of a technology shock times
the gain from investing in this event D(x), that is, the net value of having high
rather than low quality at t + dt.

Markov perfect equilibrium: A Markov perfect equilibrium 〈A�Ã〉, or simply
equilibrium, consists of a quality-independent Markovian investment function
A : [0�1] → [0�1] for the firm and admissible Markovian market beliefs about
investment Ã : [0�1] → [0�1] such that: (a) given beliefs Ã, investmentAmax-
imizes firm value (2.4) for all x0 ∈ [0�1] and θ0 ∈ {L�H}; and (b) beliefs are
correct, Ã=A.

We next show that condition (2.6) characterizes Markov perfect equilibria.

LEMMA 1: Fix admissible beliefs Ã. Then 〈A�Ã〉 is a Markov perfect equilib-
rium if and only if Ã=A and condition (2.6) is satisfied.

PROOF: The “if” part follows by the paragraphs preceding condition (2.6).
For the “only if” part, we will establish that the functions t 
→ Vθ(x

∅

t ) and
t 
→A(x∅

t ) are right-continuous for any x0 and t. Then if A violates (2.6) at
some x0 with, for example, λD(x0) > c but A(x0) = 0, we have λD(x∅

t ) > c
and A(x∅

t ) < 1 at all t ∈ [0� δ] for some δ > 0. Such a strategy is not optimal
because the firm can strictly increase profits in (2.5) by setting A(x) = 1 for
x ∈ {x∅t : t ∈ [0� δ]}.

To see that t 
→A(x∅

t ) is right-continuous, it suffices to show that t 
→ Ã(x∅

t )

is right-continuous because we have assumed correct beliefs, Ã = A. Right
continuity of beliefs in turn follows directly from admissibility.

To see that t 
→ Vθ(x
∅

t ) is Lipschitz-continuous (and a fortiori right-
continuous), first note that value functions are bounded, Vθ(x) ∈ [−c/r�1/r]
for all θ�x, because the flow profit is bounded, xt − cat ∈ [−c�1]. Then we
truncate the integral expression of Vθ(x∅

t ) at the first technology shock, the
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first signal, and t ′ > t, whichever is earliest:

Vθ
(
x∅

t

) =
∫ t′

t

e−(r+λ+μθ)(s−t)[x∅

s −A(
x∅

s

)
c

+ λ(A(
x∅

s

)
D

(
x∅

s

) + VL
(
x∅

s

)) +μθVθ
(
j
(
x∅

s

))]
ds

+ e−(r+μθ+λ)(t′−t)Vθ
(
x∅

t′
)
�

This establishes Lipschitz continuity of t 
→ Vθ(x
∅

t ) because value functions are
bounded, the integral is of order t ′ − t, and e−(r+μθ+λ)(t′−t) ∈ [1−(r+μθ+λ)(t ′ −
t)�1]. Q.E.D.

First-best solution: As a benchmark, suppose that product quality θt is pub-
licly observed at time t, so that price equals quality. Then the benefit of in-
vesting equals the rate at which investment affects quality λ times the price
differential of 1 divided by the effective discount rate r + λ. Thus, first-best
investment is given by

a=

⎧⎪⎪⎨
⎪⎪⎩

1� if c <
λ

r + λ�

0� if c >
λ

r + λ�

In our model, there is no equilibrium with positive investment if c > λ
r+λ : In-

vestment decreases welfare and consumers receive zero utility in equilibrium,
so firm profits would be negative. The firm, therefore, prefers to shirk and guar-
antee itself a nonnegative payoff. Our results are, therefore, nontrivial only if
c ≤ λ

r+λ .
Discussion: Several remarks are in order concerning our modeling assump-

tions. First, our model has an obvious analogue in discrete time (see Figure 1).
However, simple properties like monotonicity of the value function (Lemma 2)
may fail in discrete time: a low reputation firm that is believed to be investing
may leapfrog over a high reputation firm that is believed not to be investing. It
is, therefore, more convenient to work in continuous time.

Second, as optimal investment does not depend on quality, our results do
not rely on the assumption that the firm knows its own quality. In a companion
paper, Board and Meyer-ter-Vehn (2010b), we extend the current model to
allow for entry and exit; as the firm’s exit decision depends on its quality, the
results in that paper depend on whether or not the firm knows its own quality.

Third, our model assumes that quality at time t is based on investment at
the time of the last technology shock. One can interpret such investment as the
choice of absorptive capacity, determining the ability of a firm to recognize and
apply new external information (Cohen and Levinthal (1990)). However, two
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alternative model formulations with different interpretations give rise to the
same value functions and investment incentives. First, in a Markovian spirit, we
could assume that a low quality firm can purchase the arrival rate λat of a qual-
ity improvement while a high quality firm is abating the arrival rate λ(1 − at)
of a quality deterioration. Second, modeling investment as lumps rather than
flow, we could assume the firm observes the arrival of technology shocks, and
then chooses whether to adopt the new technology at cost k= c/λ to become
high quality or to forgo the opportunity and become low quality.

3. PRELIMINARY ANALYSIS

In this section we derive expressions for the value of quality D(x), establish
monotonicity of the value functions Vθ(x), and analyze reputational dynamics.

3.1. Value of Quality

Investment incentives are determined by the value of quality D(x), which in
turn is determined by the persistent effects of quality on future reputation and
revenue. We now show heuristically how to express D(x) as the present value
of future reputational dividends. This derivation assumes that value functions
are smooth; the formal derivation is given in Appendix A.2.10

Fix beliefs Ã and let A be an optimal investment strategy. Then value func-
tions satisfy the system of ordinary differential-difference equations

rVL(x)= x− cA(x)(3.1)

+μL
(
VL

(
j(x)

) − VL(x)
) + V ′

L(x)g(x)+ λA(x)D(x)�
rVH(x)= x− cA(x)(3.2)

+μH
(
VH

(
j(x)

) − VH(x)
) + V ′

H(x)g(x)− λ(1 −A(x))D(x)�
Intuitively, the interest on the firm’s value rVθ(x) equals the sum of its flow
profits x − cA(x) and the expected appreciation due to reputational jumps
μθ(Vθ(j(x))− Vθ(x)), reputational drift V ′

θ(x)g(x), and changing quality; the
latter equals λA(x)D(x) for a low quality firm and equals −λ(1 −A(x))D(x)
for a high quality firm. Subtracting (3.1) from (3.2), we get

(r + λ)D(x)
= μH

(
VH

(
j(x)

) − VH(x)
) −μL

(
VL

(
j(x)

) − VL(x)
) +D′(x)g(x)

= μ(
VH

(
j(x)

) − VH(x)
) +μL

(
D

(
j(x)

) −D(x)) +D′(x)g(x)�(3.3)

10In general, value functions need not be smooth and may even be discontinuous (as we will see
in Section 4.2). The proof of Theorem 1 shows how to interpret the term V ′

θ (x)g(x) in equations
(3.1) and (3.2) in that case.
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where the second line adds and subtracts μL(VH(j(x))− VH(x)).
Intuitively, the interest on the value of quality (r + λ)D(x)—computed at

rate r + λ to account for quality obsolescence—equals the sum of apprecia-
tion due to jumps μL(D(j(x))−D(x)) and drift D′(x)g(x), plus a flow pay-
off μ(VH(j(x))− VH(x)). We call this flow payoff the reputational dividend of
quality because it represents the flow benefit of high quality; namely the in-
cremental rate μ = μH − μL at which a signal arrives times the value of the
reputational jump. If signals indicate good news, μ > 0, the dividend is due
to the increased probability of upward jumps in reputation; if signals indicate
bad news, μ< 0, the dividend is due to the decreased probability of downward
jumps in reputation.

We then integrate (3.3) to express the value of quality as the present value of
these reputational dividends in (3.4). The alternative expression, (3.5), follows
from the analogue of (3.3) when we add and subtract μH(VL(j(x)) − VL(x))
instead of μL(VH(j(x))− VH(x)).

THEOREM 1—Value of Quality: For any admissible beliefs Ã, the value of
quality is given by

D(x0)= E
L

[∫ ∞

0
e−(r+λ)tμ

[
VH

(
j(xt)

) − VH(xt)
]
dt

]
(3.4)

= E
H

[∫ ∞

0
e−(r+λ)tμ

[
VL

(
j(xt)

) − VL(xt)
]
dt

]
�(3.5)

See Appendix A.2 for the proof.
While standard reputation models incentivize effort through an immediate

effect on the firm’s reputation, investment in our model pays off through qual-
ity with a delay. Once quality is established, it is persistent and generates a
stream of reputational dividends until it becomes obsolete. Theorem 1 shows
that we must accordingly evaluate reputational incentives at future levels of
reputation xt , rather than at the current level x0.

Theorem 1 is the workhorse for our main results. Specifically, we use the
drift and jump equations (2.2) and (2.3) to analyze reputational trajectories
{xt}t≥0, then substitute these into value functions (2.4), and, finally, substi-
tute value functions into (3.4) and (3.5) to analyze investment incentives. This
method of directly analyzing path integrals stands in contrast to the standard
Hamilton–Jacobi–Bellman (HJB) approach employed in recent continuous-
time reputation models (Faingold and Sannikov (2011), Atkeson, Hellwig, and
Ordonez (2012)), and continuous-time Poisson learning models (Keller and
Rady (2010), Klein and Rady (2011)). This standard approach shows that the
HJB equations (3.1), (3.2) together with appropriate boundary conditions ad-
mit a unique solution which corresponds to the firm’s value function, and
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then uses the HJB equations to derive a closed-form solution or monotonic-
ity/concavity properties. We have not adopted this approach because our sys-
tem of coupled HJB equations has no clear boundary conditions when reputa-
tional drift is inward-pointing, and—even for constant beliefs—does not admit
a closed-form solution.

3.2. Properties of the Value Functions

Here we show that firm value is increasing in reputation and quality, and we
give sufficient conditions for continuity of the value functions. Reputation is
valuable because it determines the firm’s revenue; quality in turn is valuable be-
cause it determines future reputation. Specifically, Lemma 2 shows that Vθ(x)
is strictly increasing in x. Thus, reputational dividends μ(Vθ(j(x))−Vθ(x)) are
nonnegative, so by Theorem 1, the value of quality is nonnegative.

LEMMA 2: For any admissible beliefs Ã, the firm’s value function Vθ(x) is
strictly increasing in reputation x.

PROOF: Consider two hypothetical firms, “high” and “low,” with the same
initial quality θ but different initial levels of reputation x̂0 > x0. We prove
Vθ(x̂0) > Vθ(x0) by showing that the high firm can secure itself higher flow prof-
its than the low firm by mimicking the low firm’s optimal strategy.

More precisely, let xt−(x0�h� Ã) be the left-sided limit of the low firm’s repu-
tation in history h at time t, let at =A(xt−(x0�h� Ã)) be the low firm’s optimal
investment at this reputation, and assume that the high firm adopts investment
strategy a= {at}t≥0; note that this strategy is generally not Markovian with re-
spect to the high firm’s reputation xt−(x̂0�h� Ã). When the high and low firms
both follow strategy a, they have the same quality {θ̂t}t≥0 = {θt}t≥0 for any re-
alization of the technology shocks. Thus, they face the same distribution over
signal histories h.

We now show that for any history h = (t1� � � �) the high firm’s reputation
never falls behind the low firm’s reputation

xt(x̂0�h� Ã)≥ xt(x0�h� Ã)�(3.6)

For t = 0, (3.6) holds by assumption as x̂0 > x0. Before the first signal, for
t ∈ (0� t1), (3.6) follows because both trajectories are smooth and are governed
by the same law of motion ẋ = g(x). At the first signal t = t1, (3.6) follows
by the monotonicity of the jump function j, defined in (2.3). Repeating the
last two steps inductively on all intervals (ti� ti+1) and all signal arrival times ti
implies that (3.6) holds for all t ≥ 0. Furthermore, there almost surely exists
δ= δ(h) > 0 such that the inequality (3.6) is strict for all t ∈ [0� δ].11

11In particular, in the absence of signals, the inequality is strict for small t; we shall use this fact
in the proofs of Theorems 2 and 3.
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Thus, abbreviating xt = xt(x0�h� Ã) and x̂t = xt(x̂0�h� Ã), and writing â =
{ât}t≥0 for the high firm’s optimal strategy, we get

Vθ(x̂0)= E
â�θ

[∫ ∞

0
e−rt(x̂t − cât) dt

]
≥ E

a�θ

[∫ ∞

0
e−rt(x̂t − cat)dt

]

> E
a�θ

[∫ ∞

0
e−rt(xt − cat)dt

]
= Vθ(x0)

as required. Q.E.D.

Value functions Vθ(x) are not generally continuous in x; discontinuities arise
in equilibrium under perfect bad news learning. The next lemma shows that
such discontinuities cannot arise at x if the reputational drift is positive (or
negative) and bounded away from zero in a neighborhood of x.

LEMMA 3: Fix admissible beliefs Ã, an interval [x�x], and ε > 0 such that
either g(x) > ε for all x ∈ [x�x) or g(x) < −ε for all x ∈ (x�x]. Then Vθ(x) is
continuous on [x�x].

PROOF: If g(x) > ε for all x ∈ [x�x), then the trajectory t 
→ x∅

t with x0 = x
induces a homeomorphism between some time interval [0� τ] and [x�x]. By
the proof of Lemma 1, the function t 
→ Vθ(x

∅

t ) is continuous, so the concate-
nation x∅

t 
→ t 
→ Vθ(x
∅

t ) is continuous on [x�x]. The proof for g(x) < −ε is
analogous. Q.E.D.

Lemma 3 has a useful implication: If drift g is continuous and nonzero at x,
then Vθ(x) is continuous at x.

3.3. Work–Shirk Terminology

We now introduce some convenient terminology for reputational dynamics.
Fix beliefs Ã : [0�1] → [0�1]. We say that x∗ ∈ (0�1) is a work–shirk cutoff if Ã
is equal to 1 on an interval below x∗ and equal to 0 on an interval above x∗.
Conversely, x∗ ∈ (0�1) is a shirk–work cutoff if Ã is equal to 0 on an interval
below x∗ and equal to 1 on an interval above x∗. At the boundary, x∗ = 0 is a
shirk–work cutoff if Ã(0)= 0 and Ã is equal to 1 on an interval above x∗ = 0.
Similarly, x∗ = 1 is a shirk–work cutoff if Ã(1) = 1 and Ã is equal to 0 in an
interval below x∗ = 1.12

12There can be no extremal work–shirk cutoffs x∗ ∈ {0�1} because g(x∗) = λ(Ã(x∗) − x∗);
hence admissibility implies Ã(0) = 0 if the firm is believed to shirk on an interval above x∗ = 0
and implies Ã(1)= 1 if the firm is believed to work on an interval below x∗ = 1.
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To describe reputational dynamics at a cutoff x∗ ∈ (0�1), we write g(x∗−)=
limε→0 g(x

∗ − ε) and g(x∗+) = limε→0 g(x
∗ + ε) for the left- and right-sided

limits of reputational drift. We say that x∗ is

convergent if g
(
x∗−) ≥ 0 ≥ g(x∗+)

� with at most one equality�
permeable if g

(
x∗−)

� g
(
x∗+)

> 0 or g
(
x∗−)

� g
(
x∗+)

< 0�
divergent if g

(
x∗−) ≤ 0 ≤ g(x∗+)

� with at most one equality�

A work–shirk cutoff x∗ ∈ (0�1) is either convergent or permeable because
g(x∗−) > g(x∗+); a shirk–work cutoff x∗ ∈ (0�1) is divergent or permeable
because g(x∗−) < g(x∗+).

Convergent, permeable, and divergent cutoffs give rise to qualitatively dif-
ferent reputational dynamics. To see this, assume that no signals arrive. If x∗ is
convergent, then any small neighborhood of x∗ is absorbing; if x∗ is permeable
with positive (resp. negative) drift, then a trajectory originating just below x∗

(resp. just above x∗) drifts through x∗ in finite time; if x∗ is divergent, then two
reputational trajectories originating just below and just above x∗ drift apart
from each other. At the boundaries, we call a shirk–work cutoff x∗ = 0 diver-
gent since g(0)= 0, while the drift above 0 is strictly positive; similarly, we call
a shirk–work cutoff x∗ = 1 divergent since g(1)= 0, while the drift below 1 is
strictly negative.

At a cutoff, believed investment Ã is constrained by admissibility. At a
convergent cutoff x∗ ∈ (0�1), the positive drift below x∗ rules out g(x∗) < 0
and the negative drift above x∗ rules out g(x∗) > 0. Thus, admissibility im-
plies g(x∗) = 0, pinning down Ã(x∗) = x∗(1 + μ

λ
(1 − x∗)) ∈ [0�1]. At a per-

meable cutoff x∗ ∈ (0�1) with strictly positive drift, admissibility requires
Ã(x∗)= Ã(x∗+); at a permeable cutoff x∗ ∈ (0�1) with strictly negative drift,
admissibility requires Ã(x∗)= Ã(x∗−). At a divergent cutoff x∗ ∈ [0�1], mul-
tiple values for Ã(x∗) are possible. Specifically, admissibility requires Ã(x∗) ∈
{0�x∗(1+ μ

λ
(1−x∗))�1}. These choices of Ã(x∗) are sufficient as well as neces-

sary for admissibility at x∗, so any work–shirk cutoff x∗ ∈ (0�1) and any shirk–
work cutoff x∗ ∈ [0�1] is consistent with admissibility.

Believed investment Ã is work–shirk if there exists a single work–shirk cutoff
x∗ ∈ (0�1), so Ã = 1 on [0�x∗) and Ã = 0 on (x∗�1]. Conversely, Ã is shirk–
work if there exists a single shirk–work cutoff x∗ ∈ [0�1], so Ã = 0 on [0�x∗)
and Ã = 1 on (x∗�1]. Finally, Ã is full work if Ã = 1 and full shirk if Ã = 0.
An equilibrium 〈A�Ã〉 is work–shirk (resp. shirk–work, full work, full shirk) if
believed investment Ã is work–shirk (resp. shirk–work, full work, full shirk).

3.4. Ergodic Dynamics

One goal of this paper is to analyze long-term reputational dynamics. In
particular, we would like to understand whether the impact of initial reputa-
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tion x0 is permanent or transitory. We say that reputational dynamics for be-
liefs Ã are ergodic if there exists a probability distribution F over [0�1] such
that for any starting value x0, the process {xt}t≥0 converges to F in distribu-
tion, that is, limt→∞ Ft(x) = F(x) for all points of continuity x of F , where
Ft(x) := E

Ã�x0[I{xt≤x}] is the distribution of reputation at time t from the mar-
ket’s perspective.13 Otherwise, we say that reputational dynamics are path-
dependent. If reputational dynamics are ergodic, the effect of initial reputation
is transitory.

LEMMA 4: For any admissible beliefs Ã that are work–shirk, full work, or full
shirk, reputational dynamics are ergodic.

PROOF: Consider first work–shirk beliefs with cutoff x∗. Let

T = T (
x0�x

∗) = inf
{
t > 0 :xt = x∗�∃t ′ ∈ [0� t) :xt′ �= x∗}

be the time at which {xt}t≥0 first hits/returns to x∗. In Appendix A.3, we show
that EÃ�x0[T(x0�x

∗)] is bounded for all x0. Since the cycle length T(x∗�x∗) is
nonlattice,14 Asmussen (2003, Chapter VI, Theorem 1.2) implies that for any
starting value x0, the process {xt}t≥0 converges in distribution to F , defined by

F(x)= 1
EÃ�x

∗ [T(x∗�x∗)]E
Ã�x∗

[∫ T(x∗�x∗)

0
I{xt≤x} dt

]

as required. Intuitively, the convergent reputational dynamics imply that rep-
utation eventually hits the cutoff; then the randomness of the signal arrivals
implies that the process {xt}t≥0 eventually “forgets” the initial condition x0.

In a full-shirk equilibrium with Ã= 0, the process {xt}t≥0 is a bounded super-
martingale with E

Ã�x0[xt] = x0 − E
Ã�x0[∫ t

s=0 λxs ds]. Hence the martingale con-
vergence theorem implies that {xt}t≥0 converges to 0 almost surely. Similarly,
in a full-work equilibrium with Ã = 1, {xt}t≥0 converges to 1 almost surely.

Q.E.D.

4. PERFECT POISSON LEARNING

We first consider learning processes where a Poisson signal arrival perfectly
reveals the firm’s quality. Theorems 2 and 3 highlight how different learning
processes lead to opposite investment incentives and reputational dynamics.

13Lemma 4 obtains with the same limit distribution F if we assume correct beliefs, Ã=A, and
take expectations from the firm’s perspective, conditioning expectations on actual investment A
and initial quality θ0, rather than on Ã and initial reputation x0.

14A real-valued random variable Y is lattice if there is a constant κ > 0 such that Y almost
surely equals a multiple of that constant,

∑∞
n=0 Pr(Y = nκ)= 1.
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These cases are highly tractable and help to build intuition for learning pro-
cesses with imperfect signals, which are considered in Section 5.

4.1. Perfect Good News

Suppose that consumers learn about quality via product breakthroughs that
reveal high quality with arrival rate μH , while low quality products never en-
joy breakthroughs, μL = 0. When a breakthrough occurs, the firm’s reputation
jumps to j(x)= 1. Absent a breakthrough, updating evolves deterministically
according to

ẋ= g(x)= λ(Ã(x)− x) −μHx(1 − x)�(4.1)

The reputational dividend is the value of having high quality in the next in-
stant. This equals the value of increasing the reputation from its current value
to 1, multiplied by the probability of a breakthrough, μH(VH(1)− VH(x)). Us-
ing equation (3.4), the value of quality is the present value of these dividends,

D(x0)= E
L

[∫ ∞

0
e−(r+λ)tμH

[
VH(1)− VH(xt)

]
dt

]
(4.2)

=
∫ ∞

0
e−(r+λ)tμH

[
VH(1)− VH

(
x∅

t

)]
dt�

where {x∅

t }t≥0 is the solution of (4.1) with initial value x0. We can drop the
expectation because there are no breakthroughs conditional on low quality, so
reputation at time t equals x∅

t .
The reputational dividend VH(1)− VH(x∅

t ) is decreasing in x∅

t by Lemma 2.
Intuitively, a breakthrough that boosts the firm’s reputation to 1 is most valu-
able for a firm with a low reputation. Thus, investment incentives are decreas-
ing in reputation, so any equilibrium must be work–shirk, full shirk, or full
work.

In a work–shirk equilibrium with cutoff x∗, reputational dynamics eventually
cycle. When x > x∗, reputation drifts down toward x∗ due to both believed
investment and learning through the absence of breakthroughs. When x < x∗,
the effect of believed investment is reversed and reputation drifts toward the
stationary point min{xg�x∗}, where xg = min{λ/μH�1} is the stationary point
under full-work beliefs. At a breakthrough, the firm’s reputation jumps to 1,
whereupon it starts drifting back toward the stationary point. In the long run,
the firm’s reputation therefore cycles over the range [min{xg�x∗}�1].

Reputational dynamics around the work–shirk cutoff depend on the relative
positions of x∗ and xg. If x∗ < xg, the cutoff x∗ is convergent and, absent a
breakthrough, reputation xt reaches the cutoff x∗ in finite time; at the cutoff,
admissibility implies Ã(x∗) = x∗(1 + μH

λ
(1 − x∗)) and reputational drift van-

ishes. This case is illustrated in Figure 3(a). If x∗ > xg, the cutoff x∗ is perme-
able with strictly negative drift and admissibility impliesA(x∗)= 1. Reputation
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(a) Convergent (b) Permeable

FIGURE 3.—Reputational drift under perfect good news learning and work–shirk beliefs. This
figure illustrates reputational drift as a function of reputation. Both panels assume λ < μH , so
that xg = λ/μH < 1. The dark line shows equilibrium drift and the arrows show its direction. The
bullets show the drift at the cutoff. In the left panel, the cutoff x∗ < xg is convergent and admis-
sibility requires g(x∗) = 0. In the right panel, the cutoff x∗ > xg is permeable and admissibility
requires that drift is left-continuous.

thus drifts through the cutoff, into the work region [0�x∗] and toward xg. The
favorable beliefs on [0�x∗] slow down the reputational decline but do not re-
verse it because they are outweighed by the lack of breakthroughs. This case is
illustrated in Figure 3(b).

