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A Reputational Theory of Firm Dynamics†

By Simon Board and Moritz  Meyer-ter-Vehn*

We study the life cycle of a firm that produces a good of unknown 
quality. The firm manages its quality by investing while consumers 
learn via public breakthroughs; if the firm fails to generate such 
breakthroughs, its revenue falls and it eventually exits. Optimal 
investment depends on the firm’s reputation (the market’s belief 
about its quality) and self-esteem (the firm’s own belief about its 
quality), and is single-peaked in the time since a breakthrough. We 
derive predictions about the distribution of revenue and propose a 
method to decompose the impact of policy changes into investment 
and selection effects. (JEL D11, D21, D25, D83, G31, L15)

In many markets, consumers have imperfect information about the quality of the 
products or services they purchase. A restaurant patron would like to know about 

the hygiene of the establishment, a patient undergoing surgery would like to know 
the competence of their surgeon, and an investor would like to know about the returns 
of a mutual fund. This paper investigates the incentives that firms (e.g., restaurants, 
surgeons, mutual funds) have to invest in order to maintain quality. In particular, we 
study investment and exit decisions over their life cycles and derive implications for 
the dynamics of reputation and the  cross-sectional distribution of revenue.

Our paper provides a framework to study investment and selection effects in 
industries where the market learns about quality over time. In contrast to models of 
perfect information, like Ericson and Pakes (1995), a firm’s most important assets 
are the market’s belief in its quality (its reputation) and the firm’s own belief in its 
quality (its self-esteem). These state variables differ from traditional capital assets 
in important aspects. First, reputation depends on the market’s beliefs about the 
firm’s investment, rather than actual investment. The resulting moral hazard prob-
lem dampens incentives and qualitatively changes firm dynamics. Specifically, we 
suppose customers learn about quality from public breakthroughs; investment then 
decreases in the time after a breakthrough when investment is publicly observable 
but is  single-peaked when investment is unobservable. Second, in a perfect informa-
tion model,  price-taking firms invest and exit efficiently, leaving no role for policy to 

* Board: UCLA (email: sboard@econ.ucla.edu); Meyer-ter-Vehn: UCLA (email: mtv@econ.ucla.edu). 
Leslie Marx was coeditor for this article. We have received helpful comments from Andy Atkeson, Heski Bar-
Isaac, V. Bhaskar, Alessandro Bonatti, Andrew Clausen, Christian Hellwig, Hugo Hopenhayn, Johannes Hörner, 
Larry Samuelson, Yuliy Sannikov, Connan Snider, Chad Syverson, and seminar audiences at Bocconi University, 
University of Chicago GSB, Essex, LSE, Princeton University, PSE, University of Toronto, TSE, Warwick, the 
Duke IO Theory Conference, ES Winter Meetings, Gerzensee, Mannheim Reputation Conference, SAET, SED, and 
SWET. We gratefully acknowledge financial support from NSF grant 0922321.

† Go to https://doi.org/10.1257/mic.20190376 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.

https://doi.org/10.1257/mic.20190376
mailto:sboard@econ.ucla.edu
mailto:mtv@econ.ucla.edu
https://doi.org/10.1257/mic.20190376


VOL. 14 NO. 2 45BOARD AND MEYER-TER-VEHN: A REPUTATIONAL THEORY OF FIRM DYNAMICS

improve welfare. By contrast, our model permits meaningful analysis of disclosure 
policies that improve the market’s information, e.g.,  requiring restaurants to post 
health grades or publishing surgeon report cards. To this end, we propose a method 
to decompose the impact of such policies on investment and selection effects. Third, 
reputation varies as news arrives and is thus volatile even if the underlying product 
quality is stable. For example, when a restaurant is featured in the New York Times, 
demand jumps even though the quality does not change. Hence, one needs a model 
to be able to infer the underlying quality from volatile restaurant revenue; we dis-
cuss how our model can do exactly this.

In the model, a  long-lived firm sells a product of high or low quality to a contin-
uum of identical,  short-lived consumers. The firm chooses how much to invest in 
the quality of its product; it can also exit at any time. Consumers observe neither the 
firm’s investment history nor the resulting quality. Rather, they learn about quality 
via public breakthroughs that can only be generated by a  high-quality product. We 
call the market’s belief that quality is high,   x t   , the firm’s reputation and assume that 
it determines revenue. Like the market, the firm does not observe its quality directly, 
but learns via public breakthroughs; unlike the market, it can also recall its past 
investments. We call the firm’s belief that its quality is high,   z t   , the firm’s  self-esteem.

In a  pure strategy equilibrium, reputation and  self-esteem coincide  on-path. 
However, since the market does not observe deviations from equilibrium, invest-
ment incentives are determined by the marginal value of  self-esteem  off-path. We 
characterize the firm’s optimal investment and exit decisions over its life cycle, 
focusing on equilibria where reputation is solely a function of the time since the last 
breakthrough.

Our first result represents the marginal value of  self-esteem and hence invest-
ment incentives as an integral over future reputational dividends that derive from 
an increased chance of breakthroughs. Using this characterization, we show that in 
any pure strategy equilibrium, incentives are  single-peaked in the time since the last 
breakthrough (Theorem 1). Immediately after a breakthrough, the firm is known 
to be high quality and does not benefit from another breakthrough. At the opposite 
extreme, when the firm is about to exit, it cuts investment to zero. Intuitively, invest-
ment only pays off if investment affects quality and quality is revealed via a break-
through. When the firm is  dt  from exiting, the joint probability of these two events is 
of order  d t   2  , and therefore the marginal benefit of investment vanishes. Investment 
incentives are thus maximized at an intermediate time; we formally show that they 
are  single-peaked. We also prove equilibrium exists (Theorem 2), possibly in mixed 
strategies. The proof defines a topology on strategies that allows us to apply the 
 Kakutani-Fan-Glicksberg  fixed-point theorem.1

To illustrate the applicability of the model, we use the Kolmogorov forward equa-
tion to examine how learning, investment, and entry jointly shape the  steady-state 
 distribution of reputation. Additionally, we propose a method to decompose the driv-
ers of  steady-state revenue into investment and selection effects. This  decomposition 

1 Other papers—e.g.,  Cisternas (2017)—establish existence constructively from the firm’s adjoint equation. 
The problem with this approach in our setting is that the firm’s  first-order condition for investment is not sufficient 
for optimality; in particular, investments are dynamic complements, and so  multistep deviations may be optimal.
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is particularly useful in interpreting comparative statics, such as a disclosure policy 
that raises the frequency of breakthroughs or a minimum wage that raises operating 
costs. As a proof of concept, we use a simple simulation to show that a disclosure 
policy may have little effect on mean  steady-state reputation but drastically raises 
the relative importance of investment over selection.

Section III considers two model variants that isolate the two different economic 
forces behind the  single-peaked incentives in the baseline model. They also illus-
trate how the information structure in the market affects firms’ incentives to invest. 
In the first variant, we assume the market observes the firm’s investment. Thus, both 
the firm and the market symmetrically learn about the firm’s quality, but there is no 
moral hazard. We show that investment decreases in the time since a breakthrough, 
as the firm approaches bankruptcy (Theorem 3). In the second variant, we assume 
the firm knows its own quality in addition to its investment, while the market knows 
neither. We show that investment increases in the time since a breakthrough, as the 
benefit from a breakthrough grows (Theorem 4). In stark contrast to the baseline 
model, investment is maximized at the exit threshold; crucially, the firm immedi-
ately observes when investment raises quality and then chooses to remain in the 
market. The  single-peaked investment in the baseline model combines the decreas-
ing incentives in the first variant and the increasing incentives in the second variant.

Our model provides a natural lens through which to study the reputation and rev-
enue dynamics of restaurants, surgeons, and mutual funds. In Section IV, we discuss 
how one might identify the model parameters from data in these industries. We also 
discuss how to generalize the model to accommodate competition and more general 
learning structures.

Literature.—Our model draws inspiration from two canonical models of firm 
dynamics. Jovanovic (1982) assumes that firms and consumers symmetrically learn 
about the firms’ quality but abstracts from investment. Ericson and Pakes (1995) 
assume firms invest in the quality of their products but suppose there is complete 
information. We combine learning and investment and characterize how these forces 
jointly determine the evolution of the firm’s quality and reputation. Thus, we can 
study how information policies (e.g.,  restaurant grades, surgeon reports) affect 
investment incentives, firm dynamics, and turnover.

There are a variety of other models of firm life cycles. Hopenhayn (1992) assumes 
firm capabilities change over time according to a Markov process and studies the 
resulting entry and exit patterns. Cabral (2016) considers a  reduced-form model of 
reputational firm dynamics, where reputation is modeled as a state variable akin to 
capital stock rather than being derived from Bayes’ rule. Gale and Rosenthal (1994) 
and Rob and Fishman (2005) consider the dynamics of repeated game equilibria 
where incentives arise from punishment strategies.

The paper is related to the literature on reputation, especially our prior paper 
(Board and  Meyer-ter-Vehn 2013). The current paper introduces exit, allowing us 
to study firm life cycles; this is of interest for three reasons. First, the possibility 
of exit qualitatively changes the nature of incentives, as illustrated by the differ-
ence between the  single-peaked incentives in the baseline model and the increasing 
incentives when the firm knows its quality. (Without exit, there is no difference 



VOL. 14 NO. 2 47BOARD AND MEYER-TER-VEHN: A REPUTATIONAL THEORY OF FIRM DYNAMICS

between these models.) Second, the model provides an empirical framework to study 
industry turnover and productivity dispersion and to measure the impact of disclo-
sure policies and minimum wages. Third, the exit decision introduces new method-
ological challenges, since we must keep track of both reputation and  self-esteem. 
(Without exit, we need only keep track of reputation.) As such, we contribute to the 
growing literature on learning models with moral hazard; such models have the fea-
ture that private and public beliefs differ  off-path. In particular, Bonatti and Hörner 
(2011, 2017) consider incentives in a strategic experimentation game. Sannikov 
(2014) considers a contract-design problem in which the agent’s effort has  long-run 
effects on her employer’s performance. Cisternas (2017) analyzes a general model 
of  two-sided learning with moral hazard; his incentive equation is analogous to our 
“marginal value of  self-esteem.”

Several papers endogenize the flow of information in reputation models. Halac 
and Prat (2016) suppose that the probability of a signal depends not only on the 
“quality of the firm” but also on an additional “action of the market”; after a break-
through, investment incentives strictly increase and ultimately plateau, in contrast to 
the eventually vanishing incentives here. Hauser (2021a, 2021b) supposes that firms 
can speed up good news or hide bad news. Marinovic, Skrzypacz, and Varas (2018) 
allow firms to pay to certify their quality. And Vellodi (2021) asks which informa-
tion structure maximizes social welfare.

There is also a literature on “name trading.” Tadelis (1999) considers firms with 
exogenous quality that can sell or abandon their names; Tadelis (2002) and Mailath 
and Samuelson (2001) introduce moral hazard. These papers show that  high-quality 
firms would like to acquire names with intermediate reputations, where Bayesian 
updating is fastest. Vial and  Zurita (2017) consider a highly tractable model in 
which types are exogenous, and firms can only abandon bad names. Ultimately, 
the incentives to purchase a name are quite different from the incentives to invest in 
quality: a new name boosts reputation for a given firm quality and can be quickly 
run down if the firm is low-quality, while investment boosts firm quality for a given 
reputation and thereby changes the future evolution of reputation.2

Our paper is the first to study investment, learning, and exit in a single model. It 
provides a canonical model of how information policies affect industry dynamics 
and thereby speaks to a growing empirical literature. Jin and Leslie (2003, 2009) 
and Luca (2016) study how hygiene grades and Yelp scores affect restaurants. Cutler, 
Huckman, and Landrum (2004) and Kolstad (2013) study how medical report cards 
affect the behavior of surgeons. Cabral and Hortaçsu (2010) consider the impact of 
negative feedback on eBay sellers. There are many more papers that examine the 
effect of new information on customers’ decisions, such as health plan choice (Jin 
and Sorensen 2006), hospital choice (Pope 2009), doctors’ prescriptions (Arrow, 
Bilir, and Sorensen 2020), school choice (Hastings and Weinstein 2008), college 

2 Our model has implications for the trade of underlying knowledge, such as patents, over the life cycle of the 
firm (e.g., Serrano 2010). Indeed, assume that a patent raises a firm’s quality with a probability that is constant across 
firms and known to all firms.  Low-reputation firms would then sell their intellectual property to  high-reputation 
firms because of the convexity of firm value  V (t, z)   in  z , as established in Section IIA.
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applications (Luca and Smith 2013), caloric intake (Bollinger, Leslie, and Sorensen 
2011), and the demand for books (Sorensen 2007).

The paper provides a model of brand dynamics, which are often modeled in an 
informal way. For example, Bronnenberg, Dubé, and Gentzkow (2012) study the 
dynamics of brand shares when customers move between cities and their prefer-
ences depend on past purchases. Similarly, Foster, Haltiwanger, and  Syverson 
(2016) model the slow demand growth of new entrants by assuming the level of cur-
rent demand depends on the stock of past demand, which the authors interpret as the 
“growth of a customer base or building a reputation.” More broadly, the paper helps 
explain how R&D investments feed into knowledge and firm’s values (e.g. Hall, 
Jaffe, and Trajtenberg 2005) and how productivity and profits vary within industries, 
with some firms investing in their assets and growing, while others disinvest and 
shrink (e.g. Syverson 2011).

I. Model

Players and Actions:  A  long-lived firm faces a mass of  short-lived consumers, 
also referred to as the market. Time  t ∈  [0, ∞)   is continuous. The firm chooses a 
stochastic process of investment levels   A t   ∈  [0,  a – ]   where   a –  < 1 ; it also chooses a 
stopping time  T ∈  [0, ∞]   at which it exits the market.

Technology:  At time  t  the firm’s product quality is   θ t   ∈  {L, H}  , where  L = 0  
and  H = 1 . Initial quality   θ 0    is exogenous; subsequent quality depends on invest-
ment and technology shocks. Specifically, shocks are generated according to a 
Poisson process with arrival rate  λ > 0 . Quality   θ t    is constant between shocks and 
determined by the firm’s investment at the most recent technology shock  s ≤ t ; 
i.e.,   θ t   =  θ s    and  Pr ( θ s   = H)  =  A s   . This captures the idea that quality is a lagged 
function of past investments.

Information:  Consumers observe neither quality nor investment but learn about 
quality through public breakthroughs. Given quality  θ , breakthroughs are generated 
according to a Poisson process with arrival rate  μθ ; that is, breakthroughs only occur 
when  θ = H . We write   h   t   for histories of breakthrough arrival times before time  t , 
and  h  for infinite histories.

The firm does not observe product quality, either, but does recall its past 
actions. Its investment plan    { A t  }  t≥0    and exit time  T  are thus progressively mea-
surable with respect to the filtration induced by public histories   h   t  . In turn, the 
investments  A ≔   { A t  }  t≥0    control the distribution of quality    { θ t  }  t≥0    and thereby 
the histories of breakthroughs  h ; we write   E   A   for expectations under this mea-
sure and call   Z t   =  E   A  [  θ t   |  h   t  ]   the firm’s  self-esteem at time  t < T . This reflects 
the firm’s belief in its own quality given its past investment and the history of  
breakthroughs.

We write (pure) market beliefs over investment and exit as   A ̃   =   {  A ̃   t  }  t≥0    and   T ̃   .  
The firm’s reputation is given by   X t   ≔  E    A ̃    [ θ t   |  h   t ]  . For concreteness, we 
apply this formula at all times, including  t >  T ̃   ; in other words, the  
market draws no  inference about the firm’s past investments after it fails to exit as  
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expected.3 Initially,  self-esteem and reputation are exogenous and  coincide;  
  X 0   =  Z 0   .

Payoffs:  The firm has flow profits  π ( X t  )  − c ( A t  )   and discount rate  r > 0 . The 
firm’s income  π ( ⋅ )   is smooth and strictly increasing with boundaries  π (0)  < 0  
and  π (1)  > 0 ; we further restrict  π ( ⋅ )   below in (4). As a running example, we 
use  π (X)  = X − k , where  X  is revenue and  k ∈  (0, 1)   is the firm’s operating cost. 
The firm’s investment cost  c ( ⋅ )   is smooth, strictly increasing, and convex, with  
 c (0)  = 0 .

Given the firm’s strategy   (A, T )   and market beliefs   ( A ̃  ,  T ̃  )  , its expected present 
value equals

(1)   E   A  [ ∫ 
t=0

  
T
     e   −rt  (π ( X t  )  − c ( A t  ) )  dt] . 

To highlight the distinct roles of market beliefs   A ̃    and actual investment  A  in (1), 
note that   A ̃    determines the firm’s reputation   X t   =  E    A ̃    [ θ t   |  h   t ]   for a given history   h   t  , 
while  A  determines the distribution over histories   h   t  .

A Restriction on Strategies:  Both reputation and  self-esteem are reset to  
 X = Z = 1  at a breakthrough; between breakthroughs the market observes 
no information about the firm’s performance. For this reason, we consider strat-
egies that only depend on the time since the last breakthrough. Formally, we 
assume there exists a deterministic process  a =  { a t  }   and exit time  τ ∈  [0, ∞]    
such that if the last breakthrough before  t  was at time  s , then   A t   =  a t−s    
and  τ = T − s . We write such strategies as   (a, τ)   and the resulting  self-esteem 
as  z =  { z t  }  , where   z 0   = 1 . Similarly, define beliefs   ( a ̃  ,  τ ̃  )   and denote the induced 
reputation by  x =  { x t  }  , where   x 0   = 1 . Given reputation  x =  { x t  }  , the firm’s prob-
lem resets at a breakthrough and so strategies   (a, τ)   are indeed optimal, justifying the  
restriction.

Truncating the integral in (1) at the first breakthrough (which arrives at rate  μ  z t   ), 
the firm’s continuation value at time  t  is

(2)  V (t,  z t  )  =  sup  
a,τ

     ∫ 
s=t

  
τ
     e   − ∫ t  

s   (r+μ z u  ) du  [π ( x s  )  − c ( a s  )  + μ z s   V (0, 1) ]  ds. 

We write optimal strategies as   ( a   ⁎ ,  τ   ⁎ )   and the associated  self-esteem as   z   ⁎  =  { z  t  
⁎ }  .

3 This implies that reputation is continuous at   T ̃   . By contrast, if  off-path beliefs were such that reputation jumps 
down at time   T ̃   , effort would still be  single-peaked (Theorem 1), but the exit time need not satisfy the indifference 
equation (9). We ignore such equilibria because it is implausible for the market to interpret failure to exit as a signal 
of low quality. Alternatively, if  off-path beliefs induced reputation to jump up at time   T ̃   , the firm would like to stay 
in the market, which cannot arise in a pure strategy equilibrium. When we extend the model to mixed beliefs in the 
context of equilibrium existence in Appendix AD, we account for the market’s  on-path inferences from the firm’s 
failure to exit and allow for richer  off-path inferences.
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Reputational Dynamics:   Self-esteem is governed by the firm’s investment and 
the history of breakthroughs. At a breakthrough,  self-esteem jumps to one. Absent 
a breakthrough,  self-esteem is governed by    z ̇   t   = g ( a t  ,  z t  )  , where the drift is  
given by

(3)  g (a, z)  = λ (a − z)  − μz (1 − z)  

as in, for example, Board and  Meyer-ter-Vehn (2013). The first term derives from the 
technology process: with probability  λdt  a technology shock hits in   [t, t + dt)  , pre-
vious quality becomes obsolete, and the current quality is determined by the firm’s 
investment. This term is positive if investment exceeds the firm’s  self-esteem,  a > z , 
and negative otherwise. The second term derives from the absence of breakthroughs 
and is always negative. Analogously, reputation is governed by believed investment   
a ̃    and the history of breakthroughs, jumping to 1 at a breakthrough and in its absence 
following    x ˙   t   = g (  a ̃   t  ,  x t  )  .

We want to guarantee that in the absence of a breakthrough, the firm eventually 
exits. To this end, assume

(4)  π ( z   † )  + μ  z   †  π (1)  / r < 0, 

where   z   †  ∈  (0, 1)   is the unique level of  self-esteem where reputational drift van-
ishes under maximal investment,  g ( a – ,  z   † )  = 0 .4 So defined, drift (3) is strictly neg-
ative on   [ z   † , 1]   for any beliefs   ( a ̃  ,  τ ̃  )  , and (absent a breakthrough) reputation and 
 self-esteem eventually drop below   z   †  . At that point, (4) ensures that the integrand 
in (2) is negative and the firm exits, where  π (1)  / r  serves as an upper bound for  
 V (0, 1)  .

Remarks:  The model makes several assumptions of note. First, as in Board 
and  Meyer-ter-Vehn (2013), we assume that quality at time  t  is based on investment 
at the time of the last technology shock. While “upgrades” are natural, there are two 
ways to think of “downgrades” in our model. One can interpret investment as the 
choice of absorptive capacity, determining the ability of a firm to adapt to a changing 
world (Cohen and Levinthal 1990). Alternatively, one can think of a firm’s quality as 
its advantage over a competitive fringe that advances one rung on a ladder of qual-
ity at each technology shock. Our specification has two substantive implications. It 
implies that high-quality and  low-quality firms are equally good at investing, so we 
do not  hardwire in any complementarity or substitutability between current quality 
and investment.5 It also means that believed investment affects reputation continu-
ously, via its drift (3); this contrasts with other recent models of endogenous per-
sistent states, where equilibrium beliefs can lead to jumps in reputation (e.g., Dilmé 
2019, Halac and Prat 2016).

4 Note,   z   †   is  well defined since  g ( a – , 0)  > 0 > g ( a – , 0)  , and  g (a, z)   is convex in  z . It satisfies  
  z   †  = λ ( a –  −  z   † )  / μ (1 −  z   † )   and is thus smaller than   a –   and  λ / μ .

5 We could assume, equivalently, that quality at a breakthrough is separable in previous quality and current 
investment. For example, a model with  Pr ( θ s   = H)  =  ( A s   +  θ s−  )  / 2  is isomorphic to our model with arrival rate 
of technology shocks equal to  λ / 2 .
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Second, we assume that the firm does not know its own quality and learns from 
the public signals. In the context of our motivating examples, a restaurant owner 
tries to raise its quality by changing the menu and decor and learns whether this has 
been successful (in the eyes and  taste buds of customers) by reading newspaper or 
Yelp reviews. A surgeon tries to improve her skills by taking courses and talking 
to other doctors and learns whether this has worked when she faces a patient with 
complications. Or, a mutual fund tries to raise its returns by appointing a new team 
of analysts and learns their effectiveness when it wins an industry award. As a con-
trast, we study the case of known quality in Section IIIB and discuss intermediate 
cases in Appendix BE.

Third, we assume “perfect good news learning,” where information arrives via 
breakthroughs that reveal high quality. This stylized information structure allows us 
to analyze our model in terms of strategies   (a, τ)   that depend only on the time since 
the last breakthrough rather than Markovian strategies that depend on reputation and 
 self-esteem; this is key for our equilibrium existence proof.6 The intuition behind 
our  single-peaked incentives extends to imperfect good-news Poisson or Brownian 
signals. We discuss this extension in Section IV.

Finally, while our formal results concern the life cycle of a single firm, one can 
think of the firm as operating in a competitive industry in steady state, such as the 
restaurant industry or the market for surgeons. This market interpretation allows us 
to consider the implications of the model for the  cross-sectional distribution of rev-
enue. We discuss this extension in Section IV.

II. Analysis

Section IIA analyzes the firm’s optimal strategy for general (pure) market beliefs, 
showing that investment incentives are  single-peaked in the time since a break-
through. The key step is to express the marginal value of  self-esteem as an integral 
of a series of dividends. Section IIB proves equilibrium existence, while Section IIC 
characterizes the  cross-sectional distribution of revenue. Section  IID simulates 
the model and decomposes the drivers of reputation into investment and selection 
effects. Finally, Section IIE shows how to use the model to quantify the impact of 
disclosure policies and minimum wages.

A. The Firm’s Problem

We begin with some preliminary observations about reputation and firm value for 
arbitrary pure market beliefs.

6 In a pure strategy equilibrium,   { x t  }   is decreasing and thus invertible, so our formulation with state variables   
(t, z)   is equivalent to a standard Markovian formulation with state variables   (x, z)  . We leverage the   (t, z)   formu-
lation when considering mixed-strategy equilibria with potentially  non-monotonic reputation   { x t  }   in Section IIB. 
In particular, if the market has mixed beliefs over Markovian investment strategies, reputation   x t    is not a sufficient 
statistic for market beliefs. In this case, one would have to keep track of the market’s belief about   z t   —that is, the 
market’s  second-order belief about quality.
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LEMMA 1: For any pure beliefs   ( a ̃  ,  τ ̃  )  ,

 (i) reputation   { x t  }   is continuous and strictly decreasing,

 (ii) an optimal strategy   ( a   ⁎ ,  τ   ⁎ )   exists and   τ   ⁎  < ∞ , and

 (iii) firm value  V (t, z)   strictly decreases in  t  and strictly increases in  z .

PROOF: 
Continuity of   { x t  }   follows by the fact that   x ˙   = g ( a ̃  , x)  , leveraging our assumption 

that the market makes no inference from failure to exit at   τ ̃   . Existence of an optimal 
strategy follows from standard compactness arguments in the proof of equilibrium 
existence, Theorem 2. Monotonicity of   { x t  }   and exit in finite time,   τ   ⁎  < ∞ , follow 
from the fact that reputational drift  g ( a ̃  , x)   is negative for  x >  z   †   and, by assump-
tion (4), that the firm exits before  x  reaches   z   †  . Since   { x t  }   falls in  t , so too does  
 V (t, z)  . Finally,  V (t, z)   rises in  z  since  self-esteem raises the chance of a break-
through that raises reputation and income. See Appendix AA for a formal argument 
on the last point. ∎

The optimal strategy is characterized by the firm’s Hamilton Jacobi Bellman 
(HJB) equation

(5)  rV (t, z)  =  max  
a
      [π ( x t  )  − c (a)  + g (a, z)  V z   (t, z)  

 +  V t   (t, z)  + μz (V (0, 1)  − V (t, z) ) ]    
+

  ,

where   y   +  ≔ max {y, 0}  , capturing the firm’s ability to exit for a continuation 
value of 0. Investment raises the firm’s quality, its  self-esteem, and thus its value. In 
particular, equation (3) implies that investment raises  self-esteem at rate  λ , so the 
marginal benefit of investing is  λ V z    (t,  z  t  

⁎ )   whenever this derivative exists. Optimal 
investment   a  t  

⁎  ∈  (0,  a – )   thus satisfies the  first-order condition

(6)  λ V z   (t,  z  t  
⁎ )  = c′ ( a  t  

⁎ )  

with   a  t  
⁎  = 0  if  λ V z   (t,  z  t  

⁎ )  < c′ (0)   and   a  t  
⁎  =  a –   if  λ V z   (t,  z  t  

⁎ )  > c′ ( a – )  .
To address the differentiability issue, observe that the firm’s value  V (t, z)   

is convex in  z . This follows because firm payoff for any fixed strategy   (a, τ)   is 
linear in  z , and  V (t, z)   is the upper envelope of such linear functions. Intuitively, 
convexity captures the value of information. For example, if the firm exits at   

(t, z)  , information about quality is valuable since good news raises  self-esteem 
and value while the option to exit protects the firm from bad news; that is,  
 0 = V (t, z − ϵ)  = V (t, z)  < V (t, z + ϵ)  . Convexity implies that even 
if the value function is not differentiable, it admits directional derivatives  
  V  z   −    (t, z) ,  V  z   +    (t, z)  .
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Given the  first-order condition (6), we need to understand the marginal value of 
 self-esteem. Our next result, the  workhorse of this paper, expresses   V z   (t,  z  t  

⁎ )   in terms 
of future reputational dividends.

LEMMA 2 (Marginal Value of Self-Esteem): If   V z   (t,  z  t  
⁎ )   exists, it equals

(7)  Γ (t)  ≔  ∫ 
t
  
 τ   ⁎ 

   e   − ∫ t  
s   (r+λ+μ (1− z  u  ⁎ ) ) du  μ [V (0, 1)  − V (s,  z  s  

⁎ ) ]  ds. 

More generally,   V  z   −    (t,  z  t  
⁎ )  ≤ Γ (t)  ≤  V  z   +    (t,  z  t  

⁎ )  .

PROOF. 
Equation (7) is an integral version of the adjoint equation for the firm’s control 

problem. It follows by differentiating firm payoff for a fixed strategy   ( a   ⁎ ,  τ   ⁎ )   with 
respect to the firm’s initial  self-esteem  z . This coincides with the (directional) deriv-
ative of the value function by the envelope theorem. See Appendix AB for details. ∎

Intuitively, quality and  self-esteem raise the probability of a breakthrough 
and, since they are persistent, pay off dividends over time. That is, incremental 
 self-esteem  dz  raises the probability of a breakthrough in   [s, s + ds]   by  μdzds , while 
the value of a breakthrough equals  V (0, 1)  − V (s,  z  s  

⁎ )  . We thus call the integrand  
 μ (V (0, 1)  − V (s,  z  s  

⁎ ) )   the reputational dividend of  self-esteem. The dividend stream 
from the increment  dz  depreciates for three reasons. First, time is discounted at 
rate  r ; second, at rate  μ  z  u  

⁎  , a breakthrough arrives at  u ∈  [t, s]  ,  self-esteem jumps 
to 1, and the increment disappears; third, reputational drift (3) is not constant in  z , 
and its derivative equals   g z   ( a  u  

⁎ ,  z  u  
⁎ )  = −  (λ + μ (1 − 2  z  u  

⁎ ) )  . Summing these three 
components yields the discounting term in (7).

If there is a single optimal strategy   ( a   ⁎ ,  τ   ⁎ )  , the derivative   V z   (t,  z  t  
⁎ )   exists and coin-

cides with  Γ (t)  . If there are multiple optimal strategies, then   V z   (t,  z  t  
⁎ )   does not exist 

and each solution gives rise to a different trajectory of  self-esteem   z  t  
⁎   and a different 

value of  Γ (t)  . However, for any   ( a   ⁎ ,  τ   ⁎ )  , equation (7) is  well-defined, bounded by 
the directional derivatives of  V , and describes the firm’s investment incentives given   

( a   ⁎ ,  τ   ⁎ )  . This implies the following necessary condition for optimal investment.

LEMMA 3 (Optimal Investment): Any optimal strategy   ( a   ⁎ ,  τ   ⁎ )   satisfies

(8)  λΓ (t)  = c′ ( a  t  
⁎ )  

with   a  t  
⁎  = 0  if  λΓ (t)  < c′ (0)   and   a  t  

⁎  =  a –   if  λΓ (t)  > c′ ( a – )   for almost all  t .7

7 Changing investment at a measure-zero set of times does not affect payoffs, so any statements about optimal 
investment hold only almost always; hereafter, we omit this qualifier. It can also be eliminated by restricting the firm 
to  forward-continuous strategies (see Board and  Meyer-ter-Vehn 2013).
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PROOF: 
For a fixed optimal strategy   ( a   ⁎ ,  τ   ⁎ )   with associated trajectory   { z  t  

⁎ }  , equation (7) 
captures the marginal benefit of increasing   z  t  

⁎  . So, if  λΓ (t)  > c′ ( a  t  
⁎ )   for a positive 

measure of times  t , then the firm could raise its payoff by raising its investment   a t    
at those times. ∎

THEOREM 1: For any pure beliefs   ( a ̃  ,  τ ̃  )  , optimal investment   { a  t  
⁎ }   is  single-peaked 

in the time since a breakthrough  t ;8 at the exit threshold,   a   τ   ⁎   
⁎   = 0 . The optimal exit 

time   τ   ⁎   satisfies

(9)  π ( x  τ   ⁎   )  + μ  z  τ   ⁎    V (0, 1)  = 0. 