To highlight the dependence of reputation at time t on the work–shirk cutoff
x∗, we write xt = xt(x0�h�x

∗) if beliefs Ã are work–shirk with cutoff x∗.

THEOREM 2—Perfect Good News: Assume perfect good news learning.
(a) Every equilibrium is work–shirk or full shirk.
(b) An equilibrium exists.
(c) In any equilibrium, reputational dynamics are ergodic.
(d) If λ≥ μH , the equilibrium is unique.

PROOF: Part (a). Fix beliefs Ã. Absent a breakthrough, reputation equals
x∅

t and is governed by (4.1). By footnote 11, x∅

t is weakly increasing in the ini-
tial value x0 for all t and is strictly increasing for small values of t. By Lemma 2,
VH(x) is strictly increasing in x, so equation (4.2) implies that D(x0) is strictly
decreasing in x0, and (2.6) means optimal investmentA(x0) is weakly decreas-
ing in x0. Therefore, any equilibrium must be work–shirk, full shirk, or full
work.

We can rule out a full-work equilibrium: If Ã= 1, then x0 = 1 implies x∅

t = 1
for all t by (4.1); thus, Vθ(1)= 1/r is independent of θ, so that D(1)= 0 and a
firm with perfect reputation strictly prefers to shirk.

Part (b). We establish equilibrium existence by finding a work–shirk cutoff x∗

with indifference at the cutoff, λD(x∗)= c, and invoking the monotonicity ofD
to conclude that the optimality condition (2.6) is satisfied for all x ∈ [0�1]. For
any x∗ ∈ (0�1), let Dx∗(x) be the value of the quality of a firm with reputation
x when beliefs Ã are work–shirk with cutoff x∗. For x∗ = 0 (resp. x∗ = 1), let
Dx∗(x) be the value of quality when beliefs Ã are full shirk (resp. full work).
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Appendix B.1 shows that value functions at the cutoff, and thus the value of
quality Dx∗(x∗) at the cutoff, is continuous in x∗. We showed in part (a) that
D1(1) = 0. If λD0(0) > c, then the intermediate value theorem implies that
there exists x∗ ∈ (0�1) with λDx∗(x∗)= c. Otherwise, if λD0(0) ≤ c, full shirk
is an equilibrium.

Part (c) follows from part (a) and Lemma 4.
Part (d). If λ≥ μH , then the direction of drift g(x)= λ(Ã(x)−x)−μHx(1−

x) is determined by believed investment Ã(x), so any work–shirk cutoff x∗ is
convergent. In Appendix B.2, we show that in a work–shirk equilibrium with
convergent cutoff x∗, the value of quality at the cutoff is given by

Dx∗
(
x∗) = μH

r + λ
∫ ∞

t=0

(
x∅

t − x∗)e−rt
[

λ

λ+μH + μH

λ+μH e
−(μH+λ)t

]
dt�(4.3)

where x∅

t = xt(1�∅�x∗) is the reputational trajectory starting at x0 = 1, absent
signals and with drift determined by work–shirk beliefs with cutoff x∗. This
trajectory drifts from x0 = 1 to x∗ and remains there forever. The term x∅

t −x∗

is weakly decreasing in x∗ for all t ≥ 0 and strictly decreasing for small t, so
(4.3) is strictly decreasing in x∗. Thus, equilibrium is unique. Q.E.D.

As intuition for the uniqueness result, Theorem 2(d), note that the work–
shirk cutoff x∗ is a lower bound for future reputation xt when x0 ≥ x∗ and
λ≥ μH . An increase in this lower bound is more valuable to a low quality firm
than to a high quality firm as the former is less likely to enjoy breakthroughs, so
the lower bound is more likely to be binding. Thus, Dx∗(x) is decreasing both
in the firm’s reputation x and the work–shirk cutoff x∗, so the indifference
condition λDx∗(x∗)= c cannot be satisfied for multiple values of x∗.

4.2. Perfect Bad News

Suppose that consumers learn about quality via product breakdowns that re-
veal low quality with arrival rate μL, while high quality products never suffer
breakdowns, μH = 0. When a breakdown occurs, the firm’s reputation jumps to
j(x)= 0. Absent a breakdown, updating evolves deterministically according to

ẋ= g(x)= λ(Ã(x)− x) +μLx(1 − x)�(4.4)

The reputational dividend is the value of having high quality in the next in-
stant. Quality insures the firm against breakdowns, so the value of this instan-
taneous insurance equals μL(VL(x)− VL(0)). Using equation (3.5), the value
of quality is given by the present value of these dividends,

D(x0)= E
H

[∫ ∞

0
e−(r+λ)tμL

[
VL(xt)− VL(0)

]
dt

]
(4.5)

=
∫ ∞

0
e−(r+λ)tμL

[
VL

(
x∅

t

) − VL(0)
]
dt�
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(a) Permeable (b) Divergent

FIGURE 4.—Reputational drift under perfect bad news learning and shirk–work beliefs. This
figure illustrates reputational drift as a function of reputation. Both panels assume λ < μL, so
that xb > 0. The dark line shows equilibrium drift and the arrows show its direction. The bullets
show the drift at the cutoff. In the left panel, the cutoff x∗ < xb is permeable and admissibility
requires Ã(x∗) = 1. In the right panel, the cutoff x∗ > xb is divergent and drift could either be
right-continuous (as illustrated), equal to zero, or left-continuous.

where {x∅

t }t≥0 is the deterministic solution of the ODE (4.4) with initial value
x0. We can drop the expectation because there are no breakdowns conditional
on high quality, so reputation at time t equals x∅t .

The reputational dividend VL(x∅

t )− VL(0) is increasing in x∅

t . Intuitively, a
breakdown that destroys the firm’s reputation is most damaging for a firm with
a high reputation. Thus, investment incentives are increasing in reputation and
any equilibrium must be shirk–work, full work, or full shirk.

To analyze reputational dynamics in a shirk–work equilibrium with cutoff x∗,
consider first a firm that starts with reputation above x∗. Absent a breakdown,
its reputation converges to x = 1; upon a breakdown, its reputation drops to
zero and is trapped there forever. A firm with reputation below x∗ initially
shirks and its reputation drifts toward xb = max{1 − λ/μL�0}, the stationary
point under full-shirk beliefs. Thus, reputational dynamics are path-dependent
and converge to either 0 or 1.

Reputational dynamics around the shirk–work cutoff depend on the rela-
tive positions of x∗ and xb. If x∗ < xb, the cutoff is permeable and the absence
of breakdowns outweighs the effect of adverse market beliefs; reputation can
drift through the permeable cutoff x∗ into the work region where favorable
market beliefs accelerate the reputational ascent. We call such an equilibrium
permeable; see Figure 4(a). Otherwise, if x∗ ≥ xb, the cutoff is divergent and
reputation cannot escape the shirk region. We call such an equilibrium diver-
gent; see Figure 4(b).

THEOREM 3—Perfect Bad News: Assume perfect bad news learning.
(a) Every equilibrium is shirk–work, full shirk, or full work.
(b) An equilibrium exists.
(c) In any shirk–work equilibrium, reputational dynamics are path-dependent.
(d) Assume λ ≥ μL and c < λμL

(r+λ)(r+μL) . There exist a < b such that every x∗ ∈
[a�b] is the cutoff of a shirk–work equilibrium.
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PROOF: Part (a). Fix beliefs Ã. Absent a breakdown, reputation equals x∅

t

and is governed by (4.4). By footnote 11, x∅

t is weakly increasing in the initial
value x0 for all t and is strictly increasing for small values of t. By Lemma 2,
VL(x) is strictly increasing in x, so equation (4.5) implies that D(x0) is strictly
increasing in x0, and (2.6) means investment A(x0) is weakly increasing in x0.
Therefore, any equilibrium must be shirk–work, full shirk, or full work.

Part (b). In the perfect good news case, we established equilibrium existence
by finding a work–shirk cutoff x∗ with indifference at the cutoff and invoking
the monotonicity of D to conclude that the optimality condition (2.6) is satis-
fied at all x. We now apply the same logic to shirk–work cutoffs in the perfect
bad news case. However, the arguments are more complicated because value
functions are shown to be discontinuous at the shirk–work cutoff when the
cutoff is divergent.

For shirk–work beliefs with a permeable cutoff x∗ ∈ (0�1), admissibility at x∗

requires Ã(x∗)= 1. For shirk–work beliefs with a divergent cutoff x∗ ∈ (0�1),
admissibility allows for Ã(x∗) ∈ {0�x∗(1 + μ

λ
(1 − x∗))�1}; for this proof, we

focus on the case Ã(x∗)= 1 at both cutoff types. We write V x∗
θ (x) and Dx∗

(x)

for firm value and the value of quality, given such beliefs.15 We call beliefs Ã
“full work except at 0” if Ã(0)= 0 and Ã(x)= 1 for x ∈ (0�1]; we write V 0

θ (x)
and D0(x) for firm value and the value of quality in this case. Finally we write
V fs
θ (x) andDfs(x) in the case of full-shirk beliefs. We will show that at least one

of these beliefs defines an equilibrium.
To analyze possible discontinuities at the cutoff, we define for any x∗ ∈ [0�1),

the value of quality just above the cutoff, Dx∗
(x∗+)= limε→0D

x∗
(x∗ + ε), and

for any x∗ ∈ (0�1), the value of quality just below the cutoff, Dx∗
(x∗−) =

limε→0D
x∗
(x∗ − ε). In Appendix B.3, we establish the following properties of

Dx∗
(x∗±):

(P+) Properties of Dx∗
(x∗+): The function x∗ 
→ Dx∗

(x∗+) is continuous
and strictly increasing on [0�1), with limx∗→1D

x∗
(x∗+)=D0(1).

(P−) Properties of Dx∗
(x∗−): limx∗→1D

x∗
(x∗−) = Dfs(1). If λ ≥ μL, then

the function x∗ 
→Dx∗
(x∗−) is continuous and strictly increasing on (0�1) with

limx∗→0D
x∗
(x∗−)= 0.

(PD) Discontinuity ofDx∗
(x) at x= x∗: At any divergent cutoff x∗ ∈ (xb�1),

we have Dx∗
(x∗+) >Dx∗

(x∗−).
The functions x∗ 
→Dx∗

(x∗±) are illustrated in Figure 5. We now use these
functions to formulate necessary and sufficient conditions for equilibrium.
First, we claim that shirk–work with cutoff x∗ ∈ (0�1) is an equilibrium if and
only if

λDx∗(
x∗−) ≤ c ≤ λDx∗(

x∗+)
�(4.6)

15We use superscripts here to distinguish the value of quality Dx∗
(x) under shirk–work beliefs

from the value of quality Dx∗(x) under work–shirk beliefs in the perfect good news case.
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(a) Divergent equilibria (b) Permeable and divergent equilibria

FIGURE 5.—Incentives and equilibrium sets under perfect bad news learning. This figure shows
the value of quality around the shirk–work cutoff Dx∗

(x∗±), illustrating some properties estab-
lished in the proof of Theorem 3 and some additional properties. The left panel assumes λ≥ μL
and xb = 0; the right panel assumes λ < μL and xb > 0. For every divergent cutoff x∗ ∈ [xb�1), the
value of qualityDx∗

(x) is discontinuous at x= x∗, soDx∗
(x∗−) <Dx∗

(x∗+). For every permeable
cutoff x∗ ∈ (0�xb), the value of qualityDx∗

(x) is continuous at x= x∗ withDx∗
(x∗−)=Dx∗

(x∗+).
A cutoff x∗ ∈ (0�1) defines an equilibrium if λDx∗

(x∗−)≤ c ≤ λDx∗
(x∗+). There is a continuum

of divergent equilibria in the left panel and a continuum of divergent equilibria together with a
unique permeable equilibrium in the right panel.

As Dx∗
(·) is monotone, this condition is necessary and sufficient for the shirk–

work incentives at all x �= x∗. At the cutoff, (4.6) also ensures sufficient incen-
tives to justify Ã(x∗)= 1 because drift g is continuous and strictly positive on
[x∗�1) by (4.4) and Ã|[x∗�1] = 1, so Lemma 3 implies that Dx∗

(·) is continuous
on [x∗�1) and λDx∗

(x∗)= λDx∗
(x∗+)≥ c.

Second, we claim that “full work except at 0” is an equilibrium if and only if

λD0(0+)≥ c�(4.7)

By monotonicity of D0, this condition is necessary and sufficient to induce in-
vestment on (0�1]. At x= 0, the firm shirks becauseD0(0)= 0, which is due to
the fact that a trajectory that starts at x0 = 0 stays there forever.

Finally, by monotonicity of Dfs, full shirk is an equilibrium if and only if

λDfs(1)≤ c�(4.8)

Now equilibrium existence follows by continuity of Dx∗
(x∗+), as established

by (P+), which implies that one of the following statements must be the
case:

λDx∗(
x∗+)⎧⎨

⎩
= c for some x∗ ∈ (0�1)�
> c for all x∗ ∈ (0�1)�
< c for all x∗ ∈ (0�1)�

(4.9)
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In the first case, shirk–work with cutoff x∗ is an equilibrium because the right
inequality of (4.6) is satisfied with equality by assumption and the left in-
equality is satisfied by monotonicity of Dx∗

(·). In the second case, “full work
except at 0” is an equilibrium because λD0(0+) = limx∗→0 λD

x∗
(x∗+) ≥ c

by (P+), implying (4.7). In the third case, full shirk is an equilibrium be-
cause λDfs(1) = limx∗→1D

x∗
(x∗−) ≤ limx∗→1D

x∗
(x∗+) ≤ c by (P−), implying

(4.8).
Part (c). Both x= 0 and x= 1 are absorbing states in a shirk–work equilib-

rium. Hence, reputational dynamics are not ergodic.
Part (d). If λ≥ μL, then the direction of drift g(x)= λ(Ã(x)−x)+μLx(1−

x) is determined by believed investment Ã(x), so any shirk–work cutoff x∗ is
divergent, property (P−) holds, and property (PD) holds for all x∗ ∈ (0�1).
The assumption c < λμL

(r+λ)(r+μL) implies λD0(1) > c. Otherwise, if λD0(1) ≤ c,
the firm prefers to shirk at x = 1, implying V 0

L (1) = E
L[∫ ∞

0 e−rt1{ht=∅} dt] =∫ ∞
0 e−(r+μL)t dt = 1

r+μL and λD0(1) = λ
∫ ∞

0 e−(r+λ)tμLV 0
L (1)dt = λμL

(r+λ)(r+μL) > c,
which contradicts the counterfactual assumption λD0(1)≤ c.

We establish equilibrium multiplicity by reconsidering the first two cases in
(4.9); our assumptions rule out the third case, λDx∗

(x∗+) < c for all x∗ ∈ (0�1),
because limx∗→1 λD

x∗
(x∗+) = λD0(1) > c by property (P+). In the first case,

with λDx∗
(x∗+) = c, property (PD) implies λDx∗

(x∗−) < c = λDx∗
(x∗+).

Properties (P+) and (P−) establish that the functions Dx∗
(x∗±) are con-

tinuous and monotone, so condition (4.6) holds for all x∗∗ in an interval
[x∗�x∗ + ε]. In the second case, λDx∗

(x∗+) > c for all x∗ ∈ (0�1), we have
limx∗→0 λD

x∗
(x∗−) = 0 < c ≤ limx∗→0 λD

x∗
(x∗+) by property (P−), so any

x∗ ∈ (0� ε] satisfies (4.6) and defines a shirk–work equilibrium.16 Q.E.D.

To understand the equilibrium multiplicity established in Theorem 3(d),
note that the assumption λ ≥ μL implies that believed investment Ã deter-
mines the direction of the drift, so any shirk–work cutoff is divergent. The rep-
utational dynamics, illustrated in Figure 4(b), introduce a discontinuity in the
value function at the shirk–work cutoff, which gives rise to the equilibrium
multiplicity. Intuitively, market beliefs about investment become self-fulfilling:
If the market believes the firm is shirking it faces low future reputation, so
dividends and investment incentives are low. If, to the contrary, the market
believes the firm is working, then its reputation will rise; this incentivizes in-
vestment so as to protect the appreciating reputation.

If λ < μL, then xb > 0 and divergent equilibria can coexist with a permeable
equilibrium. The permeable reputational dynamics, illustrated in Figure 4(a),
ensure that the value function is continuous at the cutoff. In equilibrium, the

16These are not all the equilibria. For example, full work is an equilibrium for sufficiently small

costs; specifically, it can be shown that c ≤ λ2μL
(r+2λ+μL)3 suffices.



REPUTATION FOR QUALITY 2405

firm must then be indifferent at the cutoff, implying that there can be at most
one permeable equilibrium.

Incentives in the shirk region are qualitatively different for divergent and
permeable equilibria, as illustrated by the discontinuity ofDx∗

(x∗−) at x∗ = xb
in Figure 5(b). In a divergent equilibrium, incentives are low because the firm’s
reputation is trapped in [0�x∗]. In a permeable equilibrium, incentives are
higher because the firm’s reputation can drift out of the shirk region and to-
ward x= 1. This implies a lower bound on investment incentives in permeable
equilibria, so permeable equilibria cannot exist for values of c close to zero, as
illustrated in Figure 5(b).

4.3. Work–Shirk versus Shirk–Work Equilibria

Investment incentives differ fundamentally between the work–shirk equi-
libria of perfect good news learning and the shirk–work equilibria of perfect
bad news learning. In the former case, investment is rewarded by reputational
boosts; the effect of such boosts is transitory because adverse equilibrium be-
liefs at high reputations bring the reputation down again. In the latter case,
investment averts a reputational loss; the effect of such a loss is permanent be-
cause adverse equilibrium beliefs at low reputations prevent a recovery. When
the rate of quality obsolescence λ is high, the benefit of a reputational boost
disappears quickly, while a reputational loss remains permanent. In this sense,
incentives under shirk–work beliefs are stronger than those under work–shirk
beliefs.

THEOREM 4—Work–Shirk vs. Shirk–Work: (a) Assume perfect good news
learning. There exists λg such that for all λ > λg, full shirk is the unique equi-
librium.

(b) Assume perfect bad news learning and c < μL
r+μL . There exists λb such that for

all λ > λb and all x∗ ∈ (0�1], there exists a shirk–work equilibrium with cutoff x∗.

PROOF: Part (a). By Theorem 2(d), equilibrium is unique when λ ≥ μ and
we simply need to show that full shirk is an equilibrium. Investment incentives
λD(x) decrease in x by the proof of Theorem 2(a), so it suffices to verify that
λD(0)≤ c under full-shirk beliefs.

We first calculate an upper bound for VH(1) by omitting the investment costs
and replacing the firm’s expectation over breakthroughs with the most favor-
able expectation, where quality is always high:

VH(1)= max
A

E
A�H

[∫ ∞

0
e−rt(xt − cA(xt))dt

]
≤ E

H

[∫ ∞

0
e−rtxt dt

]
�

To calculate an upper bound for EH[∫ ∞
0 e−rtxt dt], note that x∅

t = xt(1�∅� Ã)≤
e−λt because the drift g(x)≤ −λx decreases reputation at least at an exponen-
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tial rate. Then

E
H

[∫ ∞

0
e−rtxt dt

]
=

∫ ∞

0
e−(r+μ)t

(
x∅

t +μEH
[∫ ∞

0
e−rtxt dt

])
dt

≤
∫ ∞

0
e−(r+μ)te−λt dt + μ

r +μE
H

[∫ ∞

0
e−rtxt dt

]

and so

E
H

[∫ ∞

0
e−rtxt dt

]
≤ r +μ
r(r +μ+ λ)�

Intuitively, as λ→ ∞, the negative drift keeps reputation close to 0 at most
times, so firm value is close to 0 as well.

By equation (4.2), the value of quality is bounded above by the perpetuity
value of the maximal dividends:

λD(0)= λ

∫ ∞

0
e−(r+λ)tμ

[
VH(1)− VH(0)

]
dt

≤ λ

r + λμVH(1)≤ λ

r + λ
μ(r +μ)

r(r +μ+ λ) ≤ μ(r +μ)
rλ

�

Thus, for λ > λg := μ(r +μ)/rc, we have λD(0) < c as required.
Part (b). Assume λ > μL, fix any x∗ > 0, and assume the market has shirk–

work beliefs with cutoff x∗ ∈ (0�1] and Ã(x∗)= 1 as in the proof of Theorem 3.
The shirk region [0�x∗) is absorbing, and a similar calculation as in the proof
of part (a) shows that investment incentives in the shirk region are bounded
above by μL/(λ−μL). Thus, for λ > μL(1 + c)/c and initial reputation in the
shirk region x0 ∈ [0�x∗), we have λD(x0) < c as required.

With initial reputation in the work region x0 ∈ [x∗�1], a high quality firm can
avoid breakdowns with certainty by investing. The drift g(x) > λ(1−x) implies
that 1 −x∅

t ≤ e−λt(1 −x0), so VH(x0) approaches the first-best perpetuity value

VH(x0) ≥
∫ ∞

0
e−rt(x∅

t − c)dt ≥
∫ ∞

0
e−rt(1 − e−λt(1 − x0)− c)dt

= 1 − c
r

− 1 − x0

r + λ �

Using equation (3.4) and VH(0)= 0, and conditioning on the absence of break-
downs EL[VH(xt)] = e−μLtVH(x∅

t ), we have

λD(x0)= λEL
[∫ ∞

0
e−(r+λ)tμL

(
VH(xt)− VH(0)

)
dt

]

= λ

∫ ∞

0
e−(r+λ)te−μLtμLVH

(
x∅

t

)
dt�
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Since VH is increasing and x∅

t ≥ x0, these two expressions yield a lower bound
for investment incentives:

λD(x0)≥ λμL

r + λ+μL
(

1 − c
r

− 1 − x0

r + λ
)
�

For high values of λ, the right-hand side approaches μL(1 − c)/r, which ex-
ceeds c by our assumption c < μL/(r+μL). So for sufficiently large λ, working
is optimal for all x0 ∈ [x∗�1].17 Q.E.D.

As λ→ ∞, our reputation game approaches a repeated game where the firm
chooses its quality at each instant. Abreu, Milgrom, and Pearce (1991) study
a repeated prisoners’ dilemma with imperfect monitoring that approaches the
same limit game as the frequency of play increases. They find that only bad
news signals that indicate defection can sustain cooperation, while good news
signals that indicate cooperation are too noisy to deter defections without de-
stroying all surplus by punishments on the equilibrium path. Thus, sustained
cooperation depends on the learning process in the same manner as in our
model. While the common limit already suggests this analogy, our model high-
lights an alternative mechanism that distinguishes the role of bad news signals
in overcoming moral hazard, namely divergent reputational dynamics.

Theorem 4 has a surprising consequence: Providing more information about
the firm’s quality may decrease equilibrium investment. Specifically, consider
a shirk–work equilibrium under perfect bad news learning. Suppose we im-
prove the learning process by introducing an additional perfect good news
signal, so that low quality is revealed perfectly with intensity μb and high
quality is revealed with intensity μg. The analysis in Sections 2 and 3.1 ex-
tends immediately to this learning process with two Poisson signals; the rep-
utational dividend is given by μg(Vθ(1) − Vθ(x)) + μb(Vθ(x) − Vθ(0)), which
equals (μb−μg)Vθ(x)+μgVθ(1)−μbVθ(0). When good news is more frequent
than bad news, μg > μb, reputational dividends are decreasing in reputation.
The proof of Theorem 2(a) then shows that the value of quality is also de-
creasing in reputation and any equilibrium must be work–shirk, full shirk, or
full work. If additionally λ is high enough, the proof of Theorem 4(a) extends
to this learning process, implying that full shirk is the unique equilibrium.