PROOF: 
We wish to show that  Γ (t)   is  single-peaked in  t  with boundary conditions  

 Γ (0)  > 0 ,   Γ ˙   (0)  > 0  and  Γ ( τ   ⁎ )  = 0 . Taking the derivative of investment incen-
tives (7) and setting  ρ (t)  ≔ r + λ + μ (1 −  z  t  

⁎ )   yields the adjoint equation

(10)   Γ ˙   (t)  = ρ (t) Γ (t)  − μ (V (0, 1)  − V (t,  z  t  
⁎ ) ) . 

Now assume that  ρ (t)   and  V (t,  z  t  
⁎ )   are differentiable. Then   ρ ˙   (t)  = − μ   z ̇    t  

⁎   and  
  (d/dt) V (t,  z  t  

⁎ )  =   z ̇    t  
⁎  Γ (t)  +  V t   (t,  z  t  

⁎ )  ; in Appendix AC, we show that these func-
tions are indeed absolutely continuous and extend our arguments to that case. 
Differentiating (10),

(11)   Γ ¨   (t)  = ρ (t)  Γ ˙   (t)  +  ρ ˙   (t) Γ (t)  + μ   d _ 
dt

   V (t,  z  t  
⁎ )  = ρ (t)  Γ ˙   (t)  + μ  V t   (t,  z  t  

⁎ ) . 

Since   V t   (t,  z  t  
⁎ )  < 0 ,   Γ ˙   (t)  = 0  implies   Γ ¨   (t)  < 0 ; hence  Γ (t)   is  single-peaked, 

increasing or decreasing. To see that it is actually  single-peaked, observe 
that when  t = 0 , equation (7) implies  Γ (0)  > 0  because the integrand  
 μ (V (0, 1)  − V (s,  z  s  

⁎ ) )   is strictly positive for  s ∈  [0,  τ   ⁎ ]  . Equation (10) then implies   
Γ ˙   (0)  = ρ (0) Γ (0)  > 0 . Finally, when  t =  τ   ⁎  , equation (7) immediately implies 
that  Γ ( τ   ⁎ )  = 0 .

To understand the exit condition (9), recall that the firm’s value is given by 
(2) and that   { x t  }   is continuous and decreasing. When the firm shirks, its flow 
payoff is  π ( x t  )   and its option value of staying in the market has a flow value of  
 μ  z  t  

⁎  V (0, 1)  . Thus, if  π ( x t  )  + μ  z   τ   ⁎   
⁎   V (0, 1)  > 0 , the firm can raise its payoff by 

shirking and staying in the market. Conversely, if  π ( x  τ   ⁎   )  + μ  z   τ   ⁎   
⁎   V (0, 1)  < 0 , then  

 π ( x t  )  − c ( a t  )  + μ  z  t  
⁎  V (0, 1)  < 0  for  t  just before   τ   ⁎   and any investment   a t   , and the 

firm would have been better off exiting a little earlier. ∎

The evolution of investment incentives is shaped by two countervailing forces. 
Just after a breakthrough, an additional breakthrough has no value and the repu-
tational dividend is zero; investment incentives (7) depend on current and future 

8 Investment   a  t  
⁎   is  single-peaked if it increases on   [0, s]   and decreases on   [s,  τ   ⁎ ]   for some  s ∈  (0,  τ   ⁎ )  . 
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dividends, so  Γ (0)   is small but positive. As time progresses, future larger dividends 
draw closer and  Γ (t)   rises. At the other extreme, investment vanishes at the exit 
time   τ   ⁎   because there is no time left for the investment to pay off. That is, the benefit 
of investment is of the second order because both a technology shock and a break-
through must arrive in the remaining time interval for the investment to avert exit. In 
Sections IIIA and IIIB, we present two model variants where we switch off each of 
these forces in turn and show that investment incentives are, respectively, decreasing 
and increasing in the time since a breakthrough.

This intuition suggests that investment incentives are small at the extremes. 
More strongly, Theorem 1 shows that incentives are  single-peaked. A more precise 
intuition is as follows. As  t  rises, the firm foregoes the reputational dividends over   

[t, t + dt]  , as captured by the second term in (10). This negative effect becomes 
more important over time as the reputational dividend increases; this is captured 
by the negative term  μ (d/dt) V (t,  z  t  

⁎ )   in (11). On the upside, an increase in  t  brings 
future and larger dividends closer, as captured by the first term in (10). Ignoring the 
time dependence of  ρ (t)  , this positive effect becomes less important over time once 
incentives start decreasing. Thus, once incentives decrease, the negative effect keeps 
growing while the positive effect decreases, and so incentives decrease until exit.

When exit is imminent, the firm ceases to invest, accelerating its demise. This 
force can matter in practice: for example, Goldfarb (2007) argues that the brewer 
Schlitz realized that the rise of Miller would have a large impact on its future profit-
ability. This led it to disinvest in the brand by changing the preservatives, switching 
to lower-quality accelerated batch fermentation, and firing much of its marketing 
team. This pattern is not seen in classic models of industry dynamics like Jovanovic 
(1982) and  Bar-Isaac (2003) that abstract from investment, meaning the reputation 
of the firm is a martingale.

B. Equilibrium

So far we have studied a firm’s optimal strategy for arbitrary, pure beliefs   ( a ̃  ,  τ ̃  )  .  
In this section, we close the model by assuming that market beliefs are correct. Such 
equilibrium dynamics can take different forms. To illustrate this, suppose cost is 
linear:  c (a)  = ca  for  a ∈  [0,  a – ]  . By Lemma 3, optimal investment is  bang-bang 
with   a  t  

⁎  =  a –   when  λΓ (t)  > c  and   a  t  
⁎  = 0  when  λΓ (t)  < c . In any pure strategy 

equilibrium, Theorem 1 tells us that investment incentives  Γ (t)   are  single-peaked, 
so there are two cases.

When costs are low,  Γ (0)  > c = Γ ( t 1  )   for some   t 1   , the firm chooses  a =  a –   on   

[0,  t 1  ]   and  a = 0  on   [ t 1  , τ]  . We call this a “probationary equilibrium” since the mar-
ket assumes a firm invests for a fixed period of time after each breakthrough but then 
grows suspicious if no breakthrough is forthcoming. The firm’s reputation initially 
drifts down slowly, as the favorable beliefs about investment offset the bad news 
conveyed by the lack of breakthroughs. After enough time without a breakthrough, 
market beliefs turn against the firm and the perceived disinvestment hastens the 
firm’s decline.

When costs are high,  Γ (0)  < c = Γ ( t 0  )  = Γ ( t 1  )   for some   t 0   <  t 1   , the firm 
chooses  a = 0  on   [0,  t 0  ]  ,  a =  a –   on   [ t 0  ,  t 1  ]  , and  a = 0  on   [ t 1  , τ]  . Here, the firm’s 
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initial incentives  Γ (0)   are insufficient to motivate effort. After a breakthrough, the 
firm rests on its laurels because it has little to gain from an additional breakthrough. 
As its reputation and  self-esteem drop, it starts investing and works hard for its sur-
vival, but eventually gives up and shirks before exiting the market.

We now prove equilibrium existence. An equilibrium consists of a distribution 
over investment and exit strategies   (a, τ)   and a reputation trajectory   { x t  }   such that 
given   { x t  }  , all equilibrium strategies   (a, τ)   solve the firm’s problem (2), and repu-
tation   { x t  }   is derived from the firm’s strategy by Bayes’ rule whenever possible.9 
This definition allows for mixed strategies; Bayesian updating is more subtle with 
mixed beliefs since the market draws inferences from the fact that the firm has not 
exited. We spell out how to calculate the firm’s reputation with mixed strategies and 
define mixed-strategy equilibrium in Appendix AD. In contrast to the case of the 
pure beliefs in Section IIB, reputation   { x t  }   need not monotonically fall in  t , meaning 
that Theorem 1 may not apply.10

Fixing a candidate strategy   (a, τ)  , the marginal value of  self-esteem (7) and the 
 first-order condition (8) are necessary for optimality. However, these equations are 
not sufficient since they correspond to checking only “ one-step deviations on-path,” 
i.e., checking the HJB equation (5) for all   (t,  z t  )   rather than for all   (t, z)  . We must 
take this problem seriously since the firm’s investment exhibits dynamic comple-
mentarity: investment today raises tomorrow’s marginal benefit of  self-esteem and 
thus optimal investment. Formally, this follows from the convexity of value  V  in  z ; 
intuitively, today’s investment raises the firm’s time horizon and thereby its value 
from potential future breakthroughs. We thus do not use equations (7), (8) to con-
struct an equilibrium, but rather establish equilibrium existence with an abstract 
 fixed-point argument.

THEOREM 2: An equilibrium exists.

PROOF. 
The  best-response correspondence maps reputation   { x t  }   to sets of optimal strat-

egies   ( a   ⁎ ,  τ   ⁎ )  . Bayes’ rule maps distributions over strategies   (a, τ)   into reputation   

{ x t  }  . The  Kakutani-Fan-Glicksberg Theorem then yields a fixed point. The key step 
in the proof is to define the appropriate weak topology that renders the strategy space 
compact and the two correspondences continuous. See Appendix AD for details. ∎

9 This definition does not impose sequential optimality of strategy   (a, τ)   and thus corresponds to Nash equi-
librium rather than perfect Bayesian equilibrium. This is for notational convenience and is without loss. Indeed, 
the firm’s investment is unobservable, so deviations do not affect beliefs and reputation. Thus, any equilibrium is 
 outcome-equivalent to a perfect Bayesian equilibrium. In fact, all of the analysis in Section IIA starting at states  t,  z  t  

⁎   
extends immediately to optimal strategies starting at any state  t, z .

10 To understand the  non-monotonicity, assume that the firm mixes between two strategies: one with high invest-
ment   {  a –  t  }   and a late exit time   τ –  , and another with low   {   a _   t  }   and an early exit time   τ _  . When the firm fails to exit at   τ _   , 
the market infers that the firm has been investing according to   {  a –  t  }   and reputation jumps up. This particular mixed 
strategy cannot be an equilibrium since exit at time   τ _   is incompatible with the upward discontinuity of reputation. 
But for mixed strategies where the low   {   a _   t  }   firm randomizes smoothly over exit times, reputation rises gradually 
after   τ _  , which does not contradict equilibrium. 
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C. Steady-State Distribution

The reputational dynamics shape the distribution of reputation and income in the 
industry. Consider a continuum of  price-taking firms, such as that studied above, 
and assume that new firms enter the market continuously at rate  ϕ  with reputation 
drawn with density  h  on   [ x   e , 1]  , where   x   e  =  x  τ   ⁎     is the reputation at the exit time. 
Writing  g (x)  = g ( a   ⁎  (x) , x)   for equilibrium drift, the density of firms  f (x, t)   with 
reputation  x ∈  [ x   e , 1]   at time  t  is governed by the Kolmogorov forward equation11

(12)    ∂ _ ∂ t
   f (x, t)  = −   ∂ _ ∂ x

   [ f  (x, t) g (x) ]  − μx f (x, t)  + ϕh (x) . 

The second term captures the measure of firms experiencing a breakthrough, which 
takes their reputation from  x  to  1 . The third term captures firms entering at repu-
tation  x . To understand the subtler first term, suppose for simplicity that the drift 
is constant and negative,  g (x)  ≡ g < 0 , and that the density  f (x, t)   rises in  x . As 
more firms drift toward  x  from above than drift away below, the number of firms at  x  
rises. The same argument obtains when the density is constant,  f (x, t)  ≡ f (t)  , but 
the downward drift increases in  x ,  − g′ (x)  > 0 .

In steady state, the density of firms is constant,  f (x, t)  ≡ f (x)  , and the measure 
of entering firms exactly compensates for the measure of exiting firms whose rep-
utation drifts into the exit threshold,  ϕ = − g ( x   e ) f ( x   e )  . The total measure of firms 
depends on the choice of  ϕ , which we normalize so that   ∫  x   e   

1   f  (x)  dx = 1 . Setting the 
LHS of (12) to 0 and rearranging, we get

(13)  f ′ (x)  =     
g′ (x) 

 ______ − g (x) 
    f (x)  



   

drift  (−/+) 

    +     
μx
 _ − g (x) 

    f (x)  


   

jumps  (+) 

    −      
ϕh (x) 

 _ − g (x) 
   

⏟

   

entry  (−) 

    .

To understand this equation, suppose as a benchmark that firms drift down at a con-
stant rate  g (x)  ≡ g < 0 , there are no breakthroughs, and all entry is at  x = 1 . Thus 
all 3 terms on the  right-hand-side of (13) vanish, and so  f  ′ (x)  = 0 . Considering the 
three terms in sequence, the first captures the idea that firms accumulate where the 
downward drift is slowest, e.g., where the firm invests. The second term captures 
breakthroughs; these jumps prevent firms from reaching lower levels of reputation, 
and so  f ′ (x)  > 0 . The third term captures entry; so long as firms enter with repu-
tations below 1, the downward drift implies that firms accumulate at lower levels of 
reputation, and so  f ′ (x)  < 0 .

D. Simulation

In this section we simulate an equilibrium (see Figure 1Figure 1). This serves two pur-
poses. First, it illustrates the empirical features that the model can generate. Second, 
we use it as a  test case for policy experiments, proposing a method to decompose 
changes of average  steady-state reputation into investment and selection effects.

11 See, e.g., Kolmogorov (1931, eq. 179), Gardiner (2009, eq. 3.4.22), or Gabaix (2009, eq. 19), all of which 
include an additional Brownian term.
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This simulation considers a restaurant that has revenue of  $x  million a year, oper-
ating costs of  k = $500,000 , quadratic investment cost  c (a)  = 0.2  a   2  , an upper 
bound on investment   a –  = 0.8 , and an interest rate of  r = 20%  (incorporating a 
risk premium). Good news arrives when the restaurant is written up in the local 
paper; we set  μ = 1  so that a  high-quality restaurant is reviewed positively once a 
year, on average. Finally, we set  λ = 0.2 , so that technology shocks arrive every 

Figure 1. Equilibrium Simulation

Notes: Panels A and C show a firm’s value and investment on-path, where   x t   =  z t   . Panel B shows investment 
 incentives as a function of reputation   x t    and  self-esteem   z t   . Panel D shows a typical firm life cycle. Panels E and F 
show the  steady-state distribution of firms’ reputations and exit times, assuming firms enter with reputation uniform 
on   [ x   e , 1]   . We assume  π = x − k ,  k = 0.5 ,  r = 0.2 ,  c (a)  = 0.2  a   2  ,   a –  = 0.8 ,  λ = 0.2 , and  μ = 1 .
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5 years, on average. To make the figures easier to interpret, we adopt a Markovian 
perspective by replacing the firm’s state variable  t  with its time- t  reputation   x t   .

12

First, consider a single firm. Panel A illustrates the value function, which appears 
linear apart from the  smooth pasting at the exit point,   x   e  = 0.22 ; a firm with per-
fect reputation has value  V = 1.27 . Panel B shows investment incentives   V z    on 
the whole-state space   (x, z)  . One can see that   V z    increases in  z , illustrating the con-
vexity of the value function. Panel C shows investment along the equilibrium path 
where  x = z , which corresponds to the 45° line of Panel B; one can see that invest-
ment is  single-peaked (as in Theorem 1). Panel D then shows the typical life cycle 
of a firm. Over the first two years its reputation falls despite the firm investing; 
shortly before it would have exited, a breakthrough boosts its reputation to one. 
Over the next two years, the firm continues to maintain its  high quality and obtains 
a sequence of breakthroughs. Eventually, this string of successes comes to an end 
(perhaps because it switches to low quality, or perhaps because it is unlucky), and 
its reputation declines monotonically; ultimately, it exits   τ   ⁎  = 3.4  years after its 
last breakthrough.

We next consider the  cross-sectional distribution of revenue and longevity, 
assuming firms enter with reputation equal to  self-esteem and uniformly distrib-
uted on   [ x   e , 1]  . Panel E illustrates the distribution of revenue, showing that there 
are lots of firms at the top, with reputation  x ≈ 1 , and also slightly more firms at 
the exit point than in the middle. We can understand this using equation (13). The 
downward drift is relatively constant (see panel D), so the first term can be ignored; 
intuitively, the positive drift from investment  λ (a − x)   and the negative drift from 
market learning  μx (1 − x)   are both fastest in the middle and offset each other. The 
breakthroughs lead to lots of firms with reputation  x ≈ 1 , while the entrants with 
low reputation raise the number of firms with reputation   x   e  . Panel F then illustrates 
the distribution of exit times: 45 percent of all firms fail in the first 2 years.13

Quality and reputation derive from two sources: investment by incumbent firms and 
replacement of exiting firms by new firms. Since learning does not affect reputation 
in expectation, equation (3) implies that the average reputation of incumbent firms 
changes at rate  λ (a − x)  , which is negative in steady state. This decline must be off-
set by replacement, which is the product of the replacement rate  ϕ = − f ( x   e ) g ( x   e )    
times the expected boost in reputation   (1 −  x   e ) /2  when a new entrant with reputa-
tion  x ∼ U [  x   e , 1 ]   replaces an exiting firm with reputation   x   e  . Rearranging, we can 
decompose average reputation into the investment and replacement effects

(14)  E [ X ]  = E [ A ]  +   
ϕ _ λ     1 −  x   e  _ 

2
   , 

where the expectation is taken with respect to the  steady-state distribu-
tion  f  and  A = a (X)  . In our simulation, the average reputation  E [ X ]   is  0.74 , with 

12 To numerically solve for equilibrium, we start with a candidate investment strategy   { a   0  (x, z) }   and calculate 
reputation   { x t  }   given correct beliefs and the resulting payoffs   {V (x, z) }   via (2); we then derive optimal investment   
{ a   1  (t, z) }   via the  first-order condition (8). We iterate this process until it converges; the fixed point satisfies the 
HJB equation   (r + μz) V (x, z)  =  sup a     [π ( x t  )  − c (a)  + g ( a ̃  , x)   V x   (x, z)  + g (a, z)   V z   (x, z)  + μzV (1, 1) ]    +   and has 
correct beliefs:   a ̃   = a . Hence, it is an equilibrium. 

13 Coincidentally, Parsa et al. (2005) report that  40–50 percent of restaurants fail over their first 2 years. 
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52   percent coming from investment and 48  percent coming from replacement. 
Breaking down the latter term, the replacement rate equals  ϕ = 0.18 , implying 
an approximate life expectancy of  1 / ϕ = 5.6  years,14 while the mean jump from 
replacement is  0.39 .

E. Applications

Our model can help evaluate the impact of disclosure policies that aim to improve 
information in the marketplace. In the United States, these policies started with 
the 1906 Pure Food and Drug Act and the 1933 Securities Exchange Act and have 
become increasingly popular as a form of “light touch” regulation.15 For example, 
Jin and Leslie (2003, 2009) show that the introduction of restaurant health grades 
led to an increase in the quality of restaurants, especially for independent establish-
ments. Similarly, Kolstad (2013) shows that the introduction of surgeon report cards 
prompted surgeons to improve the quality of their services. The model can also be 
used to assess the impact of  third-party information providers that have substan-
tial impacts on their respective industries, such as Moody’s (bonds), TripAdvisor 
(hotels), Edmunds (cars), Zillow (houses), and Greatschools (schools). For exam-
ple, Luca (2016) shows that the introduction of Yelp pushed demand toward good 
restaurants and affected the selection of restaurants in the market.

Our paper provides a method to evaluate the impact of such changes. As a test 
case, recall the simulation in Section  IID and consider a 20  percent increase in 
the frequency of breakthroughs  μ  from  1  to  1.2 . The increased monitoring reduces 
moral hazard, raising maximum firm value  V  from  1.27  to  1.46 ; the higher option 
value then lowers the exit threshold   x   e   from  0.22  to  0.18 . Surprisingly, average repu-
tation  E [ X ]   rises only slightly, from  0.74  to  0.77 . But the decomposition (14) tells a 
different story. The faster learning boosts investment  E [ A ]   from  0.38  to  0.48 , while 
the exit rate  ϕ  drops from  0.18  to  0.14 . Investment now accounts for 63 percent of 
the mean reputation, whereas replacement accounts for 37 percent (compared to 
52–48 percent before). In addition to showing how faster learning raises the impor-
tance of investment over replacement, it provides a cautionary tale about inferring 
investment from the  steady-state reputation; we discuss how one can identify the 
model in Section IV.

The model is also useful to analyze other policies. For example, Luca and Luca 
(2018) find that an increase in the minimum wage raises the exit rates of restaurants 
with low ratings on Yelp, but has no effect on highly rated restaurants. Higher min-
imum wages correspond to an increase in operating costs in our model, which has a 
direct effect on selection by raising the exit threshold and also an indirect effect on 
investment by lowering profits; the reduction in believed investment then hastens the 
decline in reputation between breakthroughs and further shortens life expectancy. 
For example, a 20 percent rise in operating cost  k —from  0.5  to  0.6 —lowers the 

14 This  1 / ϕ  formula is approximate, as it assumes that exit is i.i.d. along a firm’s life cycle, but it will be useful 
to understand the effect of policy changes.

15 Fung, Graham, and Weil (2007) discuss over 130 rules that were introduced by the federal government over 
 1995–2005, such as policies about disclosing the likelihood of a car rolling over or the presence of toxic substances 
in workplaces.
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maximum firm value  V  from  1.27  to  0.68  and raises the exit threshold   x   e   from  0.22  
to  0.36 . Again, the mean  steady-state reputation is about the same ( 0.75  before and 
after), but the mean investment is much smaller ( 0.19  versus  0.38 ) and the exit rate 
is substantially higher ( 0.34  versus  0.18 ). Investment now accounts for 25  percent 
of mean reputation, whereas replacement accounts for 75  percent (compared to 
52–48 percent in the benchmark).

III. Two Model Variants

In this section, we consider two natural variants of our baseline model; these 
help us understand the two economic forces underlying the  single-peaked incen-
tives seen in Theorem 1. In Section IIIA, we suppose the market observes the firm’s 
investment. Thus, both the firm and the market symmetrically learn about the firm’s 
quality, but there is no moral hazard. We show that investment decreases in the 
time since a breakthrough, as the firm approaches bankruptcy. In Section IIIB, we 
suppose instead the firm knows its own quality in addition to its investment, while 
the market knows neither. We show that investment increases in the time since a 
breakthrough, as the benefit from a breakthrough grows.

A. Consumers Observe Firm’s Investment

Consider the baseline model and suppose that the market observes both the his-
tory of signals   h   t   and the firm’s past investment    { a s  }  s≤t   . Since the market has the 
same information as the firm, reputation and  self-esteem coincide,   x t   =  z t   ; we can 
thus write firm value as a function of  self-esteem alone. As in equation (2), we trun-
cate the firm’s flow payoffs at a breakthrough, yielding

(15)   V ˆ   ( z t  )  =  sup  
a, τ

     ∫ 
t
  
τ
   e   − ∫ t  

s   (r+μ z u  ) du  [π ( z s  )  − c ( a s  )  + μ  z s   V ˆ   (1) ]  ds. 

Since the firm controls both  self-esteem and reputation, the analysis of the equi-
librium reduces to a decision problem. Write   ( a ˆ  ,  τ ˆ  )   for the optimal strategy and  
  z ˆ   =  {  z ˆ   t  }   for the associated  self-esteem.

The analysis follows Section  II. The value function is strictly convex with 
derivative16

(16)   V ˆ   ′ ( z t  )  =  Γ ˆ   (t)  ≔  ∫ 
t
  
 τ ˆ  
   e   − ∫ t  

s   (r+λ+μ (1−  z ˆ   u  ) ) du  [π′ ( z s  )  + μ ( V ˆ   (1)  −  V ˆ   (  z ˆ   s  ) ) ]  ds. 

In any optimal strategy, investment satisfies

  λ Γ ˆ   (t)  = c′ (  a ˆ   t  )  

with    a ˆ   t   = 0  if  λ Γ ˆ   (t)  < c′ (0)   and    a ˆ   t   =  a –   if  λ Γ ˆ   (t)  > c′ ( a – )  .

16 See Appendix BA for a proof. The subsequent analysis implies that  V  is indeed differentiable.



62 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS MAY 2022

THEOREM 3: Investment    a ˆ   t    decreases in the time since a breakthrough; at the exit 
threshold,    a ˆ    τ ˆ     = 0 . Moreover, the optimal exit time satisfies

(17)  π (  z ˆ    τ ˆ    )  + μ   z ˆ    τ ˆ     V ˆ   (1)  = 0. 

PROOF:
Given assumption (4), drift  g ( a t  ,  z t  )   is boundedly negative on   [ z   † , 1]   and the firm 

exits before its reputation hits   z   †  . Since   z t    decreases and the value function is strictly 
convex,   Γ ˆ   (t)  =  V ˆ  ′ ( z t  )   strictly decreases in  t .   ∎

Intuitively, as the firm gets closer to the exit time, any investment pays off over 
a shorter horizon, reducing incentives. When compared to the baseline model with 
moral hazard, investment directly raises reputation, and hence income, in addition 
to raising  self-esteem and the chance of future breakthroughs. This additional direct 
benefit of investment is captured by the additional “direct dividend” of  π′ (z)   in (16), 
which is absent in (7). In the baseline model, investment initially increases over 
time after a breakthrough as the reputational dividends grow. Here we see incen-
tives monotonically decrease over time as the loss of direct dividends outweighs the 
growth of reputational dividends. This intuition also suggests that the elimination of 
moral hazard raises the level of investment and the exit time relative to the baseline 
model. In Appendix BB, we verify this intuition when  π (x)  = x − k  and  k  is suf-
ficiently large.

To illustrate the optimal strategy, we simulate it for the same parameters as the 
baseline model.17 The elimination of moral hazard raises the firm’s maximum value 
from  1.27  to  1.38  while lowering the exit threshold from  0.22  to  0.21 . Panel A of 
Figure  2Figure  2 shows that investment is increasing in reputation (see Theorem 3) and 
higher than investment in the baseline model (Figure 1, panel C) at every level of 
reputation. Together with the lower exit threshold, the higher investment lowers the 
downward drift and extends the time to exit  τ  from  3.4  to  5.4  years. Panel B shows 
the  steady-state distribution of revenue: the frequent breakthroughs and low down-
ward reputational drift at the top skew the distribution of firms toward high levels 
of reputation. There is little entry, so in contrast to the baseline model, the density 
monotonically decreases as we approach the exit point.

We can understand the quantitative differences with the baseline model using 
the reputation decomposition (14). Average  steady-state reputation is  0.87 , with 
89   percent coming from investment and 11  percent from replacement. Breaking 
down the replacement term, the exit rate drops to  0.04  (implying an approximate life 
expectancy of 22 years) while the average jump from replacement is  0.40 . All told, 
the elimination of moral hazard substantially increases investment and also reduces 
the exit rate, both of which raise the importance of investment over replacement. 

17 To simulate the equilibrium, we guess a  post-breakthrough value   V ˆ   (1)   and use the exit condition (17) to 
derive   x   e  . We then use the HJB equation to calculate values at each reputation, yielding a a  post-breakthrough value   
V ̃   (1)  . In equilibrium,   V ˆ   (1)   and   V ̃   (1)   coincide.
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These forces also account for the higher firm value, with the increase in life expec-
tancy being more important for the average firm.18

B. Firm Knows Its Own Quality

Consider the baseline model and suppose the firm observes its own quality. As 
before, the market learns from public breakthroughs and maintains beliefs about the 
firm’s investment and quality. Crucially, the firm’s exit decision is now a signal of 
its quality, since  high-quality firms are more valuable and stay in business longer.

We focus on strategies that depend on the time since the last breakthrough,  
 t , and on current quality. Formally, such a strategy consists of an investment 
plan   a   θ  =  { a  t  

θ }   and an exit time   τ   θ   for  θ = L, H . To analyze firm value for an 
arbitrary trajectory of reputation   { x t  }  , we truncate its cash flow expansion at the 
first technology shock, obtaining

(18)  

 V ˇ   (t, θ)  =  sup  
 a   θ , τ   θ 

     ∫ 
t
   τ   θ    e   − (r+λ)  (s−t)   [ π ( x s  )  − c ( a  s  

θ )  + λ ( a  s  
θ  V ˇ   (s, H)  +  (1 −  a  s  

θ )  V ˇ   (s, L) )  

  + μθ ( V ˇ   (0, H)  −  V ˇ   (s, H) )  ]  ds  , 

where the last term captures the value of breakthroughs with present value  
  V ˇ   (0, 1)  −  V ˇ   (s, 1)   and arrival rate  μθ .

18 As a back-of-the-envelope calculation, in the benchmark model the average value is approximately  
 E [x − k − c (a) ]  /  (r + ϕ)  = 0.21 / 0.38 = 0.55 , where the expectation is the mean  steady-state value. With 
observed investment, we have  E [x − k − c (a) ]  /  (r + ϕ)  = 0.25 / 0.24 = 1.02 . Thus, the majority of the increase 
in the average firm value comes from the increase in life expectancy.

Figure 2. Consumers Observe Firms’ Investment

Notes: Panel A shows a firm’s investment. Panel B shows the  steady-state distribution of firms’ reputations, assum-
ing firms enter with reputation uniform on   [  x ˆ     e , 1]  . Parameters are the same as Figure 1.
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Writing   Γ ˇ   (t)  =  V ˇ   (t, H)  −  V ˇ   (t, L)   for the value of quality, optimal investment    a ˇ    t  θ   
is thus characterized by the  first-order condition

(19)  λ Γ ˇ   (t)  = c′ (  a ˇ    t  θ )  ,

with    a ˇ    t  θ  = 0  if  λ Γ ˇ   (t)  < c′ (0)   and    a ˇ    t  θ  =  a –   if  λ Γ ˇ   (t)  > c′ ( a – )  . Importantly, opti-
mal investment    a ˇ    t  θ   is independent of the firm’s quality, allowing us to drop the  
superscript  θ . Intuitively, investment only pays off if there is a technology shock, in 
which case the firm’s current quality is irrelevant.

Equilibrium strategies   ( a ˇ  ,   τ ˇ     θ )   and reputation   { x t  }   are defined as in Section IIB. 
We restrict attention to equilibria where   { x t  }   is continuous and weakly decreasing.19

THEOREM 4: There exists an equilibrium with continuous and weakly decreasing 
reputation   { x t  }   and pure investment   {  a ˇ   t  }  . In any such equilibrium, the exit time of 
the  low-quality firm    τ ˇ     L   has support   [ τ _ , ∞)   for some   τ 

¯
   > 0 . Reputation and firm 

value are constant for  t ∈  [ τ _ , ∞)   and satisfy

(20)  π ( x t  )  +  max  
a
    [aλ V ˇ   (t, H)  − c (a) ]  = 0. 

The  high-quality firm never exits; i.e.,    τ ˇ     H  = ∞ . Investment    a ˇ   t    increases over   [0,  τ _ ]   
and remains constant thereafter.

PROOF: 
Exit behavior follows from  Bar-Isaac (2003, Proposition 2).  Low-quality firms 

start to exit at some time   τ _  : if all  low-quality firms exited at   τ _  , reputation would 
jump to 1, undermining equilibrium. Hence,  low-quality firms randomize, exiting 
at a constant rate  ψ ; this places a lower bound on reputation, allowing  high-quality 
firms to stay in the market. See Appendix BC for details. Existence follows by the 
 Kakutani-Fan-Glicksberg  fixed-point theorem, as shown in Appendix BD.