Thus, for fixed parameter values r� c, and λ there exist shirk–work equilibria
under perfect bad news learning, while full shirk is the only equilibrium when
a perfect good news signal is additionally available. Intuitively, under perfect
bad news learning, a firm with a high reputation works because a breakdown
permanently destroys its reputation. Additional good news signals grant the

17We saw in the proof of Theorem 3(d) that there exists a shirk–work equilibrium with cutoff
x∗ for a continuum of values of x∗ ∈ [a�b] if c < λ

r+λ
μL
r+μL . Here, we see that every x∗ ∈ [0�1]

defines a shirk–work equilibrium under the additional assumption that λ is sufficiently large, as
then c < μL

r+μL .
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firm a second chance after a breakdown and undermine incentives to work
hard in the first place.

5. IMPERFECT LEARNING

In this section, we suppose consumers learn about product quality through
imperfect signals with Poisson arrival rates μH > 0 and μL > 0. This analysis is
more involved than the case of perfect Poisson learning because reputational
dividends are no longer monotone in reputation, and vanish at x= 0 and x= 1;
this is due to the x(1 − x) dampening factor in the Bayesian updating formula
(2.3). Integrals over such nonmonotone future dividends may take a compli-
cated shape.

We first establish the existence of a work–shirk equilibrium and then inves-
tigate the possibility of additional, shirk–work–shirk equilibria.

5.1. Work–Shirk Equilibrium

Investment incentives across all imperfect Poisson learning processes share
three qualitative features. First, investment at the top cannot be sustained in
equilibrium. If the firm is believed to be working at the top, the value of qual-
ity is zero at x = 1 since current dividends are zero and, as the firm’s reputa-
tion stays at x= 1, future dividends are zero as well. Intuitively, a firm that is
believed to be working at the top is certain to have a high reputation in the
future, undermining incentives to actually invest.18 Second, for intermediate
levels of reputation, dividends and the value of quality are bounded below and
the firm invests if the cost is low enough. Third, investment at the bottom can
be sustained in equilibrium. If the firm is believed to be working at the bottom,
incentives are high because favorable beliefs push the firm’s reputation to in-
termediate levels where dividends are high. The firm thus invests at low levels
of reputation not because of the immediate reputational dividends, which are
close to zero, but because of the higher future dividends when the firm’s repu-
tation is sensitive to actual quality. Hence, the persistence of quality together
with the reputational drift imply a fundamental asymmetry between incentives
at the top and the bottom.

These three arguments suggest that a work–shirk equilibrium exists for small
costs; Theorem 5 confirms this for a class of imperfect Poisson learning pro-
cesses.

THEOREM 5—Work–Shirk: Assume either imperfect bad news learning and
r > μL(μ

2
L/μ

2
H − 1) or imperfect good news learning with λ < μ and r > 2μ.

18The same argument applies in case of perfect good news learning, but not in the perfect bad
news case where reputation drops to zero at a breakdown.
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(a) There exists c > 0 such that for any cost c ∈ (0� c), there is a work–shirk
equilibrium with cutoff x∗ ∈ (0�1).

(b) Reputational dynamics in such an equilibrium are ergodic.

For the proof of part (a), see Appendices C–E. Part (b) follows from
Lemma 4.

To prove Theorem 5(a), we consider work–shirk beliefs with cutoff x∗ and
assume that the firm invests according to beliefs, A = Ã. Let Πθ�x∗(x) be
the firm’s payoff function, that is, the firm’s discounted expected profits when
it follows this potentially suboptimal investment policy, and let �x∗(x) :=
ΠH�x∗(x)−ΠL�x∗(x) be the payoff of quality. In Appendix C.1, we show that, just
like the value of quality, �x∗(x) determines investment incentives and admits a
reputational dividend representation. If the investment incentives conform to
the market’s belief—work–shirk with cutoff x∗—we have found an equilibrium.
Formally, we establish equilibrium existence by solving the one-dimensional
fixed point problem λ�x∗(x∗) = c and showing that net investment incentives
λ�x∗(x)− c are single crossing from above in x.

To understand why λ�x∗(x)− c is single crossing, consider full-work beliefs.
The payoff of quality �1(x) is strictly positive on [0�1) and decreasing on some
[1 − ε�1] with limx→1�1(x)= 0, as illustrated in Figure 6(a). For small c, there
exists x∗ such that

λ�1(x)

⎧⎨
⎩
> c for x < x∗ ⇒ work at low reputations�
= c for x= x∗ ⇒ indifference at cutoff x∗�
< c for x > x∗ ⇒ shirk at high reputations�

(5.1)

To prove existence, we essentially need to replace �1 on the left-hand side with
�x∗ . This step requires not only that �x∗(x) converges to �1(x) uniformly in
x, but also that �x∗(x) is decreasing at x= x∗ so that the firm prefers to shirk
above x∗. This argument is technically challenging because it turns out that

(a) Full work (b) Work–shirk

FIGURE 6.—Illustration of the payoff of quality under full work and in a work–shirk equilib-
rium.
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(a) Bad News (b) Good News, λ < μ (c) Good News, λ≥ μ
FIGURE 7.—Reputational dynamics under work–shirk beliefs. This figure shows how reputa-

tion evolves assuming work–shirk beliefs under good and bad news. The straight arrows indicate
the direction of reputational drift, while the curved arrows indicate a typical jump. The support
of the resulting long-run distribution is illustrated by the bold segment of the axis.

�x∗ does not converge to �1 in the C1-norm.19 The key step in the proof of
Theorem 5(a) (Lemmas 16B and 16G in Appendices D.4 and E.4) establishes
�x∗(x∗) > �x∗(x) for x ∈ (x∗�1] by arguing that the payoff of quality is deter-
mined predominantly by large dividends below x∗, which a firm with initial
reputation x∗ reaps earlier than a firm with initial reputation x > x∗.

We use payoff functions rather than value functions in the proof of Theo-
rem 5(a) because the explicit knowledge of firm investment yields insights into
the derivative Π ′

θ that we use to establish the single-crossing property for in-
vestment incentives; for details, see Appendices C.1 and C.3. In contrast, value
functions are convenient to analyze perfect Poisson learning in Section 4 be-
cause of their monotonicity properties.

We now turn to a qualitative discussion of the reputational dynamics in this
work–shirk equilibrium, illustrated in Figure 7. With bad news learning and
a convergent work–shirk cutoff x∗ close to 1, the interval (0�x∗] is absorbing.
On (0�x∗), reputation is a submartingale that evolves in a pattern of upward
drift and downward jumps, eventually reaching the convergent cutoff x∗. At
the cutoff, the firm invests at intensity A(x∗) ∈ (0�1), and reputation remains
constant until the next signal arrives, whereupon reputation drops and the firm
resumes work. For initial reputation in the shirk region, x0 ∈ (x∗�1], jumps and
negative drift take reputation to (0�x∗] in finite time.

With good news learning, μ > λ, and a permeable work–shirk cutoff x∗ ∈
(λ/μ�1), the interval (λ/μ�1) is absorbing. Reputational drift is negative both
in the shirk region (x∗�1] and in the work region (λ/μ�x∗] with limε→0 g(λ/μ+
ε)= 0, so reputation evolves in a pattern of downward drift and upward jumps.
For initial reputation x0 ∈ [0�λ/μ], jumps and positive drift eventually take
reputation to (λ/μ�1).

With good news learning and λ ≥ μ—a case not covered by Theorem 5—
believed investment alone determines the direction of the reputational drift
and every work–shirk cutoff is convergent. Thus, the interval [x∗�1) is absorb-
ing and reputation evolves in a pattern of upward jumps and subsequent drift
down to x∗. This invalidates our argument that �x∗(x∗) > �x∗(x) for x ∈ (x∗�1]

19More specifically, we find that payoff functions and the payoff of quality are flat at a conver-
gent cutoff and nondifferentiable at a permeable cutoff.
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because the firm never reaps the large dividends below x∗. Our analysis implies
that in this case, with λ≥ μ and c small, there is no work–shirk equilibrium; if
an equilibrium exists, it must involve an interval [x�x] where the firm is indif-
ferent between working and shirking, and chooses A ∈ (0�1), as in the strate-
gic experimentation literature with Poisson signals (Keller, Rady, and Cripps
(2005)).20

5.2. Other Equilibria

While Theorem 5 shows that a work–shirk equilibrium exists, slow learning
at reputations near 0 and 1 suggests another, shirk–work–shirk type of equi-
librium with a shirk–work cutoff x∗

1 and a work–shirk cutoff x∗
2 > x

∗
1. We next

introduce a condition that rules out the existence of such a shirk–work–shirk
equilibrium: A learning process satisfies (HOPE) when it is possible for a firm’s
reputation to increase, even if it is believed to be shirking. That is, there exists
an initial reputation x0, a history of public signals h, and a time t such that even
for full-shirk beliefs Ã= 0, we have

xt(x0�h� Ã) > x0�(HOPE)

This condition is satisfied for any good news learning process since the firm’s
reputation rises upon the arrival of a signal. For bad news learning, it is satisfied
if and only if |μ|> λ, as then the absence of breakdowns dominates the adverse
equilibrium beliefs and reputational drift g(x)= −λx+ |μ|x(1 − x) is positive
at low levels of reputation.

THEOREM 6—Work at Bottom: Fix any imperfect Poisson learning process
that satisfies (HOPE). For any ε > 0, there exists cε > 0 such that for any c < cε
and any equilibrium, the firm works at all reputation levels x ∈ (0�1 − ε).

For the proof, see Appendix F.
Theorem 6 states that with (HOPE) and small costs, in equilibrium the firm

works at all low and intermediate levels of reputation. For intuition, first note
that reputational dividends and the value of quality are bounded below on any
interval of intermediate reputation [ε�1−ε], so for any beliefs, the firm prefers
to work in this range if costs are small. If additionally the firm is believed
to work on some interval [x∗

1� ε], these beliefs induce a positive reputational
drift and investment incentives in this range are affected by the high dividends
above ε. Under (HOPE), a firm with reputation just below x∗

1 has a nonzero

20Theorem 5 also assumes that the interest rate is not too low. This technical assumption is
used to obtain upper bounds for the payoff consequences of reputational trajectories where x0 is
close to 1, but xt is not. While our proofs rely on this assumption, we conjecture that our results
do not.
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chance of seeing its reputation increase above x∗
1, so again the high dividends

at intermediate reputations put a lower bound on investment incentives. If the
cost of investment is sufficiently low, the firm thus prefers to work just below x∗

1.
If the learning process does not satisfy (HOPE), that is, if learning is via

bad news and adverse beliefs outweigh learning from the absence of break-
downs, then a firm that is believed to be shirking will see its reputation de-
crease with certainty. This opens up the possibility of equilibria with a shirk
region at the bottom. Specifically, assume that costs c are small and consider
shirk–work–shirk beliefs with a shirk–work cutoff x∗

1 ∈ (0� rc/λ) and a work–
shirk cutoff x∗

2 close to 1. A firm with a low reputation is trapped in the shirk
region [0�x∗

1] from which it cannot escape because adverse equilibrium beliefs
dominate the weak effects of market learning. The firm’s value for x0 ∈ [0�x∗

1]
is thus bounded above by

Vθ(x0)= max
A

E
A�θ

[∫ ∞

0
e−rt(xt − cA(xt))dt

]
≤ x∗

1

r
≤ c

λ

and investment incentives fall short of investment costs, λD(x0)≤ λVH(x0)≤ c.
Above the shirk–work cutoff x∗

1, conversely, the firm’s reputation drifts up and
the high reputational incentives at intermediate levels of reputation incentivize
investment, as in the proof of Theorem 6. Divergent reputational drift at the
shirk–work cutoff thus creates a discontinuity in the value function that incen-
tivizes investment above the cutoff but not in the shirk region just below.21

Economically, investment incentives under shirk–work–shirk beliefs capture
the idea that a reputable firm—with reputation close to 1—has low investment
incentives and becomes complacent; when it is hit by bad news signals and its
reputation drops toward x∗

1, it is put in the “hot seat” where one more break-
down would finish it off. Thus, a firm that fails once fights for its survival, but a
firm that fails repeatedly gives up.

To prove the existence of a shirk–work–shirk equilibrium, one needs to show
that, given a shirk–work cutoff x∗

1 close to 0, there exists a work–shirk cutoff
x∗

2 close to 1 such that the net investment incentives are single crossing at x∗
2.

The existence proof for the work–shirk equilibrium in Theorem 5(a) might
serve as an outline for such a proof, but the discontinuity of value functions at
the shirk–work cutoff x∗

1 (as in the proof of Theorem 3) introduces additional
complications. This existence proof remains for future work.

Finally, we would like to address an apparent dissonance between shirk–
work equilibria under perfect bad news learning in Theorem 3 and work–shirk

21Note that this argument holds for all x∗
1 ∈ (0� rc/λ). Thus, as in the case of perfect bad news

learning with μL < λ, Theorem 3(d), there is a continuum of possible values for the shirk–work
cutoff x∗

1 that are self-fulfilling in the sense that the firm prefers to shirk below x∗
1 and work

above x∗
1.
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equilibria under imperfect bad news learning in Theorem 5. To see the resolu-
tion of this dissonance, assume that costs c are low and consider first the invest-
ment incentives at high levels of reputation. As imperfect learning approaches
perfect learning, that is, in the limit as μH → 0, the jump size x− j(x) and rep-
utational dividends increase for all x < 1. Thus, while any equilibrium under
imperfect learning must feature shirking at the top, the shirk region vanishes as
μH → 0. In particular, the work–shirk equilibria under imperfect learning ap-
proximate a full-work equilibrium under perfect learning. Next, consider the
investment incentives at low levels of reputation. With imperfect learning and
(HOPE), Theorem 6 states that the firm invests on (0�1 − ε) in any equilib-
rium. With perfect learning, (HOPE) means that μL > λ, in which case the firm
invests on (0�1] in any equilibrium.22 Conversely, if (HOPE) fails, both perfect
and imperfect bad news learning allow for a multiplicity of self-fulfilling shirk–
work cutoffs x∗

1. In particular, the shirk–work equilibria under perfect learning
are consistent with the possibility of shirk–work–shirk equilibria under imper-
fect learning.

6. CONCLUSION

This paper studies the moral hazard problem of a firm that produces expe-
rience goods and controls quality through its investment choice. Investment is
incentivized by consumers’ learning about product quality, which feeds into the
firm’s reputation and future revenue.

The key feature that distinguishes our paper from classical models of reputa-
tion and repeated games is that we model product quality as a function of past
investments rather than current effort. This capital-theoretic model of persis-
tent quality seems realistic: The current state of General Motors is a function
of its past hiring policies, investment decisions, and organizational choices, all
of which are endogenous and have lasting effects on quality. Similarly, workers’
abilities depend on their past human capital investments and career choices.
The model can also be interpreted as one of rational inattention with imper-
fect monitoring, where one agent (the firm) changes her strategy intermittently
and another agent (the market) tries to learn about her choice.

The model yields new economic insights: When the market learns quality via
breakthroughs of high quality products, a high reputation firm runs down its
quality and reputation, while a low reputation firm keeps investing to achieve
a breakthrough. Conversely, when the market learns quality via breakdowns of
low quality products, a low reputation firm has weak incentives to invest, while
a high reputation firm keeps investing to protect its reputation.

There are many interesting ways to extend this model to capture additional
important aspects of firm reputation. In the working paper version of this pa-
per (Board and Meyer-ter-Vehn (2010a)), we studied more general imperfect

22This assumes c <min{limx∗→0D
x∗
(x∗+)�Dxb(xb−)}, where xb = 1 − λ/μL; see Figure 5(b).
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learning processes that may contain a finite number of imperfect Poisson sig-
nals and a Brownian signal, where firm quality determines the drift of the
Brownian motion. With Brownian noise, (HOPE) is always satisfied, suggest-
ing that equilibrium may be unique. In a companion paper (Board and Meyer-
ter-Vehn (2010b)), we suppose the firm faces a cost of remaining in the industry
and exits the market when its continuation value drops to zero. We then inves-
tigate the investment incentives of a firm that is about to exit, showing that a
firm stops investing and coasts into liquidation if it is ignorant of its own qual-
ity, while it fights to the bitter end if it does know its own quality. In a recent
paper, Dilme (2012) proposed an alternative model of firm reputation where
actions have lasting effects due to switching costs.

Beyond firm reputation, we hope that our model will prove useful in other
fields. In corporate or international finance, where default signals bad news
about a borrower, the shirk–work equilibria generate endogenous credit traps.
In political economy, where a scandal is bad news about a politician, the di-
vergent dynamics imply that a politician who is caught cheating will cheat even
more, whereas a lucky politician will become more honest. And in personnel
economics, our model suggests that in “superstar markets,” where agents are
judged by their successes, performance tends to be mean-reverting.

APPENDIX A: PROOFS FROM SECTIONS 2 AND 3

A.1. Admissibility

Fix admissible beliefs Ã and an initial reputation x0. Here we establish the
following statements:

(i) There exists a solution to the ODE ẋ= g(x), that is, a trajectory {x∅

t }t≥0

such that s 
→ g(x∅

s ) is Riemann-integrable and x∅

t = x0 + ∫ t

0 g(x
∅

s ) ds for all
t ≥ 0.

(ii) The function t 
→ Ã(x∅

t ) is right-continuous.
To establish (i), consider first x0 �= x∗

i . The Picard–Lindelöf theorem im-
plies the existence of a unique local solution {x∅

t }t∈[0�T ] to the ODE ẋ= g(x),
where T is the first time the trajectory hits a cutoff, xT = x∗

i . If reputation starts
at a cutoff, x0 = x∗

i , admissibility requires that one of the following statements
holds:

(a) g(x∗
i )= 0,

(b) g(x∗
i ) > 0 and Ã (and therefore g) is right-continuous at x∗

i ,
(c) g(x∗

i ) < 0 and Ã (and therefore g) is left-continuous at x∗
i .

We consider these cases in turn. In case (a), the constant trajectory x∅

t = x0

for all t ≥ 0 solves ẋ = g(x). In case (b), drift g is Lipschitz-continuous on
[x∗
i � x

∗
i+1) so there exists a unique local solution {x∅

t }t∈[0�T ] in [x∗
i � x

∗
i+1). In case

(c), drift g is Lipschitz-continuous on (x∗
i−1�x

∗
i ] so there exists a unique local

solution {x∅

t }t∈[0�T ] in (x∗
i−1�x

∗
i ]. As in Klein and Rady (2011), these local solu-

tions are not unique in [0�1], but they are the unique local solutions that are
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consistent with a discrete-time approximation.23 Finally, we can concatenate
the local solutions to a unique global solution {x∅

t }t≥0 of the ODE ẋ = g(x).
This establishes (i).24

To establish (ii), note first that the trajectory {x∅

t }t≥0 is continuous as a func-
tion of time. Thus, t 
→ Ã(x∅

t ) is continuous whenever the trajectory is not at
a cutoff, x∅

t �= x∗
i . To see that admissibility implies right continuity at a cutoff,

x∅

t = x∗
i , we reconsider cases (a), (b), and (c). In case (a), {x∅

t+δ}δ≥0 is constant,
so Ã(x∅

t+δ)= Ã(x∅

t ). In case (b), limδ→0 Ã(x
∅

t+δ)= limε→0 Ã(x
∅

t +ε)= Ã(x∅

t ).
In case (c), limδ→0 Ã(x

∅

t+δ)= limε→0 Ã(x
∅

t − ε)= Ã(x∅

t ).

A.2. Proof of Theorem 1

LEMMA 5: For any parameter ρ > 0 and any bounded, measurable function
φ : [0�∞) → R, the function ψ(t) = ∫ ∞

t
e−ρ(s−t)φ(s)ds is the unique bounded

solution to the integral equation

f (t)=
∫ t′

t

(
φ(s)− ρf(s))ds+ f (t ′) for all t ′ > t�(A.1)

PROOF: To see that ψ solves (A.1), we truncate its integral expression at t ′

and decompose e−ρ(s−t) = 1 − e−ρ(s−t)(eρ(s−t) − 1) to get

ψ(t)=
∫ t′

t

φ(s)ds−
∫ t′

t

e−ρ(s−t)(eρ(s−t) − 1
)
φ(s)ds+ e−ρ(t′−t)ψ

(
t ′
)
�(A.2)

We then integrate the second term in (A.2) by parts and rearrange to get

∫ t′

t

e−ρ(s−t)
(∫ s−t

0
ρeρu du

)
φ(s)ds

=
∫ t′−t

0
ρ

∫ t′

u+t
e−ρ(s−(t+u))φ(s)ds

︸ ︷︷ ︸
=ψ(u+t)−e−ρ(t′−(t+u))ψ(t′)

du

23Indeed, consider x0 = x∗ ∈ (0�1) with limε→0 g(x
∗ − ε) < 0 < g(x∗) = limε→0 g(x

∗ + ε). In
addition to the solution {x∅t }t∈[0�T ] in [x∗�1], there exists a second solution {x̂∅t }t∈[0�T̂ ] in [0�x∗]
because the integral x̂∅t − x0 = ∫ t

0 g(x̂
∅

s ) ds does not depend on the initial drift, g(x0). However,
only the first solution, {x∅t }t∈[0�T ], is consistent with a discrete-time approximation.

24This proof parallels Appendix B in Klein and Rady (2011). For example, a cutoff x∗
i ∈

(0�1) with limε→0(x
∗
i + ε) = g(x∗

i ) > 0 corresponds to their “equivalence classes of transitions”
(−1�1�1)� (0�1�1), and (1�1�1), where the three numbers indicate the direction of the drift to
the left of the cutoff, at the cutoff, and to the right of the cutoff.
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=
∫ t′−t

0
ρψ(u+ t) du− e−ρ(t′−t)

∫ t′−t

0
ρeρu duψ

(
t ′
)

=
∫ t′

t

ρψ(s)ds− (
1 − e−ρ(t′−t))ψ(

t ′
)
�

Substituting back into (A.2) shows that ψ solves (A.1).
To see that the integral equation (A.1) has a unique bounded solution,

assume counterfactually that there exist two solutions, f and f̂ . Then the
difference ξ = f − f̃ satisfies the homogeneous integral equation ξ(t) =
−ρ ∫ t′

t
ξ(s)ds + ξ(t ′) for all t ≥ 0. Thus, ξ satisfies the ODE ξ′(t) = ρξ(t),

implying ξ(t)= αeρt , which is bounded if and only if α= 0. Q.E.D.