We now show that investment increases over time. Since a  low-quality firm is 
indifferent at the exit threshold, it can achieve its value by remaining in the market 
indefinitely, thereby following the same strategy as the  high-quality firm. Subtracting 
the value of high-value and low-value firms (18), we obtain the following expres-
sion for the equilibrium value of quality:

(21)   Γ ˇ   (t)  =  V ˇ   (t, H)  −  V ˇ   (t, L)  =  ∫ 
t
  
∞

   e   − (r+λ)  (s−t)   μ [ V ˇ   (0, H)  −  V ˇ   (s, H) ]  ds .

The integrand in (21) represents the reputational dividend of quality: high quality 
gives rise to future breakthroughs that arrive at rate  μ  and boost the firm’s reputation 
to one; these dividends depreciate at both the  time-discount rate  r  and the quality 
obsolescence rate  λ . As  s ∈  [0,  τ _ ]   rises, the firm’s value   V ˇ   (s, 1)   falls and  reputational 

19 As in footnote 3, the substantial part of this restriction is to rule out downward jumps in reputation. Indeed, 
for any  t , there exists an equilibrium where the firm exits at time  t  and failure to exit is punished by  off-path market 
beliefs that quality is low, dropping reputation to 0 and justifying the firm’s exit. We ignore such equilibria because 
it is implausible for the market to interpret failure to exit as a signal of low quality.
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dividends   V ˇ   (0, 1)  −  V ˇ   (s, 1)   grow. Hence, an increase in  t  leads to an increase in the 
value of quality (21) and in investment via the  first-order  condition (19).   ∎

Intuitively, breakthroughs are most valuable to a firm with low reputation since a 
breakthrough takes the firm from its current reputation to  x = 1 . These increasing 
investment incentives are in sharp contrast to the  single-peaked,  eventually vanish-
ing investment incentives in Theorem 1. In the baseline model, the firm gives up near 
the exit threshold and coasts into bankruptcy; with  privately known quality, the firm 
fights until the bitter end. Recall that with unknown quality, the firm’s investment 
at times  t ∈  [ τ   ⁎  − dt,  τ   ⁎ ]   pays off only if a technology shock arrives and a break-
through arrives that averts exit. The probability of this joint event is of order  d  t   2  , 
hence the expected gain eventually falls short of the investment costs. With known 
quality, only a technology shock is required for investment to pay off because the 
boost in quality is immediately observed by the firm, averting exit. Thus, investment 
incentives are of order  dt  at all times and are actually maximized when the firm is 
about to exit.20

To illustrate the equilibrium, Figure  3Figure  3 simulates the model for the same  
parameters as in Figure 1.21 Panel A shows the value functions for the high-qual-
ity and  low-quality firms; these are only defined on   [  x ˇ     e , 1]  , since reputation never 
falls below    x ˇ     e  =  x  τ _    . Interestingly, the value after a breakthrough is lower in the 
baseline model ( 1.14  versus   1.27 ), while the average  steady-state value is some-
what higher ( 0.77   versus   0.55 ).22 Intuitively,  high-reputation firms are better off 
in the baseline model since investment is high and they are a long way from the 
exit threshold, whereas the average firm is better off in the  known-quality model 
since the signaling effect of remaining in the market props up firm value. Panel B 
shows that investment falls in reputation (see Theorem 4), and that investment at a 
given reputation is a little lower than in the baseline model. Panel C shows a typ-
ical life cycle. The firm’s reputation quickly hits the exit threshold   (  x ˇ     e  = 0.47)  , 
where reputation is constant, as the quitting of  low-quality firms offsets the neg-
ative inference from lack of a breakthrough; it then obtains a sequence of break-
throughs before its reputation once again declines, and it eventually exits. At 
the threshold,  low-quality firms exit at rate  ψ = 0.49 . From the market’s per-
spective, firms at    x ˇ     e   exit at rate   (1 −   x ˇ     e ) ψ = 0.26  and receive breakthroughs at 
rate    x ˇ     e μ = 0.47  and so remain at the exit threshold for  1.37  years. The overall exit 
rate multiplies the conditional exit rate  ψ  with the number of low firms at the exit  

20 One may wonder how to bridge these starkly different predictions about investment behavior at the exit 
threshold. In Appendix BE, we propose a model with imperfect private information that includes known and 
unknown quality as extreme cases. As with unknown quality, we argue that as long as private quality information 
is imperfect, investment vanishes at the exit threshold. However, the “invest until the bitter end” insight of the 
 known-quality variant is also robust in the sense that as the private information becomes perfect, the time interval 
over which investment vanishes shrinks to zero. 

21 To simulate the equilibrium, we guess a  post-breakthrough value   V ˇ   (0, H)   and use the HJB equation and the 
exit condition (20) to derive the exit threshold and the values at   x   e  . We then use the HJB equation to calculate values 
at each reputation, yielding a a  post-breakthrough value   V ̃   (0, H)  . In equilibrium,   V ˇ   (0, H)   and   V ̃   (0, H)   coincide.

22 These average  steady-state numbers come from the following approximation. In the baseline model, the 
 average value is roughly  E [x − k − c (a) ]  /  (r + ϕ)  = 0.21 / 0.38 = 0.55 . With known quality, we have  
 E [x − k − c (a) ]  /  (r + ϕ)  = 0.23 / 0.29 = 0.77 , so higher average values primarily result from the lower exit 
rate.
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point,  ϕ =  (1 −   x ˇ     e ) ψF (  x ˇ     e )  = 0.10 , implying an  approximate life expectancy of 
10 years. Finally, panel D shows the  steady-state distribution of firms’ reputations. 
Equation (13) implies that density is decreasing in reputation over   (  x ˇ     e , 1]   as a result 
of the breakthroughs; the 0 drift at    x ˇ     e   then results in a mass of firms at the exit 
threshold.

We can understand the quantitative differences with the benchmark model by 
decomposing average reputation. Relative to equation (14), there is now a third, 
signaling term supporting the firm’s reputation. Since  low-quality firms at the exit 
threshold exit at rate  ψ , failure to exit is good news; this induces an upward drift 
of  ψ   x ˇ     e  (1 −   x ˇ     e )   on the  F (  x ˇ     e )   firms at the cutoff. All told, 

  E [ X ]  = E [ A ]  +   
ϕ _ λ     1 −   x ˇ     e  _ 

2
   +   

ψ _ λ     x ˇ     e  (1 −   x ˇ     e ) F (  x ˇ     e ) . 

In Figure 3, the average  steady-state reputation is 0.75, with 49 percent coming from 
investment, 17 percent from replacement, and 34 percent coming from signaling.

Figure 3. Firm Knows Its Quality

Notes: Panels A and B show a firm’s value and investment. Panel C shows a typical firm life cycle. Panel D 
shows the  steady-state distribution of firms’ reputations, assuming firms enter with reputation uniform on   [  x ˇ     e , 1]  . 
Parameters are the same as Figure 1.
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IV. Discussion

We have proposed a model in which firms make optimal investment and exit deci-
sions while the market learns about the quality of the firm’s product. We characterize 
investment incentives and show they are  single-peaked in the firm’s reputation. This 
yields predictions about the distribution of firms’ reputations and the turnover rate. 
The model follows the spirit of Ericson and Pakes (1995), and we hope that it can 
be used as a framework for empirical work. For example, it could be used to study 
the rise and fall of new restaurants or the incentives for surgeons to invest in their 
skills. Here we briefly discuss how one might identify the model and two important 
extensions: competition and Brownian learning.

Identification:  To illustrate how to identify the model parameters, suppose we 
observed data generated by the baseline model with  π (x)  = x − k . Given a time 
series of   x t    (i.e., reputation or revenue data), one can identify  μ  from the frequency 
of jumps,  λ  from the drift at   x   e  , and  on-path investment  a (x)   via the drift of   x t    else-
where. Calibrating the interest rate, one can then uniquely identify the operating 
cost  k  from the exit condition (9) and the investment cost function  c ( · )   from the 
 first-order condition (8). See Appendix BF for details. Alternatively, one could use 
accounting data to shed light on costs or aggregate data like the distribution of firms’ 
reputations and the distribution of exit rates.

Competition:  Our firm operates in isolation, but the analysis extends to a compet-
itive market that is in steady state, such as the restaurant industry. There are several 
ways of modeling this. In Atkeson, Hellwig, and Ordoñez (2014), agents consume 
a little of each good. Income is then  π (x)  = p  x t   − k , where the price  p = P 

(∫  x i, t   di)   is determined by aggregate reputation. One can then model entry by hav-
ing an exogenous inflow or letting potential entrants pay a cost and draw an initial 
reputation. In Vial and Zurita (2017) there is mass one of agents, each of whom 
consumes the output of one firm. In equilibrium, mass one of firms operate with 
exiting firms balancing the flow of new entrants who, for example, arrive exoge-
nously with random reputation. Income is then  π (x)  =  p 0   + x − k , where   p 0    is 
determined by the zero-profit condition of the exiting firm. Alternatively, following 
Dixit and Stiglitz (1977), one could embed our reputation model into monopolistic 
competition, where firm  i ’s  reduced-form flow profits   π i   ( x i  ,  x −i  )   depend on its own 
reputation   x i    and the ( stationary) distribution of its competitor’s reputations   x −i   . 
While competition does not affect the shape of incentives (i.e., Theorem 1), it can 
change the impact of policies via the endogenous prices. For example, a disclosure 
policy that would previously raise average reputation and reduce exit would lower 
prices, raise the exit threshold, and attract entry.

Alternatively, one can explicitly consider strategic interaction in the product 
market via a model of oligopoly. For example, consider a duopoly where a firm’s 
 flow-profits  π (x, y)   depend on its competitor’s reputation  y  as well as own reputa-
tion  x . Such  reduced-form profits might be derived from static Bertrand competi-
tion via  π (x, y)  =   (x − y)    +   or a logit demand model (e.g., Anderson, De Palma, 
and  Thisse 1992). Adopting a Markovian perspective, assume that firms are 
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believed to follow symmetric strategies   a ̃   (x, y)  . Firm value is then a function of 
both firms’ reputations and its own  self-esteem and is thus governed by the follow-
ing HJB equation:

  rV (x, y, z)  =  max  
a
     [  [π (x, y)  − k − c (a) ]  + μy [V (x, 1, z)  − V (x, y, z) ]  

 + μz [V (1, y, 1)  − V (x, y, z) ]  + g ( a ̃   (x, y) , x)   V x   (x, y, z) 

 + g ( a ̃   (y, x) , y)  V y   (x, y, z)  + g (a, z)   V z   (x, y, z)  ]    
+
 . 

Thus, the firm’s optimal investment  a (x, y, z)   satisfies the usual  first-order condi-
tion,  c′ (a (x, y, z) )  = λ V z   (x, y, z)  , while beliefs in a (pure strategy) equilibrium 
are given by   a ̃   (x, y)  = a (x, y, x)  . The qualitative nature of investment incentives 
derived for the monopoly model generalize to this oligopoly model. Specifically, 
one can show that a firm’s incentives increase after a breakthrough—since an imme-
diate, additional breakthrough has no value—and vanish when reputation is close to 
the exit boundary and the firm’s life span is short.

Information Structure:  Our paper assumes that the market learns via a perfect 
good news process, which is particularly tractable: it allows us to prove equilibrium 
existence and delivers robust intuitions about how investment varies with reputation 
(see below). It also provides reasonable predictions about some aggregate distribu-
tions (e.g., the distribution of firms’ Yelp scores and exit rates). However, revenue 
data with a  right-skewed distribution or continuous time paths might call for more 
continuous models of learning. Such models are easy to simulate and have similar 
qualitative properties to the perfect good news model.

To be specific, consider a model variant where instead of the breakthroughs, the 
market and firm observe Brownian signals of quality  d  ξ t   =  μ B    θ t   + d  W t   ; otherwise, 
the model is as in Section I. A firm’s reputation and  self-esteem evolve according to

  d  x t   = g ( a t  ,  x t  ,  z t  ) dt + σ ( x t  ) d  W t   ,

  d  z t   = g ( a t  ,  z t  ,  z t  ) dt + σ ( z t  ) d  W t   ,

with drift  g (a, x, z)  = λ (a − x)  +  μ B   x (1 − x)  (z − x)   and volatility  σ (x)  
=  μ B   x (1 − x)  . Given Markovian beliefs   a ̃   (x)  , the value function is  determined by 
the HJB equation

  rV (x, z)  =  max  
a
     [  [π (x)  − k − c (a) ]  + g ( a ̃  , x, z)  V x   (x, z)  + g (a, z, z)  V z   (x, z)  

 +    1 _ 
2
   σ   (x)    2   V xx   (x, z)  +   1 _ 

2
   σ   (z)    2   V zz   (x, z)  + σ (x) σ (z)   V xz   (x, z) ]    

+
 . 

Again, the firm’s optimal investment  a (x, z)   satisfies the usual  first-order condition,  
 c′ (a (x, z) )  = λ V z   (x, z)  , while beliefs in a (pure strategy) equilibrium are given 
by   a ̃   (x)  = a (x, x)  . The qualitative nature of investment incentives derived for the 
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perfect good news model generalize to this Brownian learning process. Specifically, 
one can show that a firm’s incentives are decreasing in  x  when its reputation is 
high,  x ≈ 1 , and vanish when its expected life span is short,  x ≈  x   e  .23

Alternatively, one could assume a Poisson signal structure with imperfectly 
revealing signals. A Poisson learning process with imperfect good news is quali-
tatively similar to perfect good news or Brownian learning. By contrast, Poisson 
learning with bad news may exhibit investment at low reputations. Intuitively, repu-
tational drift at the exit cutoff may be positive (in the absence of a signal), meaning 
that life expectancy does not vanish. Ultimately, the appropriate model depends on 
the news structure that is generating the data and the policies one wishes to investi-
gate. For example, a Poisson model allows one to study the effect of giving awards 
to the best surgeon (adding good news signals) or flagging the worst (adding bad 
news signals).

Appendix A. Mathematical Appendix: Proofs from Section III

A. Monotonicity of Value Function in Lemma 1

Here we adapt arguments from Board and  Meyer-ter-Vehn (2013) to show that 
for strictly decreasing reputation   { x t  }  , firm value  V (t, z)   strictly decreases in  t  and 
strictly increases in  z  on   { (t, z)  : V (t, z)  > 0}  .

Fix  t ≥ t′  and  z ≤ z  and consider a “low” firm with initial state   (t, z)   and a “high” 
firm with initial state   (t′, z′)  . We can represent the firm’s uncertainty as an increasing 
sequence of potential breakthrough times    { t i  }  i∈ℕ    that follow a Poisson distribution 
with parameter  λ  and a sequence of uniform   [0, 1]   random variables    { ζ i  }  i∈ℕ    with 
the interpretation that the firm experiences an actual breakthrough after time  σ  (that 
is, at time  t + σ  for the low firm and at time  t′ + σ  for the high firm) if  σ =  t i    for 
some  i  and   ζ i   ≤  Z t−   . Fixing any realization of uncertainty    { t i  ,  ζ i  }  i∈ℕ   , let   ( { A  σ  ⁎  } ,  T   ⁎ )   
be the low firm’s optimal strategy given this realization and assume that the high 
firm mimics this strategy.24 Given   { t i  ,  ζ i  }   and   ( { A  σ  ⁎  } ,  T   ⁎ )  , we can compute the repu-
tations and  self-esteem of the low and high firms   ( X σ  ,  Z σ  )   and   ( X  σ  ′  ,  Z  σ  ′  )  , respectively, 
for any  σ ≥ 0 . We now argue inductively that

(A1)   X σ   ≤  X  σ  ′   and  Z σ   ≤  Z  σ  ′   

for any  σ <  t i    and any  i ∈ ℕ . For  i = 1  ( σ ∈  [0,  t 1  )  ), we have  
  X σ   =  x t+σ   <  x t′+σ   =  X  σ  ′    because   { x t  }   decreases and the  self-esteem trajecto-
ries   Z σ  ,  Z  σ  ′    are governed by the ODE   z ̇   = g (a, z)  , implying (A1) for  σ ∈  [0,  t 1  )  . 
At  σ =  t 1   , the low (high) firm experiences a breakthrough if   ζ 1   ≤  Z σ−    (  ζ 1   ≤  Z  σ−  ′   ). 

23 The key step in this argument is to generalize the representation of investment incentives in terms of repu-
tational dividends (7) to these learning processes. Just as with perfect good news learning, at the top,  x = 1 , the 
reputational dividend vanishes, and so investment falls; at the bottom,  x =  x   e  , the time to exit   τ   ⁎   vanishes, and so, 
too, does investment.

24 Note that, unlike everywhere else in this paper, this strategy for the high firm is not a solely a function of the 
time since its last breakthrough. Rather, it is a function of the time since the low firm’s last breakthrough, while the 
high firm may have experienced additional breakthroughs in the meantime due to its high quality.
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As   Z σ−   ≤  Z  σ−  ′   , we get (A1) for  σ =  t 1   . Inductive application of these steps yields 
(A1) for all  σ . Thus, by mimicking the low firm’s optimal strategy   ( { A  σ  ⁎  } ,  T   ⁎ )   for any 
realization   { t i  ,  ζ i  }  , the high firm can guarantee itself weakly higher profits  π ( X  σ  ′  )  − c 

( A  σ  ⁎  )   at all times  σ , implying  V (t′, z′ )  ≥ V (t, z)  . As long as firm value is strictly 
positive and the firms do not exit immediately, the inequality   X σ   ≤  X  σ  ′    is strict for 
a positive measure of times with positive probability, implying  V (t′, z′ )  > V (t, z)  .

B. Proof of Lemma 2

Fix time  t ,  self-esteem   z t   , firm strategy   (a, τ)   (not necessarily optimal), 
write  z =   { z s  }  s≥t    for future  self-esteem, and let

(A2)  Π (t,  z t  )  =  ∫ 
s=t

  
τ
    e   − ∫ t  

s   (r+μ z u  ) du  [π ( x s  )  − c ( a s  )  + μ  z s   Π (0, 1) ]  ds 

be the firm’s continuation value, where the integral of the  cash flows is truncated at 
the first breakthrough as in (2). We will show that  Π (t, z)   is differentiable in  z  with 
derivative

(A3)   Π z   (t,  z t  )  =  ∫ 
s=t

  
τ
     e   − ∫ t  

s   (r+λ+μ (1− z u  ) ) du  μ [Π (0, 1)  − Π (s,  z s  ) ]  ds. 

Equation (7) then follows, by the envelope theorem, Milgrom and  Segal (2002, 
Theorem 1). To show (A3), we first recall two facts from Board and  Meyer-ter-Vehn 
(2013).

CLAIM 1: For any bounded, measurable functions  ϕ, ρ :  [ 0, τ ]  → ℝ , the function

(A4)  ψ (t)  =  ∫ 
t
  
τ
   e   − ∫ t  

s  ρ (u) du  ϕ (s)  ds 

is the unique solution to the integral equation

(A5)  f (t)  =  ∫ 
s=t

  
τ
    (ϕ (s)  − ρ (s)  f  (s) )  ds  .

This is proved for  τ = ∞  and constant  ρ  in Board and   Meyer-ter-Vehn (2013, 
Lemma 5). The proof generalizes immediately to finite  τ  and measurable functions  
 ρ (t)  .

CLAIM 2: For any times  s > t  and fixed investment  a , time- s   self-esteem   z s    is 
 differentiable in time- t   self-esteem   z t    . The derivative is

    
d  z s   _ 
d  z t  

   = exp (−  ∫ 
u=t

  
s
    (λ + μ (1 − 2  z u  ) )  du) . 

This follows by the same arguments as in Board and   Meyer-ter-Vehn (2013, 
Lemma 8b).
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PROOF OF LEMMA 2: 
Setting  ψ (s)  =  e   −r (s−t)   Π (s,  z s  )  ,  ρ (s)  = μ z s   , and  ϕ (s)  =  e   −r (s−t)   ( x s   − c ( a s  )  − 

k + μ  z s   Π (0, 1) )  , equation (A2) becomes (A4). Applying Claim 1, we get (A5), 
which becomes

  Π (t,  z t  )  =  ∫ 
s=t

  
τ
     e   −r (s−t)   [π ( x s  )  − c ( a s  )  + μ  z s   (Π (0, 1)  − Π (s,  z s  ) ) ]  ds  .

Taking the derivative with respect to  z  at  z =  z t    and applying Claim 2, we get

   Π z   (t,  z t  )  =  ∫ 
s=t

  
τ
     e   −r (s−t)     

d  z s   _ 
d  z t  

    [μ (Π (0, 1)  − Π (s,  z s  ) )  − μ  z s    Π z   (s,  z s  ) ]  ds 

 =  ∫ 
s=t

  
τ
     e   − ∫ t  

s   (r+λ+μ (1−2 z u  ) ) du  [μ (Π (0, 1)  − Π (s,  z s  ) )  − μ  z s    Π z   (s,  z s  ) ]  ds. 

Setting  ρ (s)  = μ  z s   ,  ϕ (s)  =  e   − ∫ t  
s   (r+λ+μ (1−2 z u  ) ) du  μ (Π (0, 1)  − Π (t,  z s  ) )  , and  

 f (s)  =  e   − ∫ t  
s   (r+λ+μ (1−2 z u  ) ) du   Π z   (s,  z s  )  , the previous equation becomes (A5).  

Applying Claim 1, we get (A4), which becomes

   Π z   (t,  z t  )  =  ∫ 
t
  
τ
   e   − ∫ t  

s  μ z u  du   e   − ∫ t  
s   (r+λ+μ (1−2 z u  ) ) du  μ [Π (0, 1)  − Π (t,  z s  ) ]  ds, 

implying (A3). ∎

C. Differentiability in Proof of Theorem 1

This Appendix relaxes the assumption that value functions are differentiable 
in the proof of Theorem 1. We first establish that whenever the partial derivative  
  V t   (t,  z  t  

⁎ )   exists, it is equal to

(A6)  Ψ (t)  ≔  ∫ 
t
  
 τ   ⁎ 

   e   − ∫ t  
s   (r+μ z  u  ⁎ ) du  dπ ( x s  ) . 

Moreover,  Ψ (t)  < 0  for  t <  τ   ⁎  .
Rewrite the firm’s continuation value (2) by writing  σ = s − t  for the time 

since  t  and   ( { a  σ  ⁎  } ,  ζ   ⁎ )   for the optimal strategy starting at  t . Then,

  V (t,  z  t  
⁎ )  =  ∫ 

σ=0
  

 ζ   ⁎ 
     e   − ∫ 0  

σ   (r+μ z  t+u  ⁎  ) du  [π ( x t+σ  )  − c ( a  σ  ⁎  )  + μ  z  t+σ  ⁎   V (0, 1) ]  dσ. 

As   z  t+σ  ⁎    is determined by initial  self-esteem   z  t  
⁎   and   { a  σ  ⁎  }  , it is independent 

of  t . The envelope theorem thus yields (A6). As  π′ > 0  and   { x t  }   strictly decreases,  
 dπ ( x s  )  < 0  and hence  Ψ (t)   must be negative.

Next, the discount rate  ρ (t)  = r + λ + μ (1 −  z  t  
⁎ )   is  Lipschitz continuous, with 

derivative  μ   z ̇    t  
⁎   where    z ̇    t  

⁎  = g ( a  t  
⁎ ,  z  t  

⁎ )  = λ ( a  t  
⁎  −  z  t  

⁎ )  − μ  z  t  
⁎  (1 −  z  t  

⁎ )   for almost all  t . 
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Firm value as a function of time  t ↦ V (t,  z  t  
⁎ )   is also Lipschitz continuous, with 

derivative   (d/dt) V (t,  z  t  
⁎ )  = Ψ (t)  +   z ̇    t  

⁎  Γ (t)   for almost all  t .
Now assume that   Γ ˙   (t)  ≤ 0 . Then

   Γ ˙   (t + ε)  −  Γ ˙   (t)  =  ∫ 
t
  
t+ε

    d _ 
ds

   [ρ (s) Γ (s)  − μ (V (0, 1)  − V (s,  z  s  
⁎ ) ) ]  ds 

 =  ∫ 
t
  
t+ε

   [ρ (s)  Γ ˙   (s)  +  ρ ˙   (s) Γ (s)  + μ  d _ 
ds

  V (s,  z  s  
⁎ ) ]  ds 

 =  ∫ 
t
  
t+ε

   [ρ (s)  Γ ˙   (s)  − μ   z ̇    s  
⁎  Γ (s)  + μ (Ψ (s)  +   z ̇    s  

⁎  Γ (s) ) ]  ds 

 =  ∫ 
t
  
t+ε

   [ρ (s)  Γ ˙   (s)  + μΨ (s) ]  ds. 

Since  Ψ (s)  < 0 ,   Γ ˙   (t)  ≤ 0  and   Γ ˙   (s)   and  ρ (s)   are continuous, the integrand is 
strictly negative for small  ε , so   Γ ˙    strictly decreases on some small interval   [t, t + ε)  . 
If  Γ  did not strictly decrease on   [t,  τ   ⁎ ]  , there would exist  t′ > t  with   Γ ˙   (t′)  < 0  and  
  Γ ˙   (t′ + ε)  ≥  Γ ˙   (t′)   for arbitrarily small  ε , which is impossible by the above 
argument. 

D. Proof of Theorem 2

Preliminaries:  We first define mixed strategies. Write mixed beliefs 
over the firm’s investment   a ̃   =  {  a ̃   t  }   and exit time   τ ̃    as  F = F ( a ̃  ,  τ ̃  )  .  
Let  τ (F)  ≔ min {t : F ( τ ̃   ≤ t)  = 1}   be the first time at which the market expects 
the firm to exit with certainty. Writing   E   F   for expectations under  F , the firm’s rep-
utation is given by   x t   =  E   F  [ θ t   |  h   t ,  τ ̃   >t]   for all  t < τ  (F)  . Since breakthroughs 
arrive with intensity  μ  z s   ( a ̃  )  , the probability of no breakthrough before time  t  equals  
  w t   ( a ̃  )  ≔ exp (− μ ∫ 0  

t    z s   ( a ̃  )  ds)  . Bayes’ rule then implies

(A7)   x t   =   
 E   F  [ z t   ( a ̃  )   w t   ( a ̃  )   1  {t< τ ̃  }   ] 

  _________________  
 E   F  [ w t   ( a ̃  )   1  {t< τ ̃  }   ] 

  , for all t < τ (F) . 

When the firm fails to exit—that is, at times  t ≥ τ (F)  —the market revises its 
beliefs about quality   x t    in an arbitrary, measurable manner consistent with the tim-
ing of the last breakthrough

(A8)     x ¯   t   ≤  x t   ≤   x –  t  , for all t ≥ τ (F)  ,

where     x _   t    solves the law of motion for zero investment   x ˙   = g (0, x)   and    x –  t    for full 
investment   x ˙   = g ( a – , x)  . The restriction (A8) prevents the firm from signaling what 
it doesn’t know to the market.

An equilibrium consists of a distribution over investment and exit strate-
gies  F = F (a, τ)   and a reputation trajectory  x =  { x t  }   such that (i) given   { x t  }  , any 
strategy   (a, τ)   in the support of  F  solves the firm’s problem (2), and (ii) reputation   

{ x t  }   is derived from  F  by Bayes’ rule via (A7) for  t < τ (F)   and satisfies (A8) 
for  t ≥ τ (F)  .
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Proof strategy:  The firm’s payoff from strategy   (a, τ)   is given by

  Π (a, τ ; x)  =   
 ∫ 0  

τ   e   − ∫ s=0  
t    (r+μ z s  ) ds  (π ( x t  )  − c ( a t  ) )  dt

   ___________________________   
1 −  ∫ 0  

τ   e   − ∫ s=0  
t    (r+μ z s  ) ds  μ  z t   dt

   . 

The proof idea is to show that the firm’s  best-response correspondence

  BR (x)  =  arg max  
a,τ

    Π (a, τ ; x)  

and the Bayesian updating formula  defined by ( A7)–(A8) admit a fixed point.
To establish existence of a fixed point, we define topologies on the space of 

mixed strategies  F  and reputation trajectories   { x t  }   with the property that both 
spaces are compact, locally convex, and Hausdorff, and both correspondences 
are  upper hemicontinuous. Then the existence of the fixed point follows by the 
 Kakutani-Fan-Glicksberg theorem.

Defining the Topological Spaces:  By (4), the firm’s optimal exit time is bounded 
above by some finite   τ ¯   , allowing us to truncate the domain of all pertinent func-
tions at   τ –  . So motivated, embed the space  B  of measurable, bounded functions  
  [0,  τ – ]  →  [0, 1]   in the (rescaled) unit ball of   L   2  ( [0,  τ – ] , ℝ)  . We interpret both invest-
ment   { a t  }   and reputation   { x t  }   as elements of  B . In the weak topology, this unit ball is 
compact by Alaoglu’s theorem, and as a closed subset of this unit ball,  B  is also com-
pact. In this topology, a sequence   { a  t  

n }   converges to   { a t  }   if   ∫ 0  
 τ –    ( a  t  

n  −  a t  )   ξ t   dt → 0  
for all test functions  ξ ∈  L   2  ( [0,  τ – ] , ℝ)  . This topology is coarse enough to make  B  
compact but also fine enough for the trajectory    { z t  }  t∈ [0,  τ – ]     to be continuous (in the 
 sup-norm) in    { a t  }  t∈ [0,  τ – ]     (see Theorem 43.5 of Davis 1993). Thus, firm value (2) is 
continuous in   ( { a t  } ,  { x t  } , τ)   and is maximized by some   ( { a  t  

⁎ } ,  τ   ⁎ )  . As for the firm’s 
mixed strategies, we equip  Δ (B ×  [0,  τ – ] )   with the topology of convergence in dis-
tribution. Standard arguments (e.g., Theorem 14.11 of Aliprantis and Border 1999) 
show that this space is compact and locally convex.

Upper Hemicontinuity of Bayes’ Rule:  We now prove that the correspon-
dence   : Δ (B ×  [0,  τ – ] )  → B  mapping beliefs  F  to the set of measurable trajec-
tories   { x t  }   that satisfy ( A7)–(A8) is upper hemicontinuous. Consider a sequence 
of beliefs   F   n   (with expectation   E   n  ) that converges to  F  in distribution. Here,   ( F   n )   
consists of all measurable trajectories   { x  t  

n }   that satisfy (A7) for  t < τ ( F   n )   (when 
replacing   E   F   by   E   n  ) and (A8) for  t ≥ τ ( F   n )  . As  F  assigns probability less than one 
to the event   { τ ̃   < t}   for any  t < τ (F) ,  so does   F   n   for sufficiently large  n ; thus,  
  lim n→∞   τ ( F   n )  ≥ τ (F)  .

We now show that   x  t  
n  →  x t    for all  t < τ (F)   at which the marginal distribu-

tion  F ( τ ̃  )   is continuous.25 Consider the numerator of (A7). (The argument for 
the  denominator is identical.) The integrand   χ  t  

−  ( a ̃  ,  τ ̃  )  ≔  z t   ( a ̃  )  w t   ( a ̃  )   1  { τ ̃   >t}      
is continuous in   a ̃    (see Theorem 43.5 of Davis 1993) and lower  semicontinuous  

25 It can have at most countably many discontinuities.
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in   τ ̃    ; similarly,   χ  t  
+  ( a ̃  ,  τ ̃  )  ≔  z t   ( a ̃  )   w t   ( a ̃  )   1  { τ ̃  ≥t}     is continuous in   a ̃    and 

upper  semicontinuous in   τ ̃   . The portmanteau theorem thus implies  
 lim inf  E   n  [ χ  t  

−  ( a ̃  ,  τ ̃  ) ]  ≥  E   F  [ χ  t  
−  ( a ̃  ,  τ ̃  ) ]   and   E   F  [ χ  t  

+  ( a ̃  ,  τ ̃  ) ]  ≥ lim sup  E   n  [ χ  t  
+  ( a ̃  ,  τ ̃  ) ]  .  