PROOF OF THEOREM 1: We truncate the integral expression of Vθ(x∅

t ) at
the first technology shock or signal:

Vθ
(
x∅t

)
=

∫ ∞

t
e−(r+λ+μθ)(s−t)

× [
x∅s − cA(

x∅s
) + λ(VL(

x∅s
) +A(

x∅s
)
D

(
x∅s

)) +μθVθ
(
j
(
x∅s

))]
︸ ︷︷ ︸

=:φ(s)

ds�

Next we apply Lemma 5 to ψ(t) := Vθ(x∅

t ) and ρ := r + λ+μθ to get

Vθ
(
x∅

t

) − Vθ
(
x∅

t′
) =

∫ t′

t

[
x∅

s − cA(
x∅

s

) + λ(VL(x∅

s

) +A(
x∅

s

)
D

(
x∅

s

))
(A.3)

+μθVθ
(
j
(
x∅

s

)) − (r + λ+μθ)Vθ
(
x∅

s

)]
ds�

Taking differences D = VH − VL and subtracting/adding μL(VH(j(x
∅

s )) −
VH(x

∅

s )) yields

D
(
x∅

t

) −D(
x∅

t′
) =

∫ t′

t

[
μH

(
VH

(
j
(
x∅

s

)) − VH
(
x∅

s

)) −μL
(
VL

(
j
(
x∅

s

))
− VL

(
x∅

s

)) − (r + λ)D(
x∅

s

)]
ds

=
∫ t′

t

[
μ

(
VL

(
j
(
x∅

s

)) − VL
(
x∅

s

)) +μLD
(
j
(
x∅

s

))
︸ ︷︷ ︸

=:φ̂(s)

− (r + λ+μL)D
(
x∅

s

)]
ds�

Then ψ̂(t) := D(x∅

t ) is a bounded solution of the integral equation f (t) =∫ t′
t
(φ̂(s) − ρ̂f (s))ds + f (t ′) with ρ̂ := r + λ + μL. Thus, Lemma 5 implies
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ψ̂(t)= ∫ ∞
t
e−ρ̂(s−t)φ̂(s)ds, that is

D
(
x∅

t

)
=

∫ ∞

t

e−(r+λ+μL)(s−t)[μ(
VL

(
j
(
x∅

s

)) − VL
(
x∅

s

)) +μLD
(
j
(
x∅

s

))]
ds

= E
L

[∫ ∞

t

e−(r+λ)(s−t)μ
(
VL

(
j
(
x∅

s

)) − VL
(
x∅

s

))
ds

]
�

finishing the proof of Theorem 1. Q.E.D.

REMARK: Dividing the integral equation (A.3) by t ′ − t, taking the limit
t ′ → t, and noting that d

dt
Vθ(x

∅

t ) = g(x∅

t )V
′
θ (x

∅

t ) yields the heuristic differen-
tial-difference equations (3.1) and (3.2) in the main text.

A.3. Proof of Lemma 4 (Continued)

We complete the proof of Lemma 4 by showing that E
Ã�x0[T(x0�x

∗)] is
bounded for all x0. To do so, we verify that there exist τ > 0�α ∈ (0�1),
such that PrÃ�x0[T(x0�x

∗) ≤ τ] ≥ α for all x0. Then PrÃ�x0[T(x0�x
∗) > nτ] ≤

(1 − α)n, so that T(x0�x
∗)/τ is first-order stochastically dominated by a geo-

metric random variable with parameter α. Since the mean of such a variable is
1/α, we have E

Ã�x0[T(x0�x
∗)] ≤ τ/α.

To determine τ and α, we begin by considering the simplest case, in which
λ > |μ| and x0 �= x∗. In this case, reputational drift is strictly positive in the
work region, g(x)= (λ−μx)(1 − x), and strictly negative in the shirk region,
g(x) = −(λ + μ(1 − x))x. Absent a signal, reputation thus drifts toward x∗

and reaches it at or before time τ = 1/ infx �=x∗ |g(x)| <∞. The probability of
no signal arriving in [0� τ] is bounded below by α= exp(−max{μL�μH}τ).

When λ ≤ |μ| or x0 = x∗, we focus on the good news case, μ > 0 (the
bad news case is similar). For x0 ∈ (x∗�1], the proof is as above: Reputa-
tional drift in the shirk region, g(x) = −(λ + μ(1 − x))x, is strictly nega-
tive, so absent a signal, reputation drifts downward and reaches x∗ before
τ1 = 1/ infx>x∗ |g(x)| < ∞. The probability of no signal in [0� τ1] is bounded
below by α1 = exp(−μHτ1).

For x0 ∈ [0�x∗], the proof is more complicated because drift in the work
region need not be positive, so reputation may first need to jump above x∗

before drifting down to x∗. To formalize this idea, we establish that for any
τ2 > 0, there exists α2 > 0 such that PrÃ�x0(xt > x

∗ for some t ≤ τ2) ≥ α2. This
follows since the drift g around x = 0 is strictly positive, so xτ2/2 is bounded
away from 0. With a finite number ν of jumps, we thus have jν(xτ2) > x

∗,
where the probability of ν or more jumps in [τ2/2� τ2] is bounded below by



2418 S. BOARD AND M. MEYER-TER-VEHN

α2 = (μLτ2/2)νe−μLτ2/2/ν!. Therefore,

PrÃ�x0
(
T

(
x0�x

∗) ≤ τ1 + τ2

)
≥ PrÃ�x0

(
xt > x

∗ for some t ≤ τ2

)
inf
x>x∗

[
PrÃ�x0

(
T

(
x�x∗) ≤ τ1

)] ≥ α2α1�

proving the result for τ= τ1 + τ2 and α= α2α1.

APPENDIX B: PERFECT LEARNING

B.1. Perfect Good News: Continuity in the Proof of Theorem 2

Let Vθ�x∗(x) be firm value under work–shirk beliefs when x∗ ∈ (0�1), firm
value under full-shirk beliefs when x∗ = 0, and firm value under full-work
beliefs when x∗ = 1. In this appendix, we show that Vθ�x∗(x∗)—and hence
Dx∗(x∗)= VH�x∗(x∗)− VL�x∗(x∗)—is continuous in x∗.

Consider two hypothetical firms: The first firm faces work–shirk beliefs
with cutoff x∗ and has initial reputation x0 = x∗. Denote its reputation by
xt = xt(x∗�h� Ã)= xt(x∗�h�x∗) and its optimal investment by a= {at}t≥0. The
second firm faces work–shirk beliefs with cutoff x̂∗ and has initial reputation
x0 = x̂∗. Denote its reputation by x̂t = xt(x̂∗�h� x̂∗) and its optimal investment
by â= {ât}t≥0.

We wish to show that the second firm’s profits are close to the first firm’s
when x̂∗ is close to x∗. To do this, we suppose the first firm mimics the second
firm’s investment strategy, as in the proof of Lemma 2.

CLAIM: For any ε > 0, there exists δ > 0 such that for all x̂∗ ∈ [x∗ − δ�x∗ + δ]
and any history h, we have∫ ∞

0
e−rt |x̂t − xt |dt ≤ ε�(B.1)

Together with revealed preference, this claim implies

Vθ�x∗
(
x∗) = E

a�θ

[∫ ∞

0
e−rt(xt − cat)dt

]
≥ E

â�θ

[∫ ∞

0
e−rt(xt − cât) dt

]

≥ E
â�θ

[∫ ∞

0
e−rt(x̂t − cât) dt

]
− ε= Vθ�x̂∗

(
x̂∗) − ε�

If the second firm mimics the first firm, we obtain a converse expression. To-
gether, these two equations imply that when x̂∗ is close to x∗,

Vθ�x̂∗
(
x̂∗) + ε≥ Vθ�x∗

(
x∗) ≥ Vθ�x̂∗

(
x̂∗) − ε�

Hence Vθ�x∗(x∗) is continuous in x∗, implying that Dx∗(x∗) = VH�x∗(x∗) −
VL�x∗(x∗) is also continuous in x∗, as required.
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PROOF OF THE CLAIM: We consider three cases. Recall that xg =
min{λ/μ�1} and that a work–shirk cutoff x∗ is convergent if x∗ ≤ xg and per-
meable if x∗ > xg. First suppose x∗ ∈ [0�xg], so that g(x) = 0 for x = x∗. Fix
ε > 0 and consider any x̂∗ ∈ [x∗�min{x∗ + rε�1}].25 Before the first signal ar-
rival, we have xt = x∗ because x∗ is convergent, and have x̂t ∈ [x∗� x̂∗] because
the drift of x̂t is positive below x∗ and negative above x̂∗. At a signal, both
trajectories {xt}t≥0 and {x̂t}t≥0 jump to x= 1 and then coincide until they have
drifted down to x̂∗. From there, {xt}t≥0 drifts down further to x∗, while {x̂t}t≥0

is contained in [x∗� x̂∗] until the next signal hits. To summarize, for any time t
and history h, we have |x̂t − xt | ≤ rε, yielding (B.1).

Second, suppose x∗ ∈ (xg�1) so that g(x) < 0 for x= x∗. Here, both trajec-
tories drift below their respective work–shirk cutoffs and the distance |x̂t − xt |
may increase over time. To address this issue, we convert reputation into log-
likelihood ratios L(x)= log(x/(1 − x)), denoting �t =L(xt) and �̂t =L(x̂t).26

Fix ε and choose δ > 0 so that for every x̂∗ ∈ [x∗�x∗ + δ], we have

�̂0 − �0 =L(
x̂∗) −L(

x∗) ≤ rε�
In �-space, in the work region [L(λ/μ)�L(x∗)], reputational drift λ(1 + e−�)−
μ is decreasing, so the distance |�̂t − �t | shrinks in the absence of a signal.
When a signal arrives at time t1, both trajectories jump to �̂t1 = �t1 = ∞ and
then coincide until they have drifted down to L(x̂∗) at time T̂ . At that time,
due to the different beliefs, {�t}t≥0 drifts down faster than {�̂t}t≥0, until {�t}t≥0

reaches L(x∗) at time T . The negative drift λ(1 + e−�)− μ on [L(x∗)�L(x̂∗)]
implies �̂T ∈ (L(x∗)�L(x̂∗)) and after time T , the increment |�̂t − �t | starts to
shrink again by the argument above. To summarize, for any time t and history
h, we have |�̂t − �t | ≤ rε. To translate this into x-space, we use the mean value
theorem and 1/L′(x)= x(1 − x)≤ 1 to get

|x̂t − xt | ≤ max
x∈(0�1)

(
1

L′(x)

)
|�̂t − �t | ≤ rε for all t�

yielding (B.1).
Third, suppose that x∗ = 1. In this case, x̂t ≥ x̂∅

t = x̂∗ + ∫ t

s=0 g(x̂
∅

s ) ds, where
g(x)= (λ−μx)(1 − x). As x̂∗ → 1, then x̂t → 1 for all t and (B.1) is satisfied.
This finishes the proof of the claim. Q.E.D.

B.2. Perfect Good News: Uniqueness in the Proof of Theorem 2(d)

In this appendix, we derive equation (4.3). Fix a work–shirk equilibrium with
convergent cutoff x∗, suppose x0 = 1, and let x∅

t = xt(1�∅�x∗). As reputational

25We focus on x̂∗ ≥ x∗ to fix ideas. This formally only establishes right continuity. The proof of
left continuity is analogous.

26See Appendix C.2 for details on the evolution of reputation in log-likelihood ratio space.
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drift is strictly negative in the shirk region (x∗�1], g(x) = −(λ+ μ(1 − x))x,
reputation in the absence of signals {x∅

t }t≥0 drifts from x0 = 1 to x∗ and remains
there forever. In equilibrium, the firm weakly prefers to shirk on [x∗�1], so we
calculate the value function based on the assumption that it shirks. Conditional
on low quality, reputational dynamics are deterministic and firm value is given
by

VL
(
x∅

s

) =
∫ ∞

t=0
e−rtx∅

t+s dt�(B.2)

With a high quality product, dynamics are more complicated because the repu-
tation jumps to x= 1 at a breakthrough and quality disappears at a technology
shock,

VH
(
x∅

s

) =
∫ ∞

t=0
e−(r+λ+μ)t[x∅

t+s + λVL
(
x∅

t+s
) +μVH(1)

]
dt�(B.3)

We rewrite the integral of the second, λVL(x∅

t+s), term by changing the order
of integration,∫ ∞

t=0
e−(r+λ+μ)tλVL

(
x∅

t+s
)
dt = λ

∫ ∞

t=0
e−(r+λ+μ)t

(∫ ∞

u=t
e−r(u−t)x∅

u+s du
)
dt

= λ

∫ ∞

u=0
e−rux∅

u+s

(∫ u

t=0
e−(λ+μ)t dt

)
du

= λ

λ+μ
∫ ∞

u=0
x∅

u+se
−ru[1 − e−(λ+μ)u]du�

and substitute back into (B.3) to obtain

VH
(
x∅

s

) =
∫ ∞

t=0
e−rtx∅

t+s

[
λ

λ+μ + μ

λ+μe
−(λ+μ)t

]
dt+ μ

r + λ+μVH(1)�(B.4)

Evaluating (B.4) at x∅

s = 1 and rearranging, we obtain

VH(1)= r + λ+μ
r + λ

∫ ∞

t=0
x∅

t e
−rt

[
λ

λ+μ + μ

λ+μe
−(λ+μ)t

]
dt�

The value of quality is the difference between the value functions (B.4) and
(B.2):

D
(
x∅

s

) = μ

r + λ
∫ ∞

t=0
x∅

t e
−rt

[
λ

λ+μ + μ

λ+μe
−(λ+μ)t

]
dt(B.5)

− μ

λ+μ
∫ ∞

t=0
x∅

t+se
−rt[1 − e−(λ+μ)t]dt�
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When x∅

s = x∗ so that x∅

s+t = x∗ for all t ≥ 0, elementary calculations show that

D
(
x∗) = μ

r + λ
∫ ∞

t=0

(
x∅

t − x∗)e−rt
[

λ

λ+μ + μ

λ+μe
−(λ+μ)t

]
dt�

which is equal to (4.3), as required.
Intuitively, quality at x∗ is valuable because of the possibility that reputation

jumps from x∗ to x= 1. The probability of this event is captured by the factor
μ/(r + λ), while the terms in brackets capture the possibilities of technology
shocks and breakthroughs as {x∅

t }t≥0 descends from x0 = 1 to x∗.

B.3. Perfect Bad News: Properties of Dx∗
(x∗±) in the Proof of Theorem 3

This appendix proves the following properties of the value of quality Dx∗
(·)

in the neighborhood of a shirk–work cutoff x∗:27

(P+) Properties of Dx∗
(x∗+): The function x∗ 
→ Dx∗

(x∗+) is continuous
and strictly increasing on [0�1), with limx∗→1D

x∗
(x∗+)=D0(1).

(P−) Properties of Dx∗
(x∗−): limx∗→1D

x∗
(x∗−) = Dfs(1). If λ ≥ μL, then

the function x∗ 
→Dx∗
(x∗−) is continuous and strictly increasing on (0�1), with

limx∗→0D
x∗
(x∗−)= 0.

(PD) Discontinuity ofDx∗
(x) at x= x∗: At any divergent cutoff x∗ ∈ (xb�1),

we have Dx∗
(x∗+) >Dx∗

(x∗−).
To show property (PD), note first that absent a signal, the shirk region [0�x∗)

and the work region [x∗�1] are both absorbing, because reputational drift is
strictly negative on (xb�x∗) and strictly positive on [x∗�1). This discontinuity
of g at x∗ generates a discontinuity of future reputation as a function of initial
reputation; that is, limε→0 xt(x

∗ − ε�∅�x∗) < x∗ < limε→0 xt(x
∗ + ε�∅�x∗) for

any t > 0.28 Then using (4.5) and VL(0)= 0, (PD) follows from

Dx∗
(x0)=

∫ ∞

0
e−(r+λ)tμLV x∗

L

(
xt

(
x0�∅�x

∗))dt
and the strict monotonicity of V x∗

L (·).
To show (P+), we first establish that the “shirk–work beliefs with cutoff x∗”

and “full work except at 0” give rise to the same value of quality above the
cutoff; that is, Dx∗

(x0) = D0(x0) for all x∗ ∈ (0�1) and x0 > x
∗. To see this,

note that the trajectories {xt(x0�h�x
∗)}t≥0 and {xt(x0�h�0)}t≥0 are contained

in {0} ∪ [x∗�1] by the positive drift on [x∗�1] before a breakdown, and the
absence of drift at {0} after a breakdown. Therefore, these trajectories, the

27Recall that xb = max{1 − λ/μL�0} is the stationary level of reputation when the firm is be-
lieved to be shirking.

28Here, the third argument x∗ in xt(x0�h�x
∗) represents the beliefs “shirk–work with cutoff

x∗.” Similarly we write xt(x0�h�0) when beliefs are “full work except at 0” and write xt(x0�h� fs)
when beliefs are “full shirk.”
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firm value, and the value of quality do not depend on Ã|(0�x∗). This implies that
the right-sided limits of the value of quality coincide: Dx∗

(x∗+)=D0(x∗+) for
all x∗ ∈ [0�1). In turn, D0 is strictly increasing and continuous on (0�1); the
latter follows by Lemma 3 because drift g is strictly positive and continuous
on [0�1). Therefore, Dx∗

(x∗+)=D0(x∗+)=D0(x∗) is continuous and strictly
increasing in x∗ on [0�1).

To establish the limit as x∗ → 1, it suffices to show that V 0
θ (x) is continuous

at x = 1; then limx∗→1D
x∗
(x∗+) = limx∗→1D

0(x∗+) =D0(1). To establish this
continuity, consider a low firm with initial reputation x0 = 1 − ε and a high
firm with initial reputation x̂0 = 1. For any history, the distance between the
trajectories remains bounded by x̂t − xt ≤ ε since before a breakdown, x∅

t ≥
x0 = 1 − ε and x̂∅

t = 1, and after a breakdown, xt = x̂t = 0. When the low firm
mimics the optimal investment of the high firm, ât =A(x̂t−), it faces the same
probability distribution over histories, so

V 0
θ (x0)= E

a�θ

[∫ ∞

0
e−rt(xt − cat)dt

]
≥ E

â�θ

[∫ ∞

0
e−rt(xt − cât) dt

]

≥ E
â�θ

[∫ ∞

0
e−rt(x̂t − ε− cât) dt

]
= V 0

θ (x̂0)− ε

r
�

Together with monotonicity of V 0
θ , this implies V 0

θ (1−ε) ∈ [V 0
θ (1)−ε/r�V 0

θ (1)],
implying that V 0

θ is continuous at x= 1.
The proof of (P−) parallels the proof of (P+). Specifically, we can show for

any divergent cutoff x∗ ≥ xb = max{1 − λ/μ�0} that “shirk–work with cutoff
x∗” and “full shirk” give rise to the same value of quality below the cutoff;
that is, Dx∗

(x0)=Dfs(x0) for all x∗ ∈ (0�1) and x0 < x
∗. To see this, note that

trajectories {xt(x0�h�x
∗)}t≥0 and {xt(x0�h� fs)}t≥0 are contained in [0�x∗) by

the negative drift in the shirk region. Therefore, these trajectories, the firm
value, and the value of quality do not depend on Ã|[x∗�1]. This implies that
the left-sided limits of the value of quality coincide: Dx∗

(x∗−)=Dfs(x∗−) for
all x∗ ∈ [xb�1). In turn, Dfs is strictly increasing and continuous on (0�1]; the
latter follows by Lemma 3 because drift g is strictly negative and continuous
on (0�1]. Therefore, Dx∗

(x∗−)=Dfs(x∗−)=Dfs(x∗) is continuous and strictly
increasing in x∗ on [xb�1). This implies limx∗→1D

x∗
(x∗−)=Dfs(1).

Now assume λ ≥ μL, so that xb = 0. To establish the limit as x∗ → 0, it suf-
fices to show that limx→0 V

fs
θ (x)= 0. This follows because reputation only ever

declines under full-shirk beliefs, that is, xt(x0�h� fs) ≤ x0 for any x0, h, and
t, so V fs

θ (x) ∈ [0�x/r] converges to zero as x→ 0. Then limx∗→0D
x∗
(x∗−) =

limx∗→0D
fs(x∗−)= 0.
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APPENDIX C: PRELIMINARY RESULTS FOR IMPERFECT LEARNING

Appendices C–E prove Theorem 5(a). This appendix establishes prelimi-
nary results, Appendix D proves Theorem 5(a) for bad news learning, and Ap-
pendix E proves Theorem 5(a) for good news learning.

The preliminary results in this appendix lay the groundwork for the proof of
Theorem 5(a) by shifting the focus from value functions Vθ(x) to payoff func-
tions Πθ(x) in Section C.1, performing a change of variables by writing repu-
tation as the log-likelihood ratio of high quality �= L(x)= log(x/(1 − x)) in
Section C.2, and laying out the proof strategy for Theorem 5(a) in Section C.3.

C.1. Payoff Functions

In this section, we shift the focus from the firm’s value function Vθ(x), which
is based on the firm’s optimal response to market beliefs about investment, to
its payoff function Πθ(x), which assumes that the firm follows the investment
strategy believed by the market.

Fix admissible beliefs Ã, and recall that we can write time t reputation xt =
xt(x0�h� Ã) as a function of initial reputation, history, and reputational drift
induced by beliefs. The firm’s value and payoff functions are then defined as

Vθ(x)= max
A

E
A�θ

[∫ ∞

0
e−rt(xt − cA(xt))dt

]
�

Πθ(x)= E
A�θ

[∫ ∞

0
e−rt(xt − cA(xt))dt

]
� where A= Ã�

In equilibrium these functions coincide, but to establish equilibrium existence,
we need to analyze these functions for any beliefs. For the perfect learning
cases of Section 4, we use value functions because of their monotonicity prop-
erties. In the proof of Theorem 5(a), we use payoff functions because the ex-
plicit knowledge of investment helps us to analyze payoff functions and their
derivatives.

Analogous to the value of quality, we define the payoff of quality as �(x) =
ΠH(x)−ΠL(x).

LEMMA 6: Fix admissible beliefs Ã. Then 〈A�Ã〉 is a Markov perfect equilib-
rium if and only if A= Ã and

A(x)=
{

1 if λ�(x) > c�
0 if λ�(x) < c�

for all x ∈ [0�1]�(C.1)
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PROOF: The “only if” part follows from Lemma 1. The “if” part fol-
lows by standard verification arguments, for example, Davis (1993, Theo-
rem 42.8).29 Q.E.D.

To evaluate the payoff of quality � and analyze optimal investment (C.1), we
express � as the expectation over future reputational dividends:

�(x0)= E
L

[∫ ∞

0
e−(r+λ)tμ

(
ΠH

(
j(xt)

) −ΠH(xt)
)
dt

]
�(C.2)

= E
H

[∫ ∞

0
e−(r+λ)tμ

(
ΠL

(
j(xt)

) −ΠL(xt)
)
dt

]
�(C.3)

These formulae obtain because the proof of Theorem 1 does not rely on op-
timality, but only requires that high and low quality firms follow the same in-
vestment strategy.

In contrast to value functions Vθ(x), payoff functions Πθ(x) need not in-
crease in x, hence the payoff of quality need not be positive. However, Lem-
mas 9B and 9G establish that for work–shirk beliefs with cutoff x∗, the value
of quality at the cutoff satisfies �(x∗) > 0; if additionally we have λ�(x∗)= c,
then payoff functions Πθ(x) are increasing in x.

Like value functions, payoff functionsΠθ(x) are not generally continuous in
x but discontinuities can arise only when drift g changes sign or approaches
zero at x. More specifically, we have the following analogue of Lemma 3.

LEMMA 7: Fix admissible beliefs Ã, an interval [x�x], and ε > 0 such that ei-
ther g(x) > ε for all x ∈ [x�x) or g(x) <−ε for all x ∈ (x�x]. Then the restriction
of Πθ to [x�x] is continuous.

PROOF: The argument that the function t 
→ Vθ(x
∅

t ) is continuous in the
proof of Lemma 1 does not rely on the optimality of firm investment and
implies that the function t 
→ Πθ(x

∅

t ) is also continuous. Thus, the proof of
Lemma 3 for value functions also applies to the payoff functions considered
here. Q.E.D.

Lemma 7 has a useful implication: If drift g is continuous and nonzero at x,
then Πθ is continuous at x.