As   χ  t  
−   and   χ  t  

+   are bounded and disagree only for   τ ̃   = t , which happens with 
probability zero under  F  and thus with vanishing probability under   F   n  , we have  
  E   F  [ χ  t  

−  ( a ̃  ,  τ ̃  ) ]  =  E   F  [ χ  t  
+  ( a ̃  ,  τ ̃  ) ]   and  lim sup  E   n  [ χ  t  

+  ( a ̃  ,  τ ̃  ) ]  = lim sup  E   n  [ χ  t  
−  ( a ̃  ,  τ ̃  ) ]  . 

Thus,

  lim inf  E   n  [ χ  t  
−  ( a ̃  ,  τ ̃  ) ]  ≥  E   F  [ χ  t  

−  ( a ̃  ,  τ ̃  ) ]  =  E   F  [ χ  t  
+  ( a ̃  ,  τ ̃  ) ]  

  ≥ lim sup  E   n  [ χ  t  
+  ( a ̃  ,  τ ̃  ) ]  = lim sup  E   n  [ χ  t  

−  ( a ̃  ,  τ ̃  ) ]  ,

and so  lim  E   n  [ χ  t  
−  ( a ̃  ,  τ ̃  ) ]   exists and equals   E   F  [ χ  t  

−  ( a ̃  ,  τ ̃  ) ]   as desired. Thus,   

{ x  t  
n }    converges to   { x t  }   pointwise for almost all  t ∈  [0, τ (F) ]   and therefore in the  

  L   2  ( [0, τ (F) ] ,  [0, 1] )  -norm and a fortiori in the weak topology. As the 
set   (F)   allows for any measurable trajectories after  τ (F)   subject to (A8), all 
trajectories    { x  t  

n }  t∈ [0,  ̄  τ ]    ∈  ( F   n )  are uniformly close to   (F)  ; that is,     is upper 
hemicontinuous.

Upper Hemicontinuity of the Firm’s Best Responses:   Self-esteem   z t    is contin-
uous in  a ∈ B , so the firm’s payoff  Π (a, τ ; x)   is continuous in  a, τ , and  x , and 
thus also continuous in  F = F (a, τ)   (Theorem 14.5 of Aliprantis and  Border 
1999); thus, Berge’s maximum theorem implies that the best response mapping  
 BR : B → Δ (B ×  [0,  τ – ] )   is upper hemicontinuous.

Summary:  We have shown that   (x, F)  ↦  ( (F) , BR (x) )   is an upper hemicon-
tinuous,  convex-valued correspondence of the compact, locally convex, Hausdorff 
space  B × Δ (B ×  [0,  τ – ] )   to itself. The  Kakutani-Fan-Glicksberg theorem therefore 
implies that this mapping has a fixed point; this fixed point constitutes an equilib-
rium. ∎

Appendix B. Proofs from Section IV

A. Derivation of Equation (16 )

This proof is analogous to the proof of Lemma 2 given in Appendix AB. With 
observable investment, the firm’s payoff from strategy   (a, τ)   is given by

   Π ˆ   ( z t  )  =  ∫ 
s=t

  
τ
    e   − ∫ t  

s   (r+μ z u  ) du  [π ( z s  )  − c ( a s  )  + μ  z s   Π ˆ   (1) ]  ds. 

Setting  ψ (s)  =  e   −r (s−t)   Π ˆ   ( z s  )  ,  ρ (s)  = μ  z s   , and  ϕ (s)  =  e   −r (s−t)   ( z s   − c ( a s  )  + 
μ  z s   Π ˆ   (1) )   yields equation (A4). Applying Claim 1, equation (A5) becomes

   Π ˆ   ( z t  )  =  ∫ 
s=t

  
τ
     e   −r (s−t)   [π ( z s  )  − c ( a s  )  + μ  z s   ( Π ˆ   (1)  −  Π ˆ   ( z s  ) ) ] ds. 



VOL. 14 NO. 2 75BOARD AND MEYER-TER-VEHN: A REPUTATIONAL THEORY OF FIRM DYNAMICS

Taking the derivative and applying Claim 2, we get

    Π ˆ   ′   ( z t  )  =  ∫ 
s=t

  
τ
     e   −r (s−t)     

d  z s   _ 
d  z t  

   [π′ ( z s  )  + μ ( Π ˆ   (1)  −  Π ˆ   ( z s  ) )  − μ  z s   Π ˆ  ′ ( z s  ) ]  ds 

 =  ∫ 
s=t

  
τ
     e   − ∫ t  

s   (r+λ+μ (1−2 z u  ) ) du  [π′ ( z s  )  + μ ( Π ˆ   (1)  −  Π ˆ   ( z s  ) )  − μ  z s   Π ˆ  ′ ( z s  ) ]  ds. 

Setting  ρ (s)  = μ  z s    and  ϕ (s)  =  e   − ∫ t  
s   (r+λ+μ (1−2 z u  ) ) du  μ ( Π ˆ   (1)  −  Π ˆ   ( z s  ) )  ,  

 f (s)  =  e   − ∫ t  
s   (r+λ+μ (1−2 z u  ) ) du  Π ˆ  ′ ( z s  )   satisfies (A5). Applying Claim 1, equation (A4) 

becomes

   Π ˆ  ′ ( z t  )  =  ∫ 
s=t

  
τ
     e   − ∫ t  

s   (r+λ+μ (1− z u  ) ) du  μ [π ( z s  )  +  Π ˆ   (1)  −  Π ˆ   ( z s  ) ]  ds. 

The envelope theorem then implies equation (16).

B. Observability Raises Investment

Here we argue that if  π (x)  = x − k  and  k  is sufficiently large, investment and 
the exit time are higher under observable investment than under the benchmark 
model,    a ˆ   t   >  a  t  

⁎   and   τ ˆ   >  τ   ⁎  .
First, dropping the positive terms  μ ( V ˆ   (1)  −  V ˆ   (  z ˆ   s  ) )   in the integrand and  μ   z ˆ   u    in 

the exponent of (16) implies   Γ ˆ   ( τ ˆ   − s)  >  (1 −  e   − (r+λ+μ) s ) /(r + λ + μ) . Similarly, 
dropping the negative  − μ (1 −   z ˆ   u  )   in the exponent in (7) and bounding the integrand 
above by  V (0, 1)  − V (s,  z  s  

⁎ )  < V (0, 1)  <  (1 − k) / r  implies   ((1 − k)/r)  ((1 −  
 e   − (r+λ) s )/(r + λ))  >  Γ   ⁎  ( τ   ⁎  − s)  . Then, for  k  close to  1 ,   Γ ˆ   ( τ ˆ   − s)  >  Γ   ⁎  ( τ   ⁎  − s)   
and so    a ˆ    τ ˆ  −s   >  a   τ   ⁎ −s  

⁎   .
Next, observe that   V ˆ   (1)  >  V   ⁎  (0, 1)  , so the exit conditions (9) and (17) 

imply    z ˆ    τ ˆ     <  z   τ   ⁎   
⁎   . Together with    a ˆ    τ ˆ  −s   >  a   τ   ⁎ −s  

⁎    and    z ˆ   0   =  z  0  
⁎  = 1 , this implies   τ ˆ   >  

 τ   ⁎  . Since observable investment falls over time, we conclude that  
   a ˆ    τ   ⁎ −s   >   a ˆ    τ ˆ  −s   >  a   τ   ⁎ −s  

⁎    and hence,    a ˆ   t   >  a  t  
⁎   for all  t =  τ   ⁎  − s .

Investment is also higher at a given level of reputation  x = z . 
Indeed,    a ˆ    τ ˆ  −s   >  a   τ   ⁎ −s  

⁎    together with    z ˆ    τ ˆ     <  z   τ   ⁎   
⁎    imply    z ˆ    τ ˆ  −s   <  z   τ   ⁎ −s  

⁎   , so defining  s′ < s  
via    z ˆ    τ ˆ  −s′   =  z   τ   ⁎ −s  

⁎   = z , investment at  z  is higher when investment is observable  
since   a ˆ   (z, z)  ≔   a ˆ    τ ˆ  −s′   >   a ˆ    τ ˆ  −s   >  a   τ   ⁎ −s  

⁎   ≕  a   ⁎  (z, z)  .

C. Exit Behavior in Theorem 4

Here we establish that a  low-quality firm exits at time    τ ˇ      L  ∈  [ τ _ , ∞)  , while the 
 high-quality firm never exits.

Reputation   { x t  }   continuously decreases in  t , so a mimicking argument analo-
gous to that in Appendix AA implies that firm value (18) continuously decreases 
in  t . Optimal investment   {  a ˇ   t  }   maximizes the integrand in (18) pointwise. For the 
low firm,  θ = 0 , the “breakthrough term” is 0 and this integrand also decreases 
in  t . Thus, exiting is optimal for the low firm exactly when the integrand vanishes; 
since   V ˇ   (  τ ˇ      L , L)  = 0 , this simplifies to (20). The  high-quality firm also benefits 
from the positive breakthrough term, so the integrand for the  high-quality firm 
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exceeds the integrand for the  low-quality firm. Thus, the latest possible exit time 
of the  low-quality firm must strictly precede the earliest possible exit time of the 
 high-quality firm.

To see that the  low-quality firm starts exiting at some finite   τ _  , recall the upper 
bound on equilibrium exit times   τ –   from the proof of Theorem 2. Unless the market 
expects the  low-quality firm to start exiting and draws a positive inference from its 
failure to exit, reputational drift  g ( a ̃  , x)  ≤ g ( a – , x)   is strictly negative for  x ∈  [ z   † , 1]   
and takes reputation below   z   †   at or before   τ –  . Thus, in equilibrium the  low-quality 
firm must eventually exit, and we define   τ _   as the earliest time at which it does so.

After   τ _  , reputation must be constant. Otherwise, if it started to decrease at some 
time  t >  τ _  , the flow payoffs of the  low-quality firm turn strictly negative and the 
 low-quality firm would exit with certainty; thus, reputation would jump to 1, under-
mining incentives to exit. Therefore, the firm’s problem becomes stationary after   
τ _  ; all exit times    τ ˇ      L  ∈  [ τ _ , ∞)   are optimal and the  high-quality firm never exits. 
Finally, in order to keep reputation constant at   x  τ _    , the  low-quality firm must exit at 
constant rate  ψ ≔ − g ( a  τ _   ,  x  τ _   )  /  x  τ _    (1 −  x  τ _   )   to offset the negative reputational drift 
due to learning.

D. Equilibrium Existence in Theorem 4

The existence proof of Theorem 2 does not apply as stated to Theorem 4, since 
the  time-to-exit  τ  is not bounded above, and the theorem statement is stronger, 
establishing continuity and monotonicity of   x t   . To achieve this stronger result, we 
first apply the  fixed-point argument to the set of pure strategies and subsequently 
use this  pure strategy fix point to define an equilibrium with pure investment and 
randomized exit, as in Appendix BC.

Let  L  be the space of decreasing,  equi-Lipschitz-continuous functions from   

[0,  τ – ]   to   [0, 1]   with the topology of uniform convergence;  L  is compact by the   
Arzela-Ascoli theorem. As in the proof of Theorem 2, we interpret both invest-
ment  a =   { a t  }  t∈ [0, τ – ]     and reputation  x =   { x t  }  t∈ [0, τ – ]     as elements of  L .

For any  x =  { x t  }  ∈ L , let  BR (x)  ⊆ L ×  [0,  τ – ]   be the set of optimal invest-
ment and exit strategies   ( a   ⁎ ,  τ   ⁎ )  , assuming that the firm must exit at the latest by 
time   τ –  . Conversely, for any   (a, τ)  ∈ L ×  [0,  τ – ]  , let  B (a, τ)  = x ∈ L  be the rep-
utation trajectory defined by   x 0   = 1  and    x ˙   t   = g ( a t  ,  x t  )   for  t ≤ τ  and   x t   =  x τ    
for  t ≥ τ . Standard arguments show that the function  B  is continuous, and the cor-
respondence  BR  is upper hemicontinuous and  compact valued. To see that the set 
of pure best responses  BR (x)   is convex,26 note first that optimal investment  a  is 
unique. As for exit, if times  τ < τ ′  are both optimal, then reputation   x t    must be flat 
on   [τ, τ ′ ]   and, hence, all exit times  τ ″ ∈  [τ, τ ′ ]   are also optimal.

Thus, the correspondence  BR × B , mapping  L ×  (L ×  [0,  τ –  ] )   to itself, sat-
isfies the conditions of the  Kakutani-Fan-Glicksberg theorem and admits a fixed  

26 This is the key difference to the baseline model with unknown quality. There, the set of pure best responses 
is not convex, requiring us to apply the  fixed-point argument to the set of mixed strategies, which does not deliver 
monotonicity and continuity of equilibrium investment.
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point   (x,  (a, τ) )  . This fixed point must feature exit  τ <  τ –  , for otherwise   x t    drops 
below   z   †   by   τ –  , prompting exit.

This fixed point is not yet the desired equilibrium, since investment   a t    and rep-
utation   x t    are only defined for  t ∈  [0,  τ – ]  , and a “hard exit” by  low-quality firms 
at  τ  is not compatible with equilibrium, as argued in Appendix BC. But this is 
easily fixed: extend investment and reputation by setting   a t   =  a τ    and   x t   =  x τ    for  
 t >  τ –   and consider the random exit time with rate  ψ = − g ( a  τ _   ,  x  τ _   )  /  x  τ _    (1 −  x  τ _   )   on   

[τ, ∞)  . This constitutes an equilibrium since investment and exit behavior justifies 
the  market beliefs   x t    for all  t ≥ 0  and are also optimal given   { x t  }  .

E. Firm Observes Private Signals about Its Quality

Here we sketch a model variant where the firm receives additional private sig-
nals about its quality; this bridges the models with unknown and known quality 
and sheds light on the different findings regarding investment levels around the exit 
threshold. Specifically, suppose the firm observes private breakthroughs that arrive 
at rate  ν  when quality is high.

This model resets at a public breakthrough, with both reputation and  self-esteem 
jumping to one. We can thus restrict attention to strategies that specify investment 
and exit as a function of the time since the last public breakthrough  t  and the firm’s 
 self-esteem (which now depends on the history of private breakthroughs since the 
last public breakthrough).

At a private breakthrough  self-esteem jumps to one. Absent either breakthrough, 
 self-esteem is governed by    z ̇   t   = g ( a t   ( z t  ) ,  z t  )   with

  g (a, z)  = λ (a − z)  −  (μ + ν) z (1 − z) . 

Since the market does not observe the firm’s private breakthroughs, it perceives 
 self-esteem   z t    as a random variable with expectation   x t   . For  ν = 0 , we recover the 
baseline model with unknown quality, whereas large  ν  approach the model with 
known quality.

We truncate the firm’s cash flow expansion at either kind of breakthrough to 
obtain

(B1)  

V (t,  z  t  
⁎ )  =  ∫ 

t
  
 τ   ⁎ 

   e   − ∫ t  
s   (r+ (μ+ν)  z  u  ⁎ ) du  [π ( x s  )  − c ( a  s  

⁎  ( z  s  
⁎ ) )  + μ  z  s  

⁎  V (0, 1)  + ν  z  s  
⁎  V (s, 1) ]  ds  ,

where the additional term  ν  z  s  
⁎  V (s, 1)  , cf (2), captures the firm’s continuation value 

after a private breakthrough. Analogous to Lemma 7, investment incentives are 
given by

(B2)  

Γ (t)  =  ∫ 
t
  
 τ   ⁎ 

   e   − ∫ t  
s   (r+λ+ (μ+ν)  (1− z  u  ⁎ ) ) du  [μ (V(0, 1) − V (s,  z  s  

⁎ ) )  + ν (V(s, 1) − V (s,  z  s  
⁎ ) ) ] ds. 
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These disappear at the exit time   τ   ⁎   as in Theorem 1, so the firm shirks close to the 
exit threshold. Thus, even for large  ν , i.e., close to the  known-quality case, invest-
ment vanishes at the exit time, in contrast to Theorem 4. However, the  known-quality 
result that the firm fights until the end is robust in the following sense: the inte-
grand in (B2) increases in  ν , so fixing   τ   ⁎  − t  and considering the limit  ν → ∞ , the 
integral converges to the  known-quality value of quality   V ˇ   (t, 1)  −  V ˇ   (t, 0)  =  Γ ˇ   (t)  , 
which is boundedly positive and rises in  t .