29Davis (1993) studied a more general class of piecewise deterministic processes. In contrast to
the standard assumptions in Davis, the vector field of our process is not continuous everywhere;
specifically, reputational drift is discontinuous at the work–shirk cutoff x∗. However, Davis’ re-
sults still apply because our assumption of admissible beliefs guarantees well defined reputational
trajectories.
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C.2. Log-Likelihood-Ratio Transformation

For most of the proofs in Appendices D and E, we represent reputation
not by the probability of high quality x= Pr(θ =H), but by its log-likelihood
ratio �= L(x)= log(x/(1 − x)) ∈ R ∪ {−∞�∞}. The relevant transformation
functions are

X(�)= e�

1 + e� � X ′(�)= e�

(1 + e�)2
= x(1 − x)�(C.4)

X ′′(�)= e�(1 − e�)
(1 + e�)3

= x(1 − x)(1 − 2x)�

With abuse of notation, we writeΠθ(�) for the firm’s payoff function in �-space
and equivalently for all other functions of reputation.

The advantage of this transformation is that Bayesian learning is linear in
�-space. At a signal, reputation jumps from �t− to �t = j(�t−), where j(�) :=
� + log(μH/μL). Absent a signal, the reputational drift as a function of � is
governed by

d�

dt
= dx/dt

X ′(�)
= λ(Ã(x)− x)−μx(1 − x)

x(1 − x) �

so, with abuse of notation, equation (2.2) becomes

�̇= g(�)=

⎧⎪⎨
⎪⎩

λ

X(�)
−μ= λ(1 + e−�) −μ if Ã(�)= 1�

− λ

1 −X(�) −μ= −λ(1 + e�) −μ if Ã(�)= 0�
(C.5)

For work–shirk beliefs with cutoff �∗, drift g(�) is illustrated in Figures 8 and 9.
We will make extensive use of the fact that g is decreasing.

In analogy to x∅

t and xt = xt(x0�h�x
∗), we write �∅t for the log-likelihood

ratio of reputation in the absence of signals at time t, and write �t = �t(�0�h� �
∗)

after history h with starting value �0 and work–shirk beliefs with cutoff �∗.

C.3. Proof Strategy

The proof of Theorem 5(a) relies on finding a work–shirk cutoff �∗ so that
the firm is indifferent at �∗ and then analyzing the resulting investment incen-
tives to show that the firm prefers to work below the cutoff and shirk above the
cutoff.

Lemma 11 shows that for sufficiently small costs, there exists a large work–
shirk cutoff with indifference at the cutoff. Formally, for any � > 0, there exists



2426 S. BOARD AND M. MEYER-TER-VEHN

c(�) > 0 such that for all c < c(�), there exists �∗ ∈ (��∞) with λ��∗�c(�∗)= c;30

this follows from the intermediate value theorem. Lemmas 14–16 show that
for sufficiently high work–shirk cutoffs and low costs with indifference at the
cutoff, investment incentives are single crossing: That is, there exist �� > 0 and
c > 0 such that for any �∗ > �� and c < c with λ��∗�c(�∗) = c, the function
λ��∗�c(·) − c crosses 0 once and from above on [−∞�∞]. Now for any c <
min{c(��)� c}, there exists �∗ > �� such that

λ��∗�c(�)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

> c for � ∈ [−∞� �∗) by Lemmas 14 and 15
(work below cutoff),

= c for �= �∗ by Lemma 11
(indifference at cutoff),

< c for � ∈ (
�∗�∞]

by Lemma 16
(shirk above cutoff).

(C.6)

Thus, given work–shirk beliefs with cutoff �∗, investment A = Ã satisfies the
optimality condition (C.1) and, therefore, constitutes a Markov perfect equi-
librium.

Lemmas 14–16 constitute the core of the proof. The actual proofs are fairly
intricate, but the basic idea can be easily summarized: Lemma 14 shows that �
is decreasing on [��� �∗]. To prove this, we take the derivative of (C.2) to obtain

�′(�0)= E
L

[∫ ∞

0
e−(r+λ)tμ

(
Π′
H

(
j(�t)

) −Π′
H(�t)

)
dt

]

and show in Lemma 13 that μ(Π′
H(j(�t))−Π′

H(�t)) is negative; the proof of
Lemma 13 relies on the fact that X ′(�) and Π′(�) behave like e−� for large
values of �.

Lemma 15 shows that � is uniformly bounded below on [−∞� ��] for all
�∗ > ��. Thus, for small c, the firm prefers to work at those low levels of repu-
tation. Finally, Lemma 16 shows that �(�∗) > �(�) for all � ∈ (�∗�∞]. To prove
this, we express the reputational dividend as an integral over the marginal pay-
off of reputation μ(ΠH(j(�t))−ΠH(�t))= μ ∫ j(�t )

�t
Π′
H(�)d�. Lemma 12 shows

that Π′
H(�) is much higher below the cutoff than above the cutoff. Thus, repu-

tational dividends are much higher below the cutoff than above and a firm with
initial reputation �∗ reaps these high dividends earlier than a firm starting at
� ∈ (�∗�∞].

30Notational convention: We write ��∗�c(�) and Πθ��∗�c(�) for payoff of quality and firm payoff
in the parts of the proof where we treat the work–shirk cutoff �∗ and the investment cost c as
variable (Sections D.2 and E.2), but retain the lighter notation �(�) and Πθ(�) in the other parts
where these are fixed.
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APPENDIX D: BAD NEWS

We separate the analysis for bad news learning and good news learning to
avoid case differentiations that would break the flow of the analysis. In this
appendix, we restrict attention to bad news learning, and in Appendix E, we
adapt these arguments to good news learning.

Some of the intermediate results rely on the assumption that

r > μL
(
μ2
L/μ

2
H − 1

)
�(D.1)

Also it is convenient to define

γ := ∣∣log(μH/μL)
∣∣> 0�

so that j(�)= �− γ.

D.1. Bad News—Marginal Payoff of Reputation

In this section, we derive an integral expression for the marginal payoff of
reputation, Π′

θ(�); this expression, (D.8), provides the basis for the upper and
lower bounds calculated in Sections D.3 and D.4.

As a preliminary step, we study how future reputation �t depends on initial
reputation �0. Let

�b =L(
xb

) =
{

log
(|μ|/λ− 1

)
if |μ|> λ�

−∞ if |μ| ≤ λ�
In what follows, we restrict attention to �∗ > �b, so that reputational drift is
strictly positive below the cutoff and strictly negative above the cutoff,

g := lim
ε→0

g
(
�∗ − ε) = λ(1 + e−�∗) + |μ|> 0�(D.2)

g := lim
ε→0

g
(
�∗ + ε) = −λ(1 + e�∗) + |μ|< 0�

as illustrated in Figure 8.
For work–shirk beliefs with cutoff �∗ and initial reputation �0, we define the

time-to-cutoff as the first time the process {�s(�0�h� �
∗)}s≥0 hits the cutoff �∗,

T = T (
�0� �

∗) := min
{
s ≥ 0 :�s

(
�0�h� �

∗) = �∗}�(D.3)

In the following lemma, we focus on work–shirk beliefs with convergent cutoff
�∗ > �b, initial reputation �0 ∈R, history h= (t1� t2� � � �), and time t such that

�s−δ �= �∗ for all small δ > 0 implies �s− �= �∗(D.4)

for s = t and any s ∈ {t1� t2� � � �}�
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FIGURE 8.—Reputational drift in log-likelihood-ratio space: bad news. The top curve shows
g(�) given Ã = 1; this curve asymptotes to |μ| + λ. The bottom curve shows g(�) given Ã = 0;
this curve asymptotes to |μ| − λ and is negative for � > �b. We focus on work–shirk beliefs with
high cutoff �∗. For such beliefs, there is a weak positive drift g immediately below �∗ and a strong
negative drift g immediately above �∗.

Intuitively, this means that the trajectory {�s}s≥0 does not drift into the cutoff �∗

at time t or any signal arrival time ti. This condition ensures that the left- and
right-sided derivatives of �t(�0�h� �

∗) coincide. It is generic in the sense that
for any �∗� �0� t, it is satisfied for almost all histories h.

LEMMA 8B: Fix any admissible work–shirk beliefs with cutoff �∗ > �b, initial
reputation �0 ∈ R, history h= (t1� t2� � � �), and time t �= T that satisfy (D.4). Then
�t = �t(�0�h� �

∗) is twice partially differentiable in �0. If t < T , the derivatives are
given by

∂�t

∂�0
= exp

(∫ t

0
g′(�s)ds

)
�(D.5)

∂2�t

∂�2
0

= ∂�t

∂�0

∫ t

0
g′′(�s)

∂�s

∂�0
ds�(D.6)

If t > T , the derivatives are zero. As g′(�) < 0, we have ∂�t/∂�0 < 1.

Intuitively, the decreasing reputational drift g diminishes the reputational
increment �′

s − �s at rate g′(�s) < 0. This rate equals −∞ when �s = �∗, as in
Figure 8, so the increment disappears.

PROOF OF LEMMA 8B: Fix a work–shirk cutoff �∗ > �b, a history h =
(t1� t2� � � �), and ε > 0. Consider the reputational trajectories {�s}s≥0 and {�εs }s≥0
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that originate at �0 and �ε0 = �0 + ε, that is, �s = �s(�0�h� �
∗) and �εs =

�s(�
ε
0�h� �

∗). The distance �εs − �s is continuous in s: between signal arrivals,
its time derivative equals g(�εs ) − g(�s), and at a signal arrival time ti, both
trajectories jump down by γ, leaving the distance unchanged.

We first establish that �s �= �εs for all s ∈ [0�T ). Otherwise, let τ = min{s ∈
(0�T ) :�s = �εs }; the minimum is attained because �εs − �s is continuous in s.
Assume first that τ is not a signal arrival time. Then there exists δ > 0 such that
no signal arrives in [τ−δ�τ], and both {�s}s∈[τ−δ�τ] and {�εs }s∈[τ−δ�τ] are governed
by the same ODE �̇= g(�) with the same final condition �τ = �ετ = �∗; thus, we
have �τ−δ = �ετ−δ, contrary to the minimality of τ. If τ is a signal arrival time,
then �τ− = �τ + γ = �ετ + γ = �ετ− and the same argument implies �τ−δ = �ετ−δ,
contrary again to the minimality of τ. This establishes �s �= �εs , and by continuity
�s < �

ε
s , for all s ∈ [0�T ).

For t ∈ [0�min{T� t1}) and s ≤ t, log(�εs − �s) is differentiable with derivative

d

ds
log

(
�εs − �s

) =
d

ds
(�εs − �s)
�εs − �s = g(�εs )− g(�s)

�εs − �s �

Integrating, delogging, and taking the limit ε→ 0 yields

lim
ε→0

�εt − �t
�ε0 − �0

= lim
ε→0

exp
(∫ t

0

g(�εs )− g(�s)
�εs − �s ds

)
�(D.7)

The distance �εs − �s is continuous in s also at signal arrival times ti, so (D.7)
holds for all t ∈ [0�T ). The same form of argument applies for the evolution of
the distance �s − �−ε

s , where �−ε
s = �s(�0 − ε�h� �∗).

To derive (D.5) from (D.7), we need to take the limit inside the integral.
To do so, note first that g is decreasing by (C.5) (see also Figure 8), so the
integrand in (D.7) is negative and �εs − �s ≤ �ε0 − �0 = ε. Moreover, by assump-
tion (D.4), the trajectory {�s}s∈[0�t] is bounded away from �∗, so the integrand in
(D.7) is bounded uniformly for all s ∈ [0� t] and converges pointwise to g′(�s).
Thus, the bounded convergence theorem implies (D.5).

The formula for the second derivative follows from

∂2�t/∂�
2
0

∂�t/∂�0
= lim

ε→0

1
ε

(
log

∂�t

∂�0

(
�ε0

) − log
∂�t

∂�0
(�0)

)

= lim
ε→0

1
ε

(∫ t

0
g′(�εs ) − g′(�s)ds

)
�

Next we fix t > T and argue that the convergent drift at the cutoff �∗ elim-
inates the increment �εs − �s when the trajectory {�s}s≥0 hits the cutoff. The
analysis for s < T together with the continuity of �εs − �s in s implies that �−ε

T ∈
[�∗ −ε� �∗] and �εT ∈ [�∗� �∗ +ε]. Let ε be sufficiently small that no signal arrives
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in (T�T±ε], where T±ε := T + ε/min{g� |g|} and the drift around the cutoff
g� |g| was defined in (D.2). Then all trajectories starting at � ∈ [�0 − ε� �0 + ε]
drift into the cutoff by time T±ε, that is, �T±ε(��h� �∗)= �∗. For t > T±ε, �t de-
pends on �0 only via �T±ε , so �t(·�h� �∗) is constant on [�0 − ε� �0 + ε], implying
∂�t/∂�0 = 0. Q.E.D.

Next, we use these facts about reputational dynamics to investigate the
marginal payoff of reputation.31

LEMMA 9B: Fix admissible work–shirk beliefs with cutoff �∗ > �b.
(a) Payoff functions Πθ(�) are continuous on R and lim�→±∞Πθ(�) =

Πθ(±∞).
(b) The payoff of quality at the cutoff is strictly positive: �(�∗) > 0.
(c) If the firm is indifferent at the cutoff �∗, that is, λ�(�∗)= c, payoff functions

are differentiable in reputation, with derivative

Π ′
θ(�0)= E

A�θ

[∫ T(�0��
∗)

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]
�(D.8)

where ∂�t/∂�0 is given by (D.5) for almost all histories and T(�0� �
∗) is defined in

(D.3).

Lemma 9B(c) has the flavor of the envelope theorem. In general, ini-
tial reputation �0 affects firm payoff directly through its effect on revenue
X(�t(�0�h� Ã)) and indirectly via the firm’s investment at = A(�t(�0�h� Ã)).
If the firm is indifferent at the cutoff, then the indirect effect is zero: A low
reputation firm works more than a high reputation firm when their reputation
levels are on different sides of �∗. The low reputation firm gains �(�∗) when
a technology shock hits in that time. In expectation, this gain is exactly offset
by the extra cost borne by the firm. The marginal payoff of reputation Π′

θ(�) is
thus determined solely by the direct effect, which depends on the “durability”
of the reputational increment �εt − �t .

PROOF OF LEMMA 9B: Part (a). In x-space, this follows immediately from
Lemma 7: drift g is positive and bounded away from zero on [0�x∗), and neg-
ative and bounded away from zero on (x∗�1].

Part (c). Fix initial reputations � < �ε = � + ε ∈ R of a “low” and a “high”
firm. Let �t = �t(��h� �∗) and �εt = �t(�ε�h� �∗) be the time-t reputations of the
low and high firms, and let a = {at}t≥0 and aε = {aεt }t≥0 be their investment

31Recall from Section C.3 that for general beliefs, Πθ(�) need not be monotone in either θ
or �.
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processes, where at =A(�t) and aεt =A(�εt ). Now let

Πθ

(
�ε� �

) := E
a�θ

[∫ ∞

0
e−rt(X(

�εt
) − cat

)
dt

]

be the payoff to the high firm from mimicking the low firm. By definition
Πθ(�� �) = Πθ(�). We then decompose the incremental payoff of reputation
as

Πθ

(
�ε

) −Πθ(�)= [
Πθ

(
�ε� �ε

) −Πθ

(
�ε� �

)]
︸ ︷︷ ︸

indirect effect

+ [
Πθ

(
�ε� �

) −Πθ(�� �)
]

︸ ︷︷ ︸
direct effect

�(D.9)

Indirect effect: We truncate the integral expressions for Πθ(�
ε� �ε) and

Πθ(�
ε� �) at the first technology shock,

Πθ

(
�ε� �ε

)
= E

θ

[∫ ∞

0
e−(r+λ)t[X(

�εt
) − caεt + λ(aεt �(

�εt � �
ε
t

) +ΠL

(
�εt � �

ε
t

))]
dt

]
�

Πθ

(
�ε� �

)
= E

θ

[∫ ∞

0
e−(r+λ)t[X(

�εt
) − cat + λ

(
at�

(
�εt � �t

) +ΠL

(
�εt � �t

))]
dt

]
�

Taking the difference, adding and subtracting λat�(�εt � �
ε
t ), and reversing the

truncation, we get

Πθ

(
�ε� �ε

) −Πθ

(
�ε� �

)
(D.10)

= E
θ

[∫ ∞

0
e−(r+λ)t[(aεt − at

)(
λ�

(
�εt � �

ε
t

) − c)

+ λ(at(�(
�εt � �

ε
t

) −�(
�εt � �t

)) +ΠL

(
�εt � �

ε
t

) −ΠL

(
�εt � �t

))]
dt

]

= E
a�θ

[∫ ∞

0
e−rt(aεt − at

)(
λ�

(
�εt � �

ε
t

) − c)dt
]
�

Intuitively, whenever the low firm works and the high firm shirks, so that aεt −
at = −1, the upside of the high firm’s investment plan is the cost savings c,
while the downside is the expected opportunity cost of missing a technology
shock, λ�(�εt ).

We next establish an upper bound for the indirect effect, (D.10). Recall from
Lemma 8B that �εt − �t is decreasing in t, and the rate of decrease − d

dt
(�εt −

�t) is at least g = limε→0 g(�
∗ − ε) whenever �t < �∗ ≤ �εt and at least |g| =
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limε→0 |g(�∗ + ε)| whenever �t ≤ �∗ < �εt . Thus, we obtain
∣∣Πθ

(
�ε� �ε

) −Πθ

(
�ε� �

)∣∣(D.11)

≤ E
a�θ

[∫
{t:�t<�∗≤�εt or �t≤�∗<�εt }

e−rt∣∣λ�(
�εt

) − c∣∣dt
]

≤ ε

min{g� |g|} max
�′∈[�∗��∗+ε]

∣∣λ�(
�′) − c∣∣�

Recall that we assume λ�(�∗) = c for this part. By part (a), � is continuous,
so limε→0(max�′∈[�∗��∗+ε] |λ�(�′)− c|) = 0 and the upper bound of the indirect
effect, (D.11), vanishes faster than ε, that is,

lim
ε→0

|Πθ(�
ε� �ε)−Πθ(�

ε� �)|
ε

= 0�

as in the envelope theorem.
Direct effect: Dividing the direct effect by ε and taking the limit ε→ 0, we

get

lim
ε→0

Πθ(�
ε� �)−Πθ(�� �)

ε
= lim

ε→0
E
a�θ

[∫ ∞

0
e−rt X(�

ε
t )−X(�t)
ε

dt

]
�(D.12)

By the proof of Lemma 8B, we have �εt − �t ≤ ε. Thus, the integrand (X(�εt )−
X(�t))/ε is bounded uniformly with limit X ′(�t)∂�t/∂�0 for almost all h and t,
so the bounded convergence theorem applies. Finally, we truncate the integral
at T(�0� �

∗) because ∂�t/∂�0 = 0 for t > T(�0� �
∗) by Lemma 8B. This estab-

lishes (D.8) for the right-sided derivative ofΠ at �. Analogous arguments show
that the left-sided derivative is given by the same expression.

Part (b). Assume by contradiction that the payoff of quality is nonpositive
at the cutoff, �(�∗) ≤ 0. By part (a), � is continuous, implying λ�(�t) < c for
�t close to the cutoff �∗. Thus, for small ε, equation (D.10) implies that the
indirect effect Πθ(�

ε� �ε)−Πθ(�
ε� �) is positive. Intuitively, this is because the

high firm works less than the low firm, which is profitable since λ�(�∗)≤ 0< c.
The direct effect Πθ(�

ε� �)−Πθ(�� �) is positive by construction, so payoff Πθ

is increasing in reputation. This implies that reputational dividends are strictly
positive and, by equations (C.2) and (C.3), �(�∗) is strictly positive as well.

Q.E.D.

D.2. Bad News—Indifference at the Cutoff

We now show that for small costs c > 0, there exist work–shirk beliefs with
cutoff �∗ that make the firm indifferent between working and shirking at �∗. To
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emphasize the dependence of the firm’s payoff on c and �∗, we write Πθ��∗�c(�)
and ��∗�c(�) in this section. We say that the pair �∗� c satisfies indifference at the
cutoff if

λ��∗�c
(
�∗) = c�(D.13)

Lemma 11B shows that for small costs c, there exist work–shirk beliefs with
indifference at the cutoff �∗. The key step in the argument is Lemma 10B,
which shows that the payoff at the cutoff is continuous.

LEMMA 10B: For any θ and c > 0, the function �∗ 
→Πθ��∗�c(�
∗) is continuous

on (�b�∞) and the limit lim�∗→∞Πθ��∗�c(�
∗)= 1−c

r
is independent of θ.

PROOF: Consider a “low” firm with work–shirk cutoff �∗ and initial reputa-
tion �, and a “high” firm with cutoff �∗ +ε and initial reputation �ε ∈ [�� �+ε],
where ε ∈ (0�γ/2). We write �εt = �t(�

ε�h� �∗ + ε) and �t = �t(��h� �
∗) for the

reputations of the high and low firms at time t, and write aεt = Aε(�εt )� at =
A(�t) for their respective investment levels. We first show that reputation and
investment of these two firms stay close in any history h, and then show that
Πθ��∗+ε�c(�ε)−Πθ��∗�c(�) is of order ε.

Reputation stays close: We now show that for all t ≥ 0,

�εt − �t ∈ [0� ε]�(D.14)

To understand (D.14), note that it holds for t = 0 and that the distance �εt − �t
is Lipschitz-continuous in t: between signals, the rate of change equals the
difference of reputational drift, and at a signal, both trajectories jump down by
the same amount γ. Moreover, d

dt
(�εt −�t)≥ 0 whenever �εt −�t = 0 because the

high firm is believed to invest weakly more, and d
dt
(�εt − �t)≤ 0 whenever �εt −

�t = ε because drift g is decreasing in � for fixed Ã, as illustrated in Figure 8.
This establishes (D.14).

Investment stays close: We next show that |aεt − at | is small for most t. More
precisely, we show that there exist constants κ1�κ2�κ3 > 0 such that for every
history h and every ε ∈ (0�γ/2), there exists a set T = T (ε�h)⊆ [0�∞) such
that ∣∣aεt − at

∣∣ ≤ κ1ε for t /∈ T(D.15)

and

t ∈ T ⇒ [t + κ2ε� t + κ3] ∩ T =∅�(D.16)

That is, investment is close for t /∈ T , and T is included in a union of small
intervals [t ′� t ′ + κ2ε] with distance between intervals at least κ3 − εκ2. Jointly,
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(D.15) and (D.16) imply∫ ∞

0
e−(r+λ)t∣∣aεt − at

∣∣dt
=

∫
t /∈T
e−(r+λ)t∣∣aεt − at

∣∣dt +
∫
t∈T
e−(r+λ)t∣∣aεt − at

∣∣dt
≤

∫ ∞

0
e−(r+λ)tκ1εdt +

∞∑
n=0

e−(r+λ)nκ3κ2ε

=
(
κ1

r + λ + κ2

1 − e−(r+λ)κ3

)
ε=: κε�

To define the set T , let κ1 := |μ|/λ + 1�κ2 := 1/min{g� |g|} and κ3 :=
γ/(2g(�∗ − γ)) and define T := {t ∈ [0�∞) :�∗ ≤ �t� �

ε
t ≤ �∗ + ε with at least

one strict inequality}. Then (D.14) implies for any t /∈ T that either aεt = at = 1
or aεt = at = 0 or �t = �∗ and �εt = �∗ +ε; in the latter case, admissibility implies∣∣aεt − at

∣∣
= ∣∣Aε(�∗ + ε) −A(

�∗
)∣∣

=
∣∣∣∣X(

�∗ + ε)
(

1 + μ

λ

(
1 −X(

�∗ + ε))
)

−X(
�∗

)(
1 + μ

λ

(
1 −X(

�∗
)))∣∣∣∣

≤ κ1ε�

This establishes (D.15).
To show (D.16), fix t ∈ T and let t1 ≥ t be the first signal arrival time. If �∗ <

�t , then �t drifts down at rate |g(�t)| ≥ |g|; if �εt < �
∗ +ε, then �εt drifts up at rate

g(�εt )≥ g. Consider first any t ′ ∈ [t+κ2ε� t1) before the first signal arrival: κ2 =
1/min{g� |g|} implies �t′ = �∗ and �εt′ = �∗ + ε, and so t ′ /∈ T . Consider next any
t ′ ∈ [t1� t1 + κ3] after the first arrival: �t1 ≤ �∗ − γ/2 and so κ3 = γ/(2g(�∗ − γ))
implies �t′ < �∗, and so t ′ /∈ T . Thus, we have shown (D.16).

Payoff stays close: To compare the payoffs of the high and low firms,
Πθ��∗+ε�c(�∗ + ε) and Πθ��∗�c(�

∗), we first need to address the issue that their
different investment strategies {aεt }t≥0 and {at}t≥0 induce different probability
measures over histories h. Rather than analyzing the payoff effect of the dif-
ferent probability measures directly, we truncate the cash-flow expansion at
the first technology shock and capture the effect of the different investment
strategies through the continuation payoffs:

Πθ��∗+ε�c
(
�ε

)
= E

θ

[∫ ∞

0
e−(r+λ)t

× (
X

(
�εt

) − aεt c+ λ(aεt ΠH��∗+ε�c
(
�εt

) + (
1 − aεt

)
ΠL��∗+ε�c

(
�εt

)))
dt

]
�
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Πθ��∗�c(�)

= E
θ

[∫ ∞

0
e−(r+λ)t

× (
X(�t)− atc+ λ(atΠH��∗�c(�t)+ (1 − at)ΠL��∗�c(�t)

))
dt

]
�

We take the difference of these expressions, and then subtract and add
atΠH��∗+ε�c(�εt )+ (1 − at)ΠL��∗+ε�c(�εt ) to obtain

Πθ��∗+ε�c
(
�ε

) −Πθ��∗�c(�)

= E
θ

[∫ ∞

0
e−(r+λ)t

[
X

(
�εt

) −X(�t)− c(aεt − at
)

+ λ(aεt − at
)(
ΠH��∗+ε�c

(
�εt

) −ΠL��∗+ε�c
(
�εt

))
+ λ(at(ΠH��∗+ε�c

(
�εt

) −ΠH��∗�c(�t)
)

+ (1 − at)
(
ΠL��∗+ε�c

(
�εt

) −ΠL��∗�c(�t)
))]
dt

]
�

The first term captures the cash-flow difference between the two firms for the
same histories. The second term captures the difference in continuation pay-
offs when a technology shock hits and the firms’ investment differs. This differ-
ence in payoffs is bounded above by (1 + c)/r, while the difference in invest-
ment aεt − at is bounded by (D.15). The third term captures the difference in
continuation payoffs when a technology shock hits and the firms’ investment
coincides.

By (D.14), reputation levels at time t remain within ε of each other, and the
difference in continuation payoffs is bounded above by

β= sup
θ��∗����ε

{∣∣Πθ��∗+ε�c
(
�ε

) −Πθ��∗�c(�)
∣∣ :�ε − � ∈ [0� ε]}�

This implies

β ≤ E
θ

[∫ ∞

0
e−(r+λ)t

×
(∣∣X(

�εt
) −X(�t)

∣∣ + c∣∣aεt − at
∣∣ + λ1 + c

r

∣∣aεt − at
∣∣ + λβ

)
dt

]

≤
ε+ cκε+ λ1 + c

r
κε

r + λ + λ

r + λβ
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and hence β≤ 1
r
(1 + cκ+λ 1+c

r
κ)ε. As |Πθ��∗+ε�c(�∗ + ε)−Πθ��∗�c(�

∗)| ≤ β, this
implies that the function �∗ 
→Πθ��∗�c(�

∗) is Lipschitz-continuous.
Limit as �∗ → ∞: For the limit as �∗ → ∞, revenue X(�t(�∗�h� �∗)) con-

verges to 1 pointwise for every h and t. Investment A(�t(�∗�h� �∗)) converges
to 1 as well because �t ∈ (−∞� �∗] for all t and h, and A(�)= 1 for � < �∗ and
A(�∗) = X(�∗)(1 − |μ|

λ
(1 − X(�∗))), which converges to 1 as �∗ → ∞. Thus,

flow profits X(�t)− cA(�t) converge pointwise to 1 − c. Q.E.D.

LEMMA 11B: For every � > �b, there exists c(�) > 0 such that for all c < c(�),
there exists �∗ ∈ (��∞) such that �∗ and c satisfy indifference at the cutoff, (D.13),
that is, λ��∗�c(�∗)= c.

PROOF: Fix � > �b. Using Lemma 10B, we want to apply the intermediate
value theorem to the continuous function �∗ 
→ ��∗�c(�

∗) on [��∞]. We thus
need to establish the boundary conditions

λ���c(�) > c and lim
�′→∞

λ��′�c
(
�′)< c�(D.17)

To show the second inequality for any c > 0, note that Πθ�∞�c(∞) = 1−c
r

is in-
dependent of quality by Lemma 10B, hence λ�∞�c(∞) = 0. For the first in-
equality, fix � ∈ R and consider ���c′(�) as a function of c′ ∈ [0�λ/(r + λ)]. By
Lemma 9B(b), we have ���c′(�) > 0 for all c′. Since ���c′(�)is continuous in c′,
it obtains a strictly positive minimum at some c′′. Now let c(�) = λ���c′′(�).
For any c ∈ (0� c(�)), the first inequality in (D.17) now follows by λ���c(�) ≥
λ���c′′(�)= c(�) > c. Q.E.D.

D.3. Bad News—Work Below Cutoff

The main results of this section, Lemmas 14B and 15B, show that there exists
a threshold �� such that investment incentives are bounded below on [−∞� ��]
and decreasing on [��� �∗] whenever the work–shirk cutoff �∗ > �� is such that
the firm is indifferent at the cutoff. In Lemmas 12B and 13B, we establish
upper and lower bounds for the marginal payoff of reputation as well as for
reputational dividends.

LEMMA 12B: Assume (D.1). There exist �Π and k1�k2�k3 > 032,33 such that
for any c > 0� �∗ > �Π with indifference at the cutoff, (D.13), the marginal payoff

32In the proof of this and the subsequent lemmas, we calculate these parameters explicitly only
if the resulting expressions are sufficiently simple. This is the case for some but not all ki; we omit
explicit expressions for the parameters �x.

33We use the notation ki for constants that are used across lemmas and use κi for constants
that are only used within a lemma.
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of reputation satisfies34

Π′
θ(�)≥ k1e

−� for all � ∈ [
0� �∗ − γ/2]

�(D.18)

Π′
θ(�)≤ k2e

−� for all � ∈ (−∞� �∗]�(D.19)

Π′
θ(�)≤ k3e

−2�∗ for all � ∈ [
�∗�∞)

�(D.20)

Equations (D.18) and (D.20) state that for large work–shirk cutoffs �∗,
marginal reputation is much more valuable below �∗ than above �∗. Intu-
itively, incremental reputation disappears at T = T(�0� �

∗) = min{t :�t = �∗},
so it is less valuable for �0 ∈ (�∗�∞), where reputational drift is high and the
time-to-cutoff is close to 0. The utility of Lemma 12B is in showing later that
reputational dividends are larger at the cutoff than above the cutoff. This is
Lemma 13B, which is important to prove that the value of quality is single
crossing, Lemma 16B.

PROOF OF LEMMA 12B: Recall from equation (D.8) that

Π′
θ(�0)= E

A�θ

[∫ T

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]
�

The idea of the proof is that the drift on [0� �∗] is no larger than g(0) (compare
Figure 8), so that for �0 ∈ [0� �∗ − γ/2], the time-to-cutoff is bounded below by
T(�0� �

∗) ≥ (�∗ − �0)/g(0) ≥ γ/(2g(0))=: τ. In contrast, above the cutoff, the
drift is unbounded and hence the time-to-cutoff vanishes as �∗ grows large.

Lower bound (D.18): First, for �0 ∈ [0� �∗ − γ/2] and t ≤ τ, we claim that

X ′(�∅t ) = e�
∅

t

(1 + �∅t )2
≥ 1

4
e−�∅t ≥ 1

4
e−(�0+γ/2)�

The first inequality follows from �∅t ≥ 0 and the second inequality follows from
�∅t = �0 + ∫ t

0 g(�
∅

s ) ds ≤ �0 + tg(0)≤ �0 + τg(0)= �0 + γ/2.
Next we establish

Π′
θ(�0)= E

A�θ

[∫ T(�0��
∗)

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]

≥
∫ τ

t=0
e−(r+λ+μθ)t ∂�

∅

t

∂�0
X ′(�∅t )

dt

≥ τe−(r+λ+μθ)τe−λτ e
−γ/2

4
e−�0 =: k1e

−�0 �

34The proof of this lemma shows that the marginal value of reputation vanishes at the cutoff,
Π′
θ(�

∗)= 0. Thus a lower bound Π′
θ(�) ≥ k1e

−� requires bounding � away from �∗. For the pur-
pose of this lemma, fixing any α> 0 and requiring �≤ �∗ −α would suffice, but for future results,
it will be important that α ∈ (0�γ); α= γ/2 is a convenient choice.
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The second line truncates the integral expansion at τ < T(�0� �
∗) and dis-

cards any histories with a signal arrival or a technology shock. The third line
applies the lower bounds ∂�∅t /∂�0 = exp(

∫ t

0 g
′(�∅s ) ds) = exp(− ∫ t

0 λe
−�∅s ds) ≥

exp(−λτ) (using equations (D.5) and (C.5), e−�∅s < 1, and t ≤ τ) andX ′(�∅t )≥
e−(�0+γ/2)/4 for t ≤ τ.

Upper bound (D.19): When reputation starts at �0 ∈ (−∞� �∗] and ν signals
have arrived by time t > 0, then �t > �0 − νγ because reputational drift is posi-
tive on (−∞� �∗]. We now show that

Π′
θ(�0)= E

A�θ

[∫ ∞

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]

≤ E
L

[∫ ∞

0
e−rte−�t dt

]

≤
∫ ∞

0
e−rt

∞∑
ν=0

[
(μLt)

ν

ν! e−μLte−(�0−νγ)
]
dt

= e−�0

∫ ∞

0
e−(r+μL)t

∞∑
ν=0

(μLte
γ)ν

ν! dt

= e−�0

∫ ∞

0
e−(r+μL)teμL(μL/μH)t dt

= 1
r −μL(μL/μH − 1)

e−�0 =: k2e
−�0 �(D.21)

The second line uses ∂�t/∂�0 < 1, X ′(�)≤ e−� and applies the probability mea-
sure E

L that maximizes the probability of low realizations for �t . The third line
uses �t > �0 − νγ and the definition of the Poisson distribution Prβ(X = ν) =
βν

ν! e
−β over the number of signal arrivals ν with parameter β= μLt. The fourth

line rearranges terms. The fifth line uses eγ = μL/μH and the definition of the
Poisson distribution with parameter μLteγ = μL(μL/μH)t. The sixth line uses
that r > μL(μ2

L/μ
2
H − 1) > μL(μL/μH − 1) by assumption (D.1).

Upper bound (D.20): If �0 > �
∗ and ν signals have arrived by time t, the pos-

itive drift below �∗ implies �t > �∗ − νγ. Then the equations leading to (D.21)
imply

Π′
θ(�0)≤ k2e

−�∗ for any �0 > �
∗�(D.22)

For �0 > �
∗, let T∅ = T∅(�0� �

∗) = min{t :�∅t = �∗} be the time-to-cutoff in
the absence of signals; we next derive an upper bound for T∅. Drift in the shirk
region in x-space, −X(�)(λ− |μ|(1 −X(�))), is continuous and converges to
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−λ as �→ ∞, so there exists �Π such that −X(�)(λ− |μ|(1 −X(�)))≤ −λ/2
for all � ≥ �∗ ≥ �Π , that is, reputation drifts down at a rate greater than −λ/2
in x-space. As the size of the shirk region is bounded above by 1 −X(�∗) =
1/(1 + e�∗)≤ e−�∗ , the time-to-cutoff is bounded above by

sup
�0>�

∗
T∅

(
�0� �

∗) ≤ 2e−�∗/λ�(D.23)

Then we show

Π′
θ(�0)

= E
A�θ

[∫ T(�0��
∗)

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]

=
∫ T∅(�0��

∗)

t=0
e−(r+λ+μθ)t ∂�

∅

t

∂�0

(
X ′(�∅t ) + λΠ′

L

(
�∅t

) +μθΠ′
θ

(
�∅t − γ))

dt

≤ T∅
(
�0� �

∗)[ max
�∈(�∗��0)

(
X ′(�)+ λΠ′

L(�)+μθΠ′
θ(�− γ))]

≤ 2
λ
e−�∗(e−�∗ + λk2e

−�∗ +μθk2e
−(�∗−γ)) =: k3e

−2�∗ �

The second line truncates the integral expression of Π′
θ(�0) when a signal ar-

rives or a technology shock hits. The third line uses ∂�∅t /∂�0 < 1, e−(r+λ+μθ)t < 1,
and �∅t ∈ (�∗� �0) to obtain an upper bound for the integrand. The fourth line
uses the upper bounds (D.23), X ′(�) < e−� < e−�∗ , (D.22), and (D.21). Q.E.D.

We now consider the reputational dividend

ΓH(�) := μ(
ΠH

(
j(�)

) −ΠH(�)
) = |μ|(ΠH(�)−ΠH(�− γ))�(D.24)

The next lemma shows that there exists an interval [�Γ � �∗] on which ΓH is de-
creasing. This is important to show (in Lemma 14B) that there exists an interval
[��� �∗] on which the payoff of quality � is decreasing.

LEMMA 13B: Assume (D.1). There exist �Γ and k4 > 0 such that for any c >
0� �∗ > �Γ with indifference at the cutoff, (D.13), we have

Γ ′
H(�)≤ −k4e

−� for all � ∈ [
�Γ � �∗)�(D.25)

ΓH
(
�∗)> ΓH(�) for all � ∈ (

�∗�∞)
�(D.26)

Thus, ΓH(·)− ΓH(�∗) is strictly single crossing from above on [�Γ �∞).
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PROOF: To prove (D.25), note first that the derivative of (D.24) is given by
Γ ′
H(�) = |μ|(Π′

H(�) −Π′
H(� − γ)). The key step in this proof is to show that

there exist κ1�κ2 > 0 such that for all α ∈ [0�γ],

Π′
H(�)−Π′

H(�− α)≤ −κ1αe
−� for all � ∈ [

�Γ − 3γ/2� �∗ − γ/2]
�(D.27)

Π′
H(�)−Π′

H(�− α)≤ κ2αe
−2� for all � ∈ [

�∗ − γ/2� �∗)�(D.28)

Inequalities (D.27) and (D.28) imply (D.25): For � ∈ [�Γ � �∗ − γ/2], we just
need to set k4 = |μ|κ1γ. For � ∈ [�∗ − γ/2� �∗), we have � − γ ≥ �∗ − 3γ/2 >
�Γ − 3γ/2, so

Γ ′
H(�)= |μ|(Π′

H(�)−Π′
H

(
�∗ − γ/2) +Π′

H

(
�∗ − γ/2) −Π′

H(�− γ))
≤ |μ|γ

2
(
κ2e

−2� − κ1e
−(�∗−γ/2))�

and the negative term dominates the positive term for all �∗ > �Γ and suffi-
ciently large �Γ .

Establishing (D.27) and (D.28): Fix � ∈ [�Γ − 3γ/2� �∗), α ∈ (0�γ], and con-
sider the trajectories {�t}t≥0 and {�−α

t }t≥0 defined by �t = �t(��h� �
∗) and �−α

t =
�t(� − α�h� �∗) with times-to-cutoff T = T(�� �∗) and Tα = T(� − α��∗). As
�−α
t ≤ �t for all times t and histories h, we have T ≤ Tα. The formula for the

marginal payoff of reputation, (D.8), then allows us to write35

Π′
H(�)−Π′

H(�− α)= E
H

[∫ T

t=0
e−rt

(
∂�t

∂�0
X ′(�t)− ∂�−α

t

∂�0
X ′(�−α

t

))
dt

]
(D.29)

−E
H

[∫ Tα

T

e−rt ∂�
−α
t

∂�0
X ′(�−α

t

)
dt

]
�

As we are looking for an upper bound on Π′
H(�) −Π′

H(� − α), we can drop
the last term. To analyze the integrand of the first term, note that for all h and
t < T , the function β 
→ (∂�βt /∂�0)X

′(�βt ) is differentiable on [−α�0],36 so we
express the integrand as an integral:

∂�t

∂�0
X ′(�t)− ∂�−α

t

∂�0
X ′(�−α

t

) =
∫ 0

−α

(
∂2�βt
∂�2

0

X ′(�βt ) +
(
∂�βt
∂�0

)2

X ′′(�βt )
)
dβ�

35As initial quality is high and the firm invests until the cutoff time, θ0 =H and A(�t)= 1 for
t < T , firm quality stays high until the cutoff time, allowing us to replace the probability measure
E
A�H by E

H .
36Here we write �βt = �t(�+β�h��∗) for all β ∈ [−α�0]; below we also use the notation �β�∅t =

�t(�+β�∅� �∗).
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Decomposing the integrand of this expression into a sum of three terms, we
substitute back into (D.29),

Π′
H(�)−Π′

H(�− α)

≤ E
H

[∫ T

t=0
e−rt

∫ 0

−α

(
∂2�βt
∂�2

0

X ′(�βt )
)
dβdt

]
(D.30)

+E
H

[∫ T

t=0
e−rt

∫ 0

−α

(
∂�βt
∂�0

)2

max
{
X ′′(�βt )�0

}
dβdt

]
(D.31)

−E
H

[∫ T

t=0
e−rt

∫ 0

−α

(
∂�βt
∂�0

)2

max
{−X ′′(�βt )�0

}
dβdt

]
�(D.32)

and proceed by showing that the negative term (D.32) is bounded below by
some κ3αe

−�0 when �0 ∈ [�Γ − 3γ/2� �∗ − γ/2], while terms (D.30) and (D.31)
are bounded above by some κ4αe

−2�0�κ5αe
−2�0 when �0 < �

∗. Thus, for �Γ suffi-
ciently large and �0 ∈ [�Γ −3γ/2� �∗ −γ/2], the negative term (D.32) dominates
the terms (D.30) and (D.31), implying (D.27); (D.28) follows with κ2 = κ4 +κ5.

Negative term (D.32): Fix �0 ∈ [�Γ − 3γ/2� �∗ − γ/2]. The proof of the lower
bound in (D.18) shows that τ := γ/(2g(0)) is a lower bound for the time-to-
cutoff T = T(�0� �

∗), subject to �Γ ≥ 3γ/2. By (C.4), we have X ′′(�) = e�(1−e�)
(1+e�)3

so that lim�→∞X ′′(�)e� = −1, and thus −X ′′(�) ≥ e−�/2 for all � ≥ �Γ − 5γ/2,
for sufficiently large �Γ . This allows us to show

E
H

[∫ T

t=0
e−rt

∫ 0

−α

(
∂�βt
∂�0

)2

max
{−X ′′(�βt )�0

}
dβdt

]

≥
∫ τ

t=0
e−(r+μH)t

∫ 0

−α

(
∂�β�∅t
∂�0

)2(−X ′′(�β�∅t ))
dt

≥ τe−(r+μH)ταe−2λτ e
−(�0+γ/2)

2
=: κ3αe

−�0 �

The first line truncates the integral at τ and discards any histories with
a signal arrival. The second line applies the lower bounds ∂�β�∅t /∂�0 =
exp(

∫ t

0 g
′(�β�∅s ) ds) = exp(− ∫ t

0 λe
−�β�∅s ds) ≥ exp(−λτ) (using equations (D.5)

and (C.5), e−�β�∅s < 1, and t ≤ τ) and −X ′′(�β�∅t ) ≥ e−�β�∅t /2 ≥ e−�∅t /2 ≥
e−(�0+g(0)τ)/2 = e−(�0+γ/2)/2 for all t ≤ τ.

First smaller term (D.30): Equation (D.6), together with ∂�βt /∂�0 < 1, g′′(�)=
λe−�, and �βs ≥ �s − γ, implies an upper bound on the second derivative,

∂2�βt
∂�2

0

= ∂�βt
∂�0

∫ t

s=0

∂�βs
∂�0

g′′(�βs )ds ≤
∫ t

s=0
λe−�βs ds ≤ λte−mins≤t {�s−γ}�
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This allows us to show

E
H

[∫ T

t=0
e−rt

∫ 0

−α

(
∂2�βt
∂�2

0

X ′(�βt )
)
dβdt

]

≤ E
H

[∫ T

t=0
e−rtαλte−mins≤t {�s−γ}e−(�t−γ) dt

]

≤ αλ
∫ ∞

t=0
te−rt

∞∑
ν=0

[
(μHt)

ν

ν! e−μHte−2(�0−νγ−γ)
]
dt

= αλe−2(�0−γ)
∫ ∞

t=0
te−(r+μH)t

∞∑
ν=0

[
(μHte

2γ)ν

ν!
]
dt

= αλe−2(�0−γ)
∫ ∞

t=0
te−(r+μH)teμH(μ

2
L/μ

2
H)t dt

= αλe2γe−2�0

(r −μH(μ2
L/μ

2
H − 1))2

=: κ4αe
−2�0 �

The first line uses X ′(�βt )≤ e−�βt ≤ e−(�t−γ) and ∂2�t/∂
2�β0 ≤ λte−mins≤t {�s−γ}. The

second line uses that both �t and mins≤t{�s} are bounded below by �0 − νγ
if ν signals have arrived by time t, and the definition of the Poisson distri-
bution with parameter μHt. The third line rearranges. The fourth line uses
eγ = μL/μH and the definition of the Poisson distribution with parameter
μH(μ

2
L/μ

2
H)t. The fifth line uses r > μL(μ2

L/μ
2
H − 1) > μH(μ2

L/μ
2
H − 1) by as-

sumption (D.1) and the fact that
∫ ∞

0 te−αt dt = 1/α2.
Second smaller term (D.31): We next show that

E
H

[∫ T

t=0
e−rt

∫ 0

−α

(
∂�βt
∂�0

)2

max
{
X ′′(�βt )�0

}
dβdt

]

≤ E
H

[∫ T

0
e−rtαe−2(�t−γ) dt

]

≤ α
∫ ∞

0
e−rt

∞∑
ν=0

[
(μHt)

ν

ν! e−μHte−2(�0−νγ−γ)
]
dt

= αe−2(�0−γ)
∫ ∞

0
e−(r+μH)teμH(μ

2
L/μ

2
H)t dt

= αe2γe−2�0

r −μH(μ2
L/μ

2
H − 1)

=: κ5αe
−2�0 �
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The first line uses ∂�βt /∂�0 < 1,X ′′(�)= e�−e2�

(1+e�)3 ≤ e−2�, and �βt ≥ �t −γ. The sec-
ond line uses the definition of the Poisson distribution with parameter μHt and
the lower bound on reputation �t ≥ �0 − νγ. The third line uses eγ = μL/μH
and the definition of the Poisson distribution with parameter μH(μ2

L/μ
2
H)t.