F. Identification

In the text, we discuss that the reputation process   { X t  }   uniquely identifies   (μ, λ)   
and investment   { a t  }  . In this Appendix, we show that the exit threshold   x   e  , reve-
nue   { x t  }  , and investment   { a t  }   uniquely identify the cost parameters ( k, c (a)  ). 
Recall   { a t  }   is  single-peaked in  t —hence, maximized at some   t ̂    and decreasing on  
  [ t ̂  , τ]  . Since   x t   =  z t   , and   x t    is known, we write the firm’s  on-path value as  V (t)  .

First, we fix an arbitrary maximum value,  V (0)  . The operating cost  k  then follow 
from the exit equation,

   x τ   − k + μ  x τ   V (0)  = 0. 

For the cost function  c (a)  , the first-order condition (8) and the marginal value of 
effort (7) imply that

(B3)   c ′   ( a t  )  = λ ∫ 
t
  
τ
   e   − ∫ t  

s   (r+λ+μ (1− x u  ) ) du  μ [V (0)  − V (s) ]  ds 

where firm value  V (s)   is given by

(B4)  V (s)  =  ∫ 
v=s

  
τ
     e   − ∫ s  

v   (r+μ x u  ) du  [ x v   − k − c ( a v  )  + μ  x v   V (0) ]  dv .

Taking  V (0)   as exogenous and   { x t,    a t  }   as data,   c ′   ( a t  )   is expressed as a function of   

{c ( a s  )  : s > t}  . Using   a τ   = c ( a τ  )  = 0  as boundary condition,  c ( a t  )   is then iden-
tified from  t = τ  to  t =  t ̂   .

Next, we identify  V (0)  . Suppose there are two maximum values,  
  V 1   (0)  −  V 2   (0)  = Δ > 0 , consistent with the data. The exit condition 
together with   V 1   (τ)  =  V 2   (τ)  = 0  imply   k 1   >  k 2   . Let  t < τ  be the latest 
time with   V 1   (t)  −  V 2   (t)  = Δ . Since   V 1   (0)  −  V 1   (s)  >  V 2   (0)  −  V 2   (s)   for 
all  s > t , (B3) implies   c  1  ′   ( a t  )  >  c  2  ′   ( a t  )  . Since   c 1   ( a τ  )  =  c 2   ( a τ  )  = 0 , we have  
  c 1   ( a s  )  >  c 2   ( a s  )   for all  s > t . But then (B4) together with the higher 
costs in scenario  1  imply that   V 1   (t)  <  V 2   (t)   for the latest time  t , and thus  
  V 1   (0)  <  V 2   (0)  , contradicting our original assumption. Intuitively, an increase in 
the maximum value raises incentives requiring higher costs to justify the observed 
actions, yet higher costs are inconsistent with a higher value.

This identification approach is very sensitive to the details of the model. 
In  practice, one might rather adopt a more robust,  semiparametric approach.  
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For example, given   { a t  ,  x t  }  , one could calculate value functions (1) for any cost 
parameters ( k, c (a)  ) and then choose those parameter values that minimize the 
gains from deviations measured by, say, violations of the  first-order condition  
 c′ ( a t  )  = λΓ (t)  .

REFERENCES

Aliprantis, Charalambos D., and Kim C. Border. 1999. Infinite Dimensional Analysis. 2nd ed. Berlin: 
Springer-Verlag.

Anderson, Simon P., Andre de Palma, and Jacques-Francois Thisse. 1992. Discrete Choice Theory of 
Product Differentiation. Cambridge, MA: MIT Press.

Arrow, Kenneth J., L. Kamran Bilir, and Alan Sorensen. 2020. “The Impact of Information Technol-
ogy on the Diffusion of New Pharmaceuticals.” American Economics Journal: Applied Economics 
12 (3): 1–39.

Atkeson, Andrew, Christian Hellwig, and Guillermo Ordoñez. 2014. “Optimal Regulation in the 
 Presence of Reputation Concerns.” Quarterly Journal of Economics 130 (1): 415–64.

Bar-Isaac, Heski. 2003. “Reputation and Survival: Learning in a Dynamic Signalling Model.” Review 
of Economic Studies 70 (2): 231–51.

Board, Simon, and Moritz Meyer-ter-Vehn. 2013. “Reputation for Quality.” Econometrica 81 (6): 
2381–2462.

Board, Simon, and Moritz Meyer-ter-Vehn. 2022. "Replication Data for: A Reputational Theory of 
Firm Dynamics.” American Economic Association [publisher], Inter-university Consortium for 
Political and Social Research [distributor]. https://doi.org/10.3886/E118970V1.

Bollinger, Bryan, Phillip Leslie, and Alan Sorensen. 2011. “Calorie Posting in Chain Restaurants.” 
American Economic Journal: Economic Policy 3 (1): 91–128.

Bonatti, Alessandro, and Johannes Hörner. 2011. “Collaborating.” American Economic Review 101 (2):  
632–63.

Bonatti, Alessandro, and Johannes Hörner. 2017. “Career Concerns with Exponential Learning.” 
 Theoretical Economics 12 (1): 425–75.

Bronnenberg, Bart J., Jean-Pierre H. Dubé, and Matthew Gentzkow. 2012. “The Evolution of 
Brand Preferences: Evidence from Consumer Migration.” American Economic Review 102 (6):  
2472–2508.

Cabral, Luís. 2016. “Living up to Expectations: Corporate Reputation and Persistence of Firm 
 Performance.” Strategy Science 1 (1): 2–11.

Cabral, Luís, and Ali Hortaçsu. 2010. “The Dynamics of Seller Reputation: Evidence from eBay.” 
Journal of Industrial Economics 58 (1): 54–78.

Cisternas, Gonzalo. 2017. “Two-Sided Learning and the Ratchet Principle.” Review of Economic 
 Studies 85 (1): 307–51.

Cohen, Wesley M., and Daniel A. Levinthal. 1990. “Absorptive Capacity: A New Perspective on 
 Learning and Innovation.” Administrative Science Quarterly 35 (1): 128–52.

Cutler, David M., Robert S. Huckman, and Mary Beth Landrum. 2004. “The Role of Information 
in Medical Markets: An Analysis of Publicly Reported Outcomes in Cardiac Surgery.” American 
 Economic Review 94 (2): 342–46.

Davis, Mark. 1993. Markov Models and Optimization. Chapman and Hall.
Dilmé, Francesc. 2019. “Reputation Building through Costly Adjustment.” Journal of Economic 

 Theory 181: 586–626.
Dixit, Avinash K., and Joseph E. Stiglitz. 1977. “Monopolistic Competition and Optimum Product 

Diversity.” American Economic Review 67 (3): 297–308.
Ericson, Richard, and Ariel Pakes. 1995. “Markov-Perfect Industry Dynamics: A Framework for 

Empirical Work.” Review of Economic Studies 62 (1): 53–82.
Foster, Lucia, John Haltiwanger, and Chad Syverson. 2016. “The Slow Growth of New Plants: 

 Learning about Demand?” Economica 83 (329): 91–129.
Fung, Archon, Mary Graham, and David Weil. 2007. Full Disclosure: The Perils and Promise of 

Transparency. Cambridge, UK: Cambridge University Press.
Gabaix, Xavier. 2009. “Power Laws in Economics.” Annual Review of Economics 1: 255–94.
Gale, Douglas, and Robert Rosenthal. 1994. “Price and Quality Cycles for Experience Goods.” RAND 

Journal of Economics 25 (4): 590–607.
Gardiner, Crispin W. 2009. Stochastic Methods. Berlin: Springer.

https://doi.org/10.3886/E118970V1
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F2393553&citationId=p_15
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2F1467-937X.00243&citationId=p_5
http://pubs.aeaweb.org/action/showLinks?crossref=10.1146%2Fannurev.economics.050708.142940&citationId=p_23
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fstsc.2015.0002&citationId=p_12
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.101.2.632&citationId=p_9
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2F0002828041301993&citationId=p_16
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F2297841&citationId=p_20
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F2555976&citationId=p_24
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA9039&citationId=p_6
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1467-6451.2010.00405.x&citationId=p_13
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fapp.20170647&citationId=p_3
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fecca.12172&citationId=p_21
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FTE2115&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Frestud%2Frdx019&citationId=p_14
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jet.2019.03.010&citationId=p_18
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Fqje%2Fqju034&citationId=p_4
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.102.6.2472&citationId=p_11
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fpol.3.1.91&citationId=p_8


80 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS MAY 2022

Goldfarb, Avi. 2007. “Schlitz: Why Schlitz Hit the Fan.” In Industry and Firm Studies, 4th ed., edited 
by Victor J. Tremblay and Carol Horton Tremblay, 321–41. New York: Routledge.

Halac, Marina, and Andrea Prat. 2016. “Managerial Attention and Worker Performance.” American 
Economic Review 106 (10): 3104–32.

Hall, Bronwyn H., Adam Jaffe, and Manuel Trajtenberg. 2005. “Market Value and Patent Citations.” 
RAND Journal of Economics 36 (2): 16–38.

Hastings, Justine S., and Jeffrey M. Weinstein. 2008. “Information, School Choice, and Academic 
Achievement: Evidence from Two Experiments.” Quarterly Journal of Economics 123 (4): 
 1373–1414.

Hauser, Daniel. 2021a. “Censorship and Reputation.” Unpublished.
Hauser, Daniel. 2021b. “Promoting a Reputation For Quality.” Unpublished.
Hopenhayn, Hugo A. 1992. “Entry, Exit, and Firm Dynamics in Long Run Equilibrium.”  

Econometrica 60 (5): 1127–50.
Jin, Ginger Zhe, and Alan T. Sorensen. 2006. “Information and Consumer Choice: The Value of 

 Publicized Health Plan Ratings.” Journal of Health Economics 25 (2): 248–75.
Jin, Ginger Zhe, and Phillip Leslie. 2003. “The Effect of Information on Product Quality: Evidence 

from Restaurant Hygiene Grade Cards.” Quarterly Journal of Economics 118 (2): 409–51.
Jin, Ginger Zhe, and Phillip Leslie. 2009. “Reputational Incentives for Restaurant Hygiene.” American 

Economic Journal: Microeconomics 1 (1): 237–67.
Jovanovic, Boyan. 1982. “Selection and the Evolution of Industry.” Econometrica 50 (3): 649–70.
Kolmogorov, Andrey. 1931. “Über die analytischen Methoden der Wahrscheinlichkeitsrechnung.” 

Mathematische Annalen 104: 415–58.
Kolstad, Jonathan T. 2013. “Information and Quality When Motivation Is Intrinsic: Evidence from 

Surgeon Report Cards.” American Economic Review 103 (7): 2875–2910.
Luca, Michael. 2016. “Reviews, Reputation, and Revenue: The Case of Yelp.com.” Harvard Business 

School Working Paper 12-016.
Luca, Dara Lee, and Michael Luca. 2018. “Survival of the Fittest: The Impact of the Minimum Wage 

on Firm Exit.” Harvard Business School Working Paper 17-088.
Luca, Michael, and Jonathan Smith. 2013. “Salience in Quality Disclosure: Evidence from the U.S. 

News College Rankings.” Journal of Economics and Management Strategy 22 (1): 58–77.
Mailath, George J., and Larry Samuelson. 2001. “Who Wants a Good Reputation.” Review of  

Economic Studies 68 (2): 415–41.
Marinovic, Iván, Andrzej Skrzypacz, and Felipe Varas. 2018. “Dynamic Certification and Reputation 

for Quality.” American Economic Journal: Microeconomics 10 (2): 58–82.
Milgrom, Paul, and Ilya Segal. 2002. “Envelope Theorems for Arbitrary Choice Sets.” Econometrica 

70 (2): 583–601.
Parsa, H.G. John T. Self, David Njite, and Tiffany King. 2005. “Why Restaurants Fail.” Cornell Hotel 

and Restaurant Administration Quarterly 46 (3): 304–22.
Pope, Devin G. 2009. “Reacting to Rankings: Evidence from ‘America’s Best Hospitals’.” Journal of 

Health Economics 28 (6): 1154–65.
Rob, Rafael, and Arthur Fishman. 2005. “Is Bigger Better? Customer Base Expansion through 

 Word-of-Mouth Reputation.” Journal of Political Economy 113 (5): 1146–75.
Sannikov, Yuliy. 2013. “Moral Hazard and Long-Run Incentives.” Unpublished.
Serrano, Carlos J. 2010. “The Dynamics of the Transfer and Renewal of Patents.” RAND Journal of 

Economics 41 (4): 686–708.
Sorensen, Alan T. 2007. “Bestseller Lists and Product Variety.” Journal of Industrial Economics  

55 (4): 715–38.
Syverson, Chad. 2011. “What Determines Productivity?” Journal of Economic Literature 49 (2): 326–65.
Tadelis, Steven. 1999. “What’s in a Name? Reputation as a Tradeable Asset What’s in a Name? Repu-

tation as a Tradeable Asset.” American Economic Review 89 (3): 548–63.
Tadelis, Steven. 2002. “The Market for Reputations as an Incentive Mechanism the Market for Reputa-

tions as an Incentive Mechanism.” Journal of Political Economy 110 (4): 854–82.
Vellodi, Nikhil. 2021. “Ratings Design and Barriers to Entry.” Unpublished.
Vial, Bernardita, and Felipe Zurita. 2017. “Entrants’ Reputation and Industry Dynamics.” Interna-

tional Economic Review 58 (2): 529–59.

http://Yelp.com
http://pubs.aeaweb.org/action/showLinks?crossref=10.1177%2F0010880405275598&citationId=p_45
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2F003355303321675428&citationId=p_34
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1756-2171.2010.00117.x&citationId=p_49
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F340781&citationId=p_53
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.103.7.2875&citationId=p_38
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2F1467-937X.00175&citationId=p_42
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.20140772&citationId=p_27
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2009.08.006&citationId=p_46
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1467-6451.2007.00327.x&citationId=p_50
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fmic.1.1.237&citationId=p_35
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fmic.20160282&citationId=p_43
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F2951541&citationId=p_32
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F444552&citationId=p_47
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjel.49.2.326&citationId=p_51
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F1912606&citationId=p_36
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fiere.12226&citationId=p_55
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2F1468-0262.00296&citationId=p_44
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2Fqjec.2008.123.4.1373&citationId=p_29
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2005.06.002&citationId=p_33
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.89.3.548&citationId=p_52
http://pubs.aeaweb.org/action/showLinks?crossref=10.1007%2FBF01457949&citationId=p_37
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fjems.12003&citationId=p_41

	A Reputational Theory of Firm Dynamics
	I. Model
	II. Analysis
	A. The Firm’s Problem
	B. Equilibrium
	C. Steady-State Distribution
	D. Simulation
	E. Applications

	III. Two Model Variants
	A. Consumers Observe Firm’s Investment
	B. Firm Knows Its Own Quality

	IV. Discussion
	Appendix A. Mathematical Appendix: Proofs from Section III
	A. Monotonicity of Value Function in Lemma 1
	B. Proof of Lemma 2
	C. Differentiability in Proof of Theorem 1
	D. Proof of Theorem 2

	Appendix B. Proofs from Section IV
	A. Derivation of Equation (16 )
	B. Observability Raises Investment
	C. Exit Behavior in Theorem 4
	D. Equilibrium Existence in Theorem 4
	E. Firm Observes Private Signals about Its Quality
	F. Identification

	REFERENCES