The fourth line uses that r > μL(μ2
L/μ

2
H − 1) > μH(μ2

L/μ
2
H − 1) by assump-

tion (D.1).
We have thus established the desired upper bounds for (D.30) and (D.31)

and the lower bound for (D.32), implying (D.27) and (D.28), and thus (D.25).
Dividends above the cutoff (D.26): For any � > �∗, we now show

ΓH
(
�∗) − ΓH(�)

= |μ|
(∫ �∗

�∗−γ
Π′
H

(
�′)d�′ −

∫ �

�−γ
Π′
H

(
�′)d�′

)

= |μ|
(∫ min{�∗��−γ}

�∗−γ
Π′
H

(
�′)d�′ −

∫ �

max{�∗��−γ}
Π′
H

(
�′)d�′

)

> |μ|(min
{
�− �∗�γ/2

}
k1e

−�∗ − min
{
�− �∗�γ

}
k3e

−2�∗)�
The last line uses the bounds (D.18) and (D.20) from Lemma 12B. This term
is strictly positive for all �∗ ≥ �Γ and sufficiently large �Γ . Q.E.D.

Lemma 14B shows that investment incentives are decreasing on an interval
� ∈ [��� �∗], establishing that the firm prefers to work in this range, as required
by (C.6). The idea of the proof is to express the investment incentives in terms
of decreasing future reputational dividends (as shown in Lemma 13B).

LEMMA 14B: Assume (D.1). There exists �� such that for any c > 0� �∗ > ��

with indifference at the cutoff, (D.13), we have λ�′(�) < 0 for � ∈ [��� �∗).

PROOF: By (C.2), we write the payoff of quality as an integral over future
reputational dividends,

�(�0)= E
L

[∫ ∞

0
e−(r+λ)tΓH(�t)dt

]
�

Next, we differentiate and decompose the integral into its positive and negative
contributions:

�′(�0)= E
L

[∫ T

t=0
e−(r+λ)t ∂�t

∂�0
Γ ′
H(�t)dt

]
(D.33)

= E
L

[∫ T

t=0
e−(r+λ)t ∂�t

∂�0
max

{
Γ ′
H(�t)�0

}
dt

]
(D.34)

−E
L

[∫ T

t=0
e−(r+λ)t ∂�t

∂�0
max

{−Γ ′
H(�t)�0

}
dt

]
�(D.35)
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Recall from Lemma 13B that �Γ is such that Γ ′
H(�)≤ −k4e

−� for all �∗ > �Γ

and all � ∈ [�Γ � �∗). Now choose �� ≥ 3 max{�Γ �0} + 3γ/2. We first prove

�′(�0) < 0 for �0 ∈ [
�� − 3γ/2� �∗ − γ/2]

(D.36)

by establishing that the negative term (D.35) is bounded below by some κe−�0 ,
while (D.34) is of order O(e−(4/3)�0). Then (D.33) is negative for all �0 > �

� and
sufficiently large ��.

Negative term (D.35): Recall from the proof of the lower bound in (D.18)
that τ := γ/(2g(0)) is a lower bound for the time-to-cutoff T = T(�0� �

∗) when
�0 ∈ [0� �∗ − γ/2]. Then we can show

E
L

[∫ T

t=0
e−(r+λ)t ∂�t

∂�0
max

{−Γ ′
H(�t)�0

}
dt

]

≥
∫ τ

t=0
e−(r+λ+μL)t ∂�

∅

t

∂�0

(−Γ ′
H

(
�∅t

))
dt

≥ τe−(r+λ+μL)τe−λτk4e
−(�0+γ/2) =: κe−�0 �

The first line truncates the integral at τ and discards any histories with a sig-
nal arrival. The second line uses the bounds ∂�∅t /∂�0 = exp(

∫ τ

0 g
′(�∅s ) ds) =

exp(− ∫ τ

0 λe
−�∅s ds) ≥ exp(−λτ) and −Γ ′

H(�
∅

t ) ≥ k4e
−�∅t ≥ k4e

−(�0+γ/2) from
Lemma 13B.

Smaller positive term (D.34): We first establish that for any � < �∗,

max
{
Γ ′
H(�)�0

} ≤ |μ|
r
e−2(�−�Γ )�(D.37)

For � ∈ (�Γ � �∗), this follows because Γ ′
H(�) < 0 (Lemma 13B). For � ≤ �Γ ,

(D.37) follows because Γ ′
H(�) = |μ|(Π′

H(�) − Π′
H(� − γ)) ≤ |μ|

r
≤ |μ|

r
e−2(�−�Γ ),

where the first inequality follows by

Π′
H(�)= E

A�θ

[∫ ∞

0
e−rt d�t

d�0
X ′(�t) dt

]
≤

∫ ∞

0
e−rt dt = 1

r
�

where we used ∂�t/∂�0 < 1 and X ′(�) < 1.
Then when �0 ∈ [�� − 3γ/2� �∗ − γ/2], we show that

E
L

[∫ T

t=0
e−(r+λ)t ∂�t

∂�0
max

{
Γ ′
H(�t)�0

}
dt

]

≤ |μ|
r
E
L

[∫ ∞

t=0
e−(r+λ)te−2(�t−�Γ ) dt

]

≤ |μ|
r

∫ ∞

t=0
e−(r+λ)te−μLt

∞∑
v=0

(μLt)
ν

ν! e−2(�0−νγ−�Γ ) dt
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= |μ|
r
e−2(�0−�Γ )

∫ ∞

t=0
e−(r+λ)te−μLt

∞∑
v=0

(μ3
Lt/μ

2
H)

ν

ν! dt

≤ |μ|e−(4/3)�0

r(r + λ−μL(μ2
L/μ

2
H − 1))

=O(
e−(4/3)�0

)
�

The first line uses ∂�t/∂�0 < 1 and (D.37). The second line uses �t ≥ �0 − νγ
and the definition of the Poisson distribution with parameter μLt. The third
line rearranges using e2νγ = (μL/μH)

2ν . The fourth line uses the definition of
the Poisson distribution with parameter (μ3

L/μ
2
H)t, assumption (D.1), and �0 >

�� − 3γ/2 ≥ 3�Γ so that 2(�0 − �Γ )≥ 4�0/3.
This finishes the proof that �′(�0) < 0 for all �0 ∈ [�� − 3γ/2� �∗ − γ/2].
Establishing �′(�0) < 0 for �0 ∈ [�∗ −γ/2� �∗): We truncate (D.33) when either

a signal arrives or �∅t reaches the cutoff at time T∅ = T∅(�0� �
∗)= min{t :�∅t =

�∗}:

�′(�0)=
∫ T∅

0
e−(r+λ+μL)t ∂�t

∂�0

[
Γ ′
H

(
�∅t

) +μL�′(�∅t − γ)]
dt�

By Lemma 13B, the flow payoff Γ ′
H(�

∅

t ) is negative, and the continuation
term �′(�∅t − γ) is negative by (D.36) because �∅t − γ ∈ [�� − 3γ/2� �∗ − γ/2].

Q.E.D.

Finally, we show that investment incentives for low levels of reputation
� ∈ [−∞� ��] are bounded below, so if costs are sufficiently low, then the firm
prefers to invest in this range as required by (C.6).

LEMMA 15B: Assume (D.1) and fix �� as in Lemma 14B. There exists c > 0
such that for all �∗ > ��� c < c with indifference at the cutoff, (D.13), we have
λ�(�) > c for all � ∈ [−∞� ��].

PROOF: We show that there exists κ > 0 such that for all �∗ > �� and c with
indifference at the cutoff, we have

�(�) > κe−�� for all � ∈ [−∞� ��
]
�

We then set c = λκe−�� and the lemma is proven.
Consider first �0 ∈ [γ���]. We show that

�(�0)= E
L

[∫ ∞

0
e−(r+λ)tΓH(�t)dt

]

≥
∫ ∞

0
e−(r+λ+μL)tΓH

(
�∅t

)
dt
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≥
∫ 1

0
e−(r+λ+μL)t |μ|

(∫ �∅t

�
∅

t −γ
Π′
H(�)d�

)
dt

≥ e−(r+λ+μL)|μ|γ
2
k1e

−�∅1

≥ e−(r+λ+μL)|μ|γ
2
k1e

−(��+g(��))�

The second line discards all histories with a signal arrival. The third line trun-
cates the integral at t = 1 and writes the reputational dividend as an integral
over the marginal payoff of reputation. The fourth line applies the lower bound
Π′
H(�) ≥ k1e

−� from Lemma 12B to all � ∈ [�∅t − γ��∅t − γ/2] ⊆ [0� �∗ − γ/2].
The fifth line uses �∅t ≤ �� + g(��) for t ∈ [0�1].

For �0 ∈ [−∞�γ] we have to amend the above argument, allowing {�∅t }t≥0

to drift above γ, so that the bound Π′
H(�) ≥ k1e

−� from Lemma 12B applies.
Thus, let T∅ := min{t :�∅t ≥ γ}. In x-space, it is easy to see that T∅ ≤ x(γ)

λ(1−x(γ)) =
eγ/λ, because reputational drift in the work region, λ(1 − x)+ |μ|x(1 − x), is
bounded below by λ(1 −X(γ)) on [0�X(γ)]. Then the same logic as above,
focusing on times t ∈ [T∅�T∅ + 1] rather than t ∈ [0�1], shows that �(�0) is
bounded below by the constant e−(r+λ+μL)(T∅+1)|μ| γ2k1e

−(γ+g(γ)). Q.E.D.

D.4. Bad News—Shirk Above Cutoff

Lemma 16B shows that firms with high reputations � ∈ [�∗�∞] shirk, as re-
quired by (C.6). The idea of the proof is to write the payoff of quality as a short
stream of dividends and a continuation payoff, and then show that both terms
are higher when the firm’s initial reputation is at the cutoff rather than above
the cutoff.

LEMMA 16B: Assume (D.1) and fix �� as in Lemma 14B. For any c > 0� �∗ >
�� + γ with indifference at the cutoff, (D.13), we have λ�(�∗) > λ�(�) for all
� ∈ (�∗�∞].

PROOF: Assume to the contrary that the set {� ∈ (�∗�∞] :�(�∗) ≤ �(�)} is
nonempty. If its infimum is strictly greater than �∗, let �0 be this infimum; oth-
erwise, let �0 be any element of {� ∈ (�∗� �∗ + γ) :�(�∗)≤ �(�)}.

To obtain a contradiction, we compare �(�∗) and �(�0) by terminating their
respective dividend expansion when a signal arrives or �∅t reaches the cutoff at
time T∅ = T∅(�0� �

∗)= min{t :�∅t = �∗}:

�
(
�∗) =

∫ T∅

0
e−(r+λ+μL)t(ΓH(

�∗) +μL�
(
�∗ − γ))

dt

+e−(r+λ+μL)T∅

�
(
�∗)�
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�(�0)=
∫ T∅

0
e−(r+λ+μL)t(ΓH(

�∅t
) +μL�

(
�∅t − γ))

dt

+e−(r+λ+μL)T∅

�
(
�∗)�

First note that �∅t > �
∗ for t < T∅. Thus, equation (D.26) implies ΓH(�∗) >

ΓH(�
∅

t ). Next, if �∅t −γ ≤ �∗, then �(�∗−γ) > �(�∅t −γ) follows by Lemma 14B.
Finally, if �∅t − γ > �∗, then �(�∗ − γ) > �(�∗) > �(�∅t − γ), where the first in-
equality follows by Lemma 14B and the second follows by the choice of �0,
because �∗ < �0 − γ implies that �0 = inf{� ∈ (�∗�∞] :�(�∗)≤ �(�)}. Q.E.D.

This finishes the existence proof for a work–shirk equilibrium under im-
perfect bad news learning. We have found a cutoff �∗ such that the firm
(a) prefers to invest below �∗ (Lemmas 14B and 15B), (b) is indifferent at �∗

(Lemma 11B), and (c) prefers to disinvest above the cutoff (Lemma 16B).

APPENDIX E: GOOD NEWS

We now show how to adapt the proof of Theorem 5(a) to the case of good
news learning under the assumption μ > λ. The proof strategy and the se-
quence of lemmas is identical to the case of bad news learning, but some of
the more nuanced arguments are specific to the learning process. The proofs
in this appendix are not self-contained, but are based on the proofs in the bad
news case presented in Appendix D.

First, note that reputation jumps up at the arrival of a good news signal,
so now we have j(�) = � + γ, where γ = log(μH/μL). Second, some of the
intermediate results assume

r > 2μ�(E.1)

E.1. Good News—Marginal Payoff of Reputation

Recall that we assumeμ> λ. This implies that for high �, reputational drift is
negative even if the firm is believed to be working, since g(�)= λ(1 + e−�)−μ.
Let

�g =L(
xg

) = log
λ

μ− λ�

We restrict attention to �∗ ∈ (�g�∞) in what follows. The drift in the work
region g(�)= λ(1 + e−�)−μ is negative in (�g� �∗) and vanishes at �g. Denote
the left- and right-sided limits of reputational drift at the cutoff by

g := lim
ε→0

g
(
�∗ − ε) = λ(1 + e−�∗) −μ< 0�

g := lim
ε→0

g
(
�∗ + ε) = −λ(1 + e�∗) −μ< 0�

as shown in Figure 9.
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FIGURE 9.—Reputational drift in log-likelihood-ratio space: good news. The top curve shows
g(�) given Ã= 1; this curve asymptotes to −μ+ λ, and is negative for � > �g . The bottom curve
shows g(�) given Ã= 0; this curve asymptotes to −μ− λ. We focus on work–shirk equilibria for
high �∗, which means there is a small negative drift g immediately below �∗ and a large negative
drift g immediately above �∗.

In the following lemma, we focus on work–shirk beliefs with permeable cut-
off �∗ > �g, initial reputation �0 ∈ R, history h = (t1� t2� � � �), and time t that
satisfy

�s− �= �∗ and �s �= �∗ for s = t and any s ∈ {t1� t2� � � �}�(E.2)

Intuitively, this means that the trajectory {�s}s≥0 does not drift or jump to the
cutoff �∗ at time t or at any signal arrival time ti. This condition ensures that
left- and right-sided derivatives of �t(�0�h� �

∗) coincide. It is generic in the
sense that for any �∗� �0� t, it is satisfied for almost all histories h.

Also recall the notion of the time-to-cutoff T = T(�0� �
∗), defined in equa-

tion (D.3), and let #{Ti < t :�Ti = �∗} be the number of times reputation passes
through the cutoff before time t.

LEMMA 8G: Fix admissible work–shirk beliefs with permeable cutoff �∗ > �g,
initial reputation �0 ∈ R, history h, and time t �= T that satisfy (E.2). If t < T , then
�t(�0�h� �

∗) is twice differentiable in �0 and the derivatives are given by

∂�t

∂�0
= exp

(∫ t

0
g′(�s)ds

)
�(E.3)

∂2�t

∂�2
0

= ∂�t

∂�0

(∫ t

0
g′′(�s)

∂�s

∂�0
ds

)
�(E.4)
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If t > T , then �t(�0�h� �
∗) is differentiable in �0 and the derivative is given by

∂�t

∂�0
= exp

(∫ t

0
g′(�s)ds

)
(g/g)#{Ti<t:�Ti=�∗}�(E.5)

As g′(�) is negative and g/g < 1, we have ∂�t/∂�0 < 1.

Intuitively, whenever reputation passes through the cutoff, the reputational
increment �εt − �t decreases by a factor g/g, because, when �t < �∗ < �εt , the
trajectory {�t}t≥0 decreases at rate g while {�εt }t≥0 decreases at rate g. For high
values of �∗, the factor g/g < μ−λ

λ
e−�∗ is close to 0.

PROOF OF LEMMA 8G: For t < T , the trajectory {�t}t≥0 is bounded away
from the cutoff �∗ by assumption (E.2), so formulas (E.3) and (E.4) follow as
in the bad news case.

For t > T , formula (E.3) is incorrect because it ignores the fact that g′(�T )=
g′(�∗)= limε→0(g−g)/ε= −∞. To address this issue and derive (E.5), assume
that {�s}s∈[0�t] hits the cutoff �∗ once at time T < t, and define the left- and
right-translated trajectories {�±ε

s }s∈[0�t] by �±ε
s = �s(�0 ±ε�h� �∗). Then, for small

ε > 0, assumption (E.2) and negative drift at �∗ imply that {�−ε
s }s∈[0�t] hits �∗

just before T and that {�εs }s∈[0�t] hits �∗ just after T , with times-to-cutoff T−ε =
T(�−ε

0 ) ∈ (T − ε/|g|�T ) and Tε ∈ (T�T + ε/|g|).
Next, we separate the time interval [0� t] into three subintervals [0�T ]�

[T�T ε], and [Tε� t]:

log
(
�εt − �t
�ε0 − �0

)
(E.6)

= log
(
�εT − �T
�ε0 − �0

)
+ log

(
�εTε − �Tε
�εT − �T

)
+ log

(
�εt − �t
�εTε − �Tε

)

=
∫ T

0

g(�εs )− g(�s)
�εs − �s ds+ log

(
�εTε − �Tε
�εT − �T

)
+

∫ t

Tε

g(�εs )− g(�s)
�εs − �s ds�

To analyze the middle term, we use a Taylor expansion of �t around t = T ,
�Tε = �T + g(T ε − T)+O(ε2); together with �εTε = �T = �∗, this implies �εTε −
�Tε = �T − �Tε = g(T − Tε) + O(ε2). Similarly, �εT − �T = �εT − �εTε = g(T −
Tε)+O(ε2). Taking the exponential of (E.6), in the limit as ε→ 0, we obtain

lim
ε→0

�εt − �t
�ε0 − �0

= exp
(∫ t

0
g′(�s)ds

)
(g/g)�

The left-sided limit coincides with this term by applying analogous argu-
ments to �T − �−ε

T and �T−ε − �−ε
T−ε . Generally, when there are multiple times

Ti ∈ [0� t] with �Ti = �∗, (E.5) follows by the same arguments. Q.E.D.
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LEMMA 9G: Fix admissible work–shirk beliefs with cutoff �∗ > �g.
(a) Payoff functions Πθ(�) are continuous on R∪ {−∞�∞}.
(b) Payoff of quality at the cutoff is strictly positive: �(�∗) > 0.
(c) If the firm is indifferent at the cutoff �∗, that is, λ�(�∗)= c, payoff functions

are differentiable with derivative

Π′
θ(�)= E

A�θ

[∫ ∞

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]
> 0 for all � ∈R�(E.7)

where ∂�t/∂�0 is given by (E.3) for almost all histories.

PROOF: The proof is identical to the proof of Lemma 9B, with one excep-
tion: The denominator in (D.11) now equals |g| rather than min{g� |g|} because
drift is negative around the cutoff and the trajectory {�εt }t≥0 takes at most time
ε/|g| to drift out of the interval [�∗� �∗ + ε]. Q.E.D.

It is useful to separate (E.7) into two terms

Π′
θ(�)= E

A�θ

[∫ T

t=0
e−rt ∂�t

∂�0
X ′(�t) dt +

∫ ∞

t=T
e−rt ∂�t

∂�0
X ′(�t) dt

]
�

where T = T(�0� �
∗) = min{t :�t = �∗} is the first time the trajectory passes

through the cutoff. In contrast to the bad news case, reputational increments
do not disappear at time T and the second term does not vanish. However, it
is of order O(e−�∗) because ∂�t/∂�0 ≤ g/g < μ−λ

λ
e−�∗ for t > T , as established

in (E.3).

E.2. Good News—Indifference at Cutoff

LEMMA 10G: For any θ and c > 0, the function �∗ 
→Πθ��∗�c(�
∗) is continuous

on (�g�∞) and the limit lim�∗→∞Πθ��∗�c(�
∗)= 1−c

r
does not depend on θ.

PROOF: The proof is identical to the proof of Lemma 10B with three excep-
tions: First, we can define κ1 = 0 because the trajectories spend no time at their
respective permeable work–shirk cutoffs. Second, we need to define κ2 = 1/|g|
because the trajectory {�εt }t≥0 takes at most time ε/|g| to drift out of the interval
[�∗� �∗ + ε]. Third, to see lim�∗→∞A(�t(�∗�h� �∗)) = 1 at the end of the proof,
fix any t and let ti < t be the last arrival of a signal before t. By (D.23), the
time-to-cutoff in the absence of signals T∅(�0� �

∗) is bounded above by 2e−�∗/λ
for any �0 ≥ �∗. Thus, for any �∗ ≥ − log(λ(t − ti)/2), we have �t(�∗�h� �∗) < �∗

and A(�t(�∗�h� �∗))= 1. Q.E.D.
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LEMMA 11G: For every � > �g, there exists c = c(�) > 0 such that for all c <
c(�), there exists �∗ > � such that �∗ and c satisfy indifference at the cutoff, that is,

λ��∗�c
(
�∗) = c�(E.8)

The proof is the same as the proof of Lemma 11B.

E.3. Good News—Work Below Cutoff

The main results of this section, Lemmas 14G and 15G, show that there
exists a threshold �� such that investment incentives are bounded below on
[−∞� ��] and decreasing on [��� �∗] whenever the work–shirk cutoff �∗ is
greater than �� and the firm is indifferent at the cutoff. As auxiliary results,
we establish upper and lower bounds for the marginal payoff of reputation and
reputational dividends in Lemmas 12G and 13G.

LEMMA 12G: Assume (E.1). There exist �Π and k1�k2�k3 > 0 such that for
any c > 0� �∗ > �Π with indifference at the cutoff, (E.8), the marginal payoff of
reputation satisfies

Π′
θ(�)≥ k1e

−� for all � ∈ [
�Π� �∗)�(E.9)

Π′
θ(�)≤ k2e

−� for all � ∈ (−∞� �∗)�(E.10)

Π′
θ(�)≤ k3e

−2�∗ for all � ∈ (
�∗�∞)

�(E.11)

That is, for large �∗, marginal reputation is much more valuable below the cutoff
than above the cutoff.37

Loosely speaking, incremental reputation �εt − �t is less “durable” above �∗

because the increment shrinks by a factor (g/g) when reputation �t hits the
cutoff �∗, as discussed after the statement of Lemma 8G.

PROOF OF LEMMA 12G: Lower bound (E.9): Recall that g(�) ∈ (−μ�0) for
� ∈ (�g� �∗). Fix τ = 1, say, and assume �Π >max{μτ��g} so that �∅t ∈ (0� �0) for
all �0 ∈ [�Π� �∗) and t ∈ [0� τ]. This ensures the lower boundX ′(�∅t ) > X

′(�0)=
e�0/(1 + e�0)2 ≥ e−�0/4. It also ensures

∂�∅t
∂�0

= exp
(∫ t

0
g′(�∅s )

ds

)
= exp

(
−

∫ t

0
λe−�∅s ds

)
≥ e−λτ(E.12)

37The proof of this lemma shows that Πθ is not differentiable at �∗ but admits left- and right-
sided derivatives, and the right-sided derivative Π′

θ(�
∗+) := limε→0(Πθ(�

∗ + ε) −Πθ(�
∗))/ε is

bounded above by Π′
θ(�

∗+)≤ k3e
−2�∗ .
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for all �0 ∈ [�Π� �∗) and t ∈ [0� τ], where the first equality in (E.12) uses (E.3);
this formula applies because the trajectory {�∅t }t∈[0�τ] does not hit the cutoff �∗.
Then we can show

Π′
θ(�0)= E

A�θ

[∫ ∞

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]
≥

∫ τ

t=0
e−(r+μH)t ∂�

∅

t

∂�0
X ′(�∅t )

dt

≥ τe−(r+μH)τe−λτ e
−�0

4
=: k1e

−�0 �

The first inequality keeps only histories without signal arrivals, which have
probability at least e−μHt at time t, and truncates the integral at τ. The sec-
ond inequality uses X ′(�∅t )≥ e−�0/4 and (E.12).

Upper bound (E.10): For �0 < �
∗, we now show that

Π′
θ(�0)= E

A�θ

[∫ ∞

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]
≤

∫ ∞

0
e−rte−(�0−μt) dt(E.13)

= e−�0

r −μ =: k2e
−�0 �

The inequality uses ∂�t/∂�0 < 1, X ′(�)≤ e−�, and �t ≥ �0 −μt. The subsequent
equality uses assumption (E.1).

Upper bound in (E.11): For �0 > �
∗, we have �t ≥ �∗ −μt and just as in (E.13),

we get

Π′
θ(�0)= E

A�θ

[∫ ∞

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]
≤

∫ ∞

0
e−rte−(�∗−μt) dt(E.14)

= e−�∗

r −μ = k2e
−�∗ �

To derive the upper bound, (E.11), let T∅ = T∅(�0� �
∗) = min{t :�∅t = �∗} be

the time-to-cutoff in the absence of signals. As in the proof of Lemma 12B,
equation (D.23), we have T∅(�0� �

∗) ≤ 2e−�∗/λ for all �0 > �
∗ > 0. Finally, we

show

Π′
θ(�0)

= E
A�θ

[∫ ∞

t=0
e−rt ∂�t

∂�0
X ′(�t) dt

]

=
∫ T∅

t=0
e−(r+λ+μθ)t ∂�

∅

t

∂�0

(
X ′(�∅t ) + λΠ′

L

(
�∅t

) +μθΠ′
θ

(
�∅t + γ))

dt

+ e−(r+λ+μθ)T∅

E
A�θ

[∫ ∞

t=T∅

e−r(t−T∅) ∂�t

∂�0
X ′(�t) dt

∣∣∣hT∅ = ∅

]
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≤ T∅

[
max
t≤T∅

(
X ′(�∅t ) + λΠ′

L

(
�∅t

) +μθΠ′
θ

(
�∅t + γ))]

+ (g/g)
∫ ∞

t=T∅

e−r(t−T∅)e−(�∗−μ(t−T∅)) dt

≤ 2e−�∗

λ

(
e−�∗ + k2

(
λe−�∗ +μθe−�∗)) + μ− λ

λ
e−�∗ 1

r −μe
−�∗

=: k3e
−2�∗ �

The second equality truncates the integral expression of Π′
θ(�0) at the mini-

mum of the first signal arrival, the first technology shock, and T∅. The first
inequality uses

∂�∅t /∂�0 <

{
1 for any t ∈ (

0�T∅
)
�

g/g for any t > T∅�

and X ′(�t)≤ e−�t ≤ e−(�∗−μ(t−T∅)), which follows from �t > �
∗ −μ(t − T∅). The

second inequality additionally uses T∅ ≤ 2e−�∗/λ, the upper bound (E.14),
g/g ≤ (μ− λ)e−�∗/λ, and assumption (E.1). Q.E.D.

The next lemma shows that the reputational dividend

ΓH(�) := μ(
ΠH

(
j(�)

) −ΠH(�)
) = μ(

ΠH(�+ γ)−ΠH(�)
)

is decreasing on an interval [�Γ � �∗] below the cutoff.

LEMMA 13G: Assume (E.1). There exist �Γ and k4�k5 > 0 such that for any
c > 0� �∗ > �Γ with indifference at the cutoff, (E.8), the dividend is decreasing in
the region below the cutoff

Γ ′
H(�)≤ −k4e

−� for all � ∈ [
�Γ � �∗) \ {

�∗ − γ}
�(E.15)

Moreover, the dividend is small above the cutoff, that is, there exists k5 > 0 such
that

ΓH(�)≤ k5e
−2�∗ for all � ∈ (

�∗�∞)
�(E.16)

PROOF: We first address the easy cases, � ∈ (�∗�∞) and � ∈ (�∗ − γ��∗): For
� ∈ (�∗�∞), we know Π ′

H(�)≤ k3e
−2�∗ from (E.11), so the upper bound (E.16)

follows from

ΓH(�)= μ
(
ΠH(�+ γ)−ΠH(�)

) = μ
∫ �+γ

�

Π′
H

(
�′)d�′

≤ μγmax
�′>�∗

{
Π′
H

(
�′)} ≤ μγk3e

−2�∗ =: k5e
−2�∗ �
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For � ∈ (�∗ − γ��∗), the upper bound (E.15) follows from (E.11) and (E.9)
by

Γ ′
H(�)= μ

(
Π′
H(�+ γ)−Π′

H(�)
) ≤ μk3e

−2�∗ −μk1e
−�

= −μ(
k1 − k3e

−(2�∗−�))e−��

and we can disregard the term k3e
−(2�∗−�) for �∗ > �Γ and sufficiently large �Γ .

Now we turn to the main part of the proof, showing the bound (E.15) for
� ∈ [�Γ � �∗ − γ). Let �βt = �t(�0 + β�h��∗) for any β ∈ [0�γ] and define T≥ :=
min{t :�γt ≥ �∗}. Truncating the integral expansions of Π′

H(� + γ) and Π′
H(�)

gives38

Π′
H(�+ γ)−Π′

H(�)(E.17)

= E
H

[∫ T≥

t=0
e−rt

(
∂�γt
∂�0

X ′(�γt ) − ∂�t

∂�0
X ′(�t)

)
dt

+ e−rT≥ ∂�
γ

T≥

∂�0
Π′
H

(
�γT≥

) − e−rT≥ ∂�T≥

∂�0
Π′
H(�T≥)

]
�

As we are looking for an upper bound onΠ′
H(�+γ)−Π ′

H(�), we can drop the
last, negative term. Moreover, �γT≥ > �∗ almost surely, so (E.11) implies that
the second-to-last term is bounded above by k3e

−2�∗ . To analyze the integrand
of the first term, note that for all h and all the function, β 
→ (∂�βt /∂�0)X

′(�βt )
is differentiable at all β ∈ [0�γ], so we express the integrand as an integral
as

∂�γt
∂�0

X ′(�γt ) − ∂�t

∂�0
X ′(�t)=

∫ γ

β=0

(
∂2�βt
∂�2

0

X ′(�βt ) +
(
∂�βt
∂�0

)2

X ′′(�βt )
)
dβ�

Decomposing the integrand of this expression into a sum of three terms, we
substitute back into (E.17):

Π′
H(�+ γ)−Π′

H(�)

≤ E
H

[∫ T≥

t=0
e−rt

∫ γ

β=0

∂2�βt
∂�2

0

X ′(�βt )dβdt
]

(E.18)

+E
H

[∫ T≥

t=0
e−rt

∫ γ

β=0

(
∂�βt
∂�0

)2

max
{
X ′′(�βt )�0

}
dβdt

]
(E.19)

38As initial quality is high and the firm invests until the cutoff time, θ0 =H and A(�t)= 1 for
t < T , firm quality stays high until the cutoff time, allowing us to replace the probability measure
E
A�H by E

H .
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−E
H

[∫ T≥

t=0
e−rt

∫ γ

β=0

(
∂�βt
∂�0

)2

max
{−X ′′(�βt )�0

}
dβdt

]
(E.20)

+ k3e
−2�∗ �

We then proceed by showing that the negative term (E.20) is bounded below
by some κe−�0 when �0 ∈ [�Γ � �∗), while terms (E.18) and (E.19) are of order
O(e−2�0).

Negative term (E.20): Fix τ = 1, say, and note that lim�→∞X ′′(�)e� = e2�−e3�

(1+e�)3 =
−1 so that −X ′′(�)≥ e−�/2 for all sufficiently high �. Since reputational drift on
(�g� �∗) takes values in [−μ�0]� we have �β�∅t ∈ [�0 −μτ��0 +γ] for all t ∈ [0� τ],
so for sufficiently large �Γ , we have −X ′′(�β�∅t ) ≥ e−�β�∅t /2 ≥ e−(�0+γ)/2 for all
�0 > �

Γ , t ∈ [0� τ], and β ∈ [0�γ]. This allows us to show

E
H

[∫ T≥

t=0
e−rt

∫ γ

β=0

(
∂�βt
∂�0

)2

max
{−X ′′(�βt )�0

}
dβdt

]

≥
∫ τ

t=0
e−(r+μH)t

∫ γ

β=0

(
∂�β�∅t
∂�0

)2(−X ′′(�β�∅t ))
dβdt

≥ τe−(r+μH)τγe−2λτ e
−(�0+γ)

2
=: κe−�0 �

The first line truncates the integral at τ and keeps only histories without signal
arrivals, which have probability at least e−μHt at time t. The second line uses
∂�∅t /∂�0 ≥ exp(−λτ) from (E.12) and −X ′′(�β�∅t )≥ e−(�0+γ)/2 for t < τ.

First smaller term (E.18): First observe that for all β ∈ [0�γ],
∂2�βt
∂�2

0

= ∂�βt
∂�0

∫ t

s=0

∂�βs
∂�0

g′′(�βs )ds ≤
∫ t

s=0
λe−�βs ds ≤ λte−mins≤t {�s}�(E.21)

where the equality uses (E.4), the first inequality uses ∂�βs /∂�0 < 1 and that
g′′(�)= λe−� in the work region, and the second inequality uses �βs ≥ �s. Then
we show

E
H

[∫ T≥

t=0
e−rt

∫ γ

β=0

∂2�βt
∂�2

0

X ′(�βt )dβdt
]

≤ E
H

[∫ ∞

t=0
e−rtγλte−mins≤t {�s}e−�t dt

]

≤ γλ
∫ ∞

t=0
te−rte−2(�0−μt) dt

= γλ

(r − 2μ)2
e−2�0 �
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The first inequality uses (E.21),X ′(�)≤ e−�, and �βt ≥ �t . The second inequality
uses that both �t and mins≤t{�s} are bounded below by �0 −μt. The last equality
uses assumption (E.1) and

∫ ∞
0 te−(r−2μ)t dt = 1/(r − 2μ)2.

Second smaller term (E.19): We now show

E
H

[∫ T≥

t=0
e−rt

∫ γ

β=0

(
∂�βt
∂�0

)2

max
{
X ′′(�βt )�0

}
dβdt

]

≤
∫ ∞

t=�0/μ

γe−rt dt = γ

r
e−r�0/μ ≤ γ

r
e−2�0 �

The first inequality uses �βt ≥ �0 − μt ≥ 0 for t ≤ �0/μ, so X ′′(�βt ) < 0 and
the integrand is 0; for t ≥ �0/μ, the integrand is bounded above by γe−rt

because ∂�βt /∂�0 ≤ 1 and X ′′(�) ≤ 1. The second inequality uses assumption
(E.1). Q.E.D.

LEMMA 14G: Assume (E.1). There exists �� such that for any c > 0 and �∗ > ��

with indifference at the cutoff, (E.8), we have λ�′(�) < 0 for � ∈ [��� �∗).

PROOF: As in the proof of Lemma 14B, we decompose the integral expan-
sion of �′(�0) into its positive and negative contributions,

�′(�0)= E
L

[∫ ∞

t=0
e−(r+λ)t ∂�t

∂�0
max

{
Γ ′
H(�t)�0

}
dt

]
(E.22)

−E
L

[∫ ∞

t=0
e−(r+λ)t ∂�t

∂�0
max

{−Γ ′
H(�t)�0

}
dt

]
�(E.23)

Recall from Lemma 13G that �Γ is such that Γ ′
H(�) ≤ −k4e

−� for all � ∈
[�Γ � �∗) \ {�∗ − γ}. Now assume that �� is sufficiently large; specifically assume
that �� ≥ max{3�Γ � �Γ +μ}. We prove �′(�0) < 0 for �0 ∈ [��� �∗) by establishing
that there exists κ > 0 such that the negative term (E.23) is bounded below by
some κe−�0 , while the term (E.22) is of order O(e−(4/3)�0).

Negative term (E.23): We show that for every �0 ∈ [�Γ � �∗),

E
L

[∫ ∞

t=0
e−(r+λ)t ∂�t

∂�0
max

{−Γ ′
H(�t)�0

}
dt

]

≥
∫ τ

t=0
e−(r+λ+μL)t ∂�

∅

t

∂�0

(
k4e

−�∅t
)
dt

≥ τe−(r+λ+μL)τe−λτk4e
−�0 =: κe−�0 �

The first line truncates the integral at τ, say τ = 1, discards any histories with a
signal arrival, and applies the bound −Γ ′

H(�
∅

t ) ≥ k4e
−�∅t from Lemma 13G to
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�∅t ≥ �0 −μ≥ �Γ for all t ∈ [0� τ]. The second line applies ∂�∅t /∂�0 ≥ exp(−λτ)
(from (E.12)) and e−�∅t ≥ e−�0 for t ≤ τ.

Smaller positive term (E.22): We first establish the upper bound,

max
{
Γ ′
H(�)�0

} ≤
⎧⎨
⎩
μ/r for � < �Γ �
0 for � ∈ [

�Γ � �∗) \ {
�∗ − γ}

�

μk3e
−2�∗ for � > �∗�

(E.24)

The first case follows by Γ ′
H(�) = μ(Π′

H(� + γ) − Π′
H(�)) ≤ μΠ′

H(� + γ)
and Π′

H(�) = E
A�θ[∫ ∞

0 e−rt ∂�t
∂�0
X ′(�t) dt] ≤ 1/r, where the last inequality uses

∂�t/∂�0 < 1 and X ′(�) < 1. The second case follows by Lemma 13G. The third
case follows by Γ ′

H(�)≤ μΠ′
H(�+ γ) and (E.11).

Now fix �0 ≥ �� ≥ 3�Γ so that 1
3�0 > �

Γ and 2
3�0 ≤ (�0 − �Γ ). For t ≤ 4

3�0/r,
assumption (E.1) ensures t ≤ 2

3�0/μ ≤ (�0 − �Γ )/μ and so �t ≥ �0 − μt ≥ �Γ .
Then ∂�t/∂�0 < 1 and the bound (E.24) imply the upper bound for (E.22):

E
L

[∫ ∞

t=0
e−(r+λ)t ∂�t

∂�0
max

{
Γ ′
H(�t)�0

}
dt

]

≤
∫ ∞

t=0
e−(r+λ)tμk3e

−2�∗ dt +
∫ ∞

t=(4/3)�0/r

e−(r+λ)t μ
r
dt

≤ μk3e
−2�∗

r + λ + μ

r(r + λ)e
−((r+λ)/r)(4/3)�0

=O(
e−(4/3)�0

)
� Q.E.D.

LEMMA 15G: Assume (E.1) and fix �� from Lemma 14G. There exists c >
0 such that for all �∗ > ��� c < c with indifference at the cutoff, (E.8), we have
λ�(�) > c for all � ∈ [−∞� ��].

The proof is the same as the proof of Lemma 15B.

E.4. Good News—Shirk Above Cutoff

Lemma 16G shows that firms with high reputations shirk. The idea of the
proof is to write the payoff of quality above �∗ as the sum of dividends until �t
hits �∗ plus a continuation payoff and then to show that the dividends are less
than the annuity value of �(�∗).

LEMMA 16G: Assume (E.1) and fix �� from Lemma 14G. For any c > 0
and �∗ > �� with indifference at the cutoff, (E.8), we have λ�(�) < c for all
� ∈ [�∗�∞].
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PROOF: Fix �0 = �∗ and �′
0 > �

∗, and let T ′ = T(�′
0� �

∗) = min{t :�′
t = �∗}.

Then

�
(
�′) −�(

�∗) = E
L

[∫ T ′

0
e−(r+λ)tΓH

(
�′
t

)
dt + e−(r+λ)T ′

�
(
�∗)] −�(

�∗)(E.25)

= E
L

[∫ T ′

0
e−(r+λ)t(ΓH(

�′
t

) − (r + λ)�(
�∗))dt

]
�

By (E.16), we know that ΓH(�′
t) is of order O(e−2�∗), because �′

t > �
∗.

To conclude the proof, we show that there exists κ > 0 with �(�∗) ≥ κe−�∗ .
Subject to having chosen �� high enough in Lemma 14G, the downward drift
|λ(1 + e−�)− μ| exceeds (μ− λ)/2 for � ∈ [�∗ − γ��∗]; hence for any �∗ > ��

and τ = 2γ/(μ− λ), we have �∅τ + γ < �∗ and �∅τ+1 > �
� − μ(τ + 1) > �Π . We

can then show

�
(
�∗) = E

L

[∫ ∞

0
e−(r+λ)tΓH(�t)dt

]

≥
∫ ∞

t=0
e−(r+λ+μL)tΓH

(
�∅t

)
dt

≥
∫ τ+1

t=τ
e−(r+λ+μL)t

(∫ �∅t +γ

�
∅

t

μΠ′
H

(
�′)d�′

)
dt

≥ e−(r+λ+μL)(τ+1)μγk1e
−(�∅τ +γ)

≥ κe−�∗ �

The second line discards histories with signal arrivals, the third line discards
terms with t /∈ [τ�τ+1] and writes ΓH(�∅t ) as an integral over marginal payoffs,
and the fourth line applies the lower bound (E.9) to Π′

H(�
′) and uses �∅τ + γ ≤

�∗.
Thus, ΓH(�′

t) is of order O(e−2�∗) while �(�∗)≥ κe−�∗ , implying that (E.25) is
negative, and so λ�(�) < λ�(�∗)= c for all � ∈ [�∗�∞]. Q.E.D.

APPENDIX F: PROOF OF THEOREM 6

Part (i). We first establish that the firm prefers to work at all intermediate lev-
els of reputation. Formally, we show that for any ε > 0, there exists c′

ε > 0 such
that for any beliefs Ã, any c < c′

ε, and any x ∈ (ε�1 − ε), we have λD(x) > c.
Lemma 2 shows that value functions are strictly monotone by arguing that

for fixed history h, time-t reputation xt(x0�h� Ã) is nondecreasing in x0. Its
proof actually implies a lower bound on Vθ(x̂0)− Vθ(x0) when x̂0 > x0. To see
this, let {x̂∅

t }t≥0 and {x∅

t }t≥0 be the reputational trajectories of a “high” and a
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“low” firm in the absence of signals. When the distance between the trajec-
tories, x̂∅

t − x∅

t ≥ 0, is decreasing, the rate of decrease is bounded above by
2(λ+ |μ|) because the drift of either trajectory is bounded above in absolute
terms by λ+ |μ|. Thus, x̂∅

t −x∅

t ≥ x̂0 −x0 − 2(λ+ |μ|)t. This allows us to show

Vθ(x̂0)− Vθ(x0)

≥ E
a�θ

[∫ ∞

0
e−rt(x̂t − xt)dt

]

≥
∫ (x̂0−x0)/(2(λ+|μ|))

0
e−rte−max{μL�μH }t(x̂0 − x0 − 2

(
λ+ |μ|)t)dt

≥ e−((r+max{μL�μH })(x̂0−x0))/(2(λ+|μ|)) (x̂0 − x0)
2

4(λ+ |μ|) =: κ1(x̂0 − x0)
2�

The first line uses the revealed preference argument from the proof of
Lemma 2; the second line discards histories with signal arrivals (the probability
of histories with no signal arrival before t is bounded below by e−max{μL�μH }t),
truncates the integral at t = x̂0−x0

2(λ+|μ|) , discards the continuation value, and uses
the lower bound for x̂∅

t − x∅

t . The third line evaluates the integral and uses
x̂0 − x0 < 1 to drop the x̂0 − x0 term from the exponent.

This inequality implies a uniform lower bound on reputational dividends,

μ
(
Vθ

(
j(x)

) − Vθ(x)
) ≥ |μ|κ1

(
j(x)− x)2

= |μ|κ1

(
μx(1 − x)

μHx+μL(1 − x)
)2

≥ |μ|3κ1

(max{μL�μH})2

(
ε(1 − ε))2

for x ∈ (ε�1 − ε), which in turn implies a uniform lower bound on D(x) for
x ∈ (ε�1 − ε) by Theorem 1. This establishes part (i) of the proof.

Part (ii). Next, we show that if the firm is believed to work at intermediate
levels of reputation x ∈ (x∗

1�1 − ε], then it also prefers to work just below x∗
1.

Intuitively, at such a point, investment incentives are bounded below by the
continuation value at some z > x∗

1 times the discounted probability that z is
reached. This latter term is positive because (HOPE) guarantees that reputa-
tion xt rises above x∗

1 with positive probability in finite time; once above x∗
1, the

favorable beliefs in (x∗
1� z) quickly push reputation to z.

Fix

z =
{

1 − λ/|μ|> 0 if learning is via bad news�
min

{
λ/(2μ)�1/2

}
> 0 if learning is via good news�
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and let T≥(x0� z) := min{t :xt ≥ z} be the first time that a reputational trajec-
tory starting at x0 ∈ (0�1) reaches or exceeds z. If the firm is believed to be
working on (x∗

1� z) and x0 is just below x∗
1, then T≥(x0� z) is “bounded above

with positive probability.” More precisely, we make the following claim.

CLAIM: There exists κ2 ∈ (0�1) such that for any x∗ ∈ (0� z) and any Ã with
Ã= 1 on (x∗� z), there exists δ > 0 such that for all x0 ∈ (x∗ − δ�x∗), we have

E
L
[
e−(r+λ)T≥(x0�z)

] ≥ κ2�

PROOF: Bad news with |μ| > λ. By x∗ < z = 1 − λ/|μ|, the drift g(x) =
λ(Ã(x)− x)+ |μ|x(1 − x) is strictly positive on (0�x∗) even when Ã= 0 and
is bounded below by λ(1 − z) on (x∗� z). Thus, we can choose δ > 0 so that
x∅

t > z for all x0 ∈ (x∗ − δ�x∗) and t > z/(λ(1 − z)). To summarize, we have
T≥(x0� z)≤ z/(λ(1 − z)) with probability at least e−μLT≥(x0�z). This implies

E
L
[
e−(r+λ)T≥(x0�ε)

] ≥ e−μLz/(λ(1−z))e−(r+λ)z/(λ(1−z)) =: κ2�B�

Good news. For x ∈ (x∗� z), reputational drift is bounded below by λ(1−x)−
μx(1 −x)= (λ−μx)(1 −x)≥ λ/4; then xt > x∗ implies xt′ > z for all t ′ > t +
4/λ. Let δ > 0 be such that L(x∗)−L(x∗ −δ) > γ/2, where L(x)= log(x/(1−
x)) is the log-likelihood-ratio transformation introduced in Appendix C.2, and
γ = log(μH/μL) is the (constant) jump size j(�)− � in �-space. Below L(x∗),
reputational drift in �-space is bounded above in absolute terms by |λ(1+e�)+
μ| ≤ 2λ + μ. Thus, we have L(xt) > L(x∗) − γ for all x0 ∈ (x∗ − δ�x∗) and
t ≤ γ/(4λ+ 2μ). Thus, if a signal arrives in (0�γ/(4λ+ 2μ)), we get xt > x∗
for t = γ/(4λ+ 2μ) and then xt′ > z for t ′ = t + 4/λ.

To summarize, there exists δ > 0 such that for all x0 ∈ (x∗ −δ�x∗), the proba-
bility that T≥(x0� z)≤ γ/(4λ+2μ)+4/λ is bounded below by 1−e−μLγ/(4λ+2μ),
so

E
L
[
e−(r+λ)T≥(x0�z)

] ≥ (
1 − e−μL(1−γ/(4λ+2μ))

)
e−(r+λ)(γ/(4λ+2μ)+4/λ) =: κ2�G�

This establishes the claim for κ2 = min{κ2�B�κ2�G}. Q.E.D.

To finish the proof of Theorem 6, fix any ε > 0 and any c < cε :=
min{c′

ε�κ2c
′
z}. By part (i) of the proof, the firm prefers to invest on (z�1 − ε).

Assume that, contrary to the statement of the theorem, there exists an equilib-
rium with a shirk–work cutoff x∗

1 ∈ (0� z) and a work region (x∗
1� z). Then our

claim implies that there exists δ > 0 such that for all x0 ∈ (x∗
1 − δ�x∗

1),

λD(x0)≥ λEL[e−(r+λ)T≥(x0�z)D(xT≥(x0�z))
] ≥ κ2c

′
z > c�

Thus, the firm prefers to work on (x∗
1 − δ�x∗

1). This contradiction finishes the
proof.
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