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The Problem

Seller owns K units of a good

> Seller has T periods to sell the goods.
» Buyers enter over time.

» Privately known values.

Big literature on revenue management

» Typically assume buyers are myopic.

Forward looking buyers

» Agents delay if expect prices to fall.

> Prefer to buy sooner rather than later.
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Applications
RM is hugely successful branch of market design
» Historically: Airlines, Seasonal clothing, Hotels, Cars

» Online economy: Ad networks, Ticket distributors, e-Retailers

Buyers strategically time purchases

v

Clothing (Soysal and Krishnamurthi, 2012)
Airlines (Li, Granados and Netessine, 2012)

Redzone contracts (e.g. YouTube)

v

v

v

Price prediction sites (e.g. Bing Travel)

Questions

» What is the optimal mechanism?

> |s there a simple way to implement it?
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Price and Cutoffs with One Units

Prices and Sales for a Sample Product

Sales and prices over time
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Results

Allocations determined by deterministic cutoffs.

» Only depend on (k, 1),

» Not on # of agents, their values, when sold units.
When demand gets weaker over time

» Cutoffs satisfy one-period-look-ahead property.

Implement in continuous time via posted prices

» With auction at time T.

> Relies on cutoffs being deterministic.

Prices depend on when previous units were sold.

» Cutoffs are easy; prices are hard.



Introduction

Outline

1. Allocations
» General demand - Cutoffs are deterministic

» Decreasing demand - One-period-look-ahead property

2. Implementation

» General demand - Use posted prices

» Decreasing demand - Prices given by differential equation

3. Applications

» Retailing - Storage costs
» Display ads - Third degree price discrimination
» Airlines - Changing distribution of arrivals

» House selling - Disappearing buyers



Introduction Model Single Unit Allocation Implementation Applications The End

Literature
Gallien (2006)

» Infinite periods; Inter-arrival times have increasing failure rate.

» No delay in equilibrium.

Pai and Vohra (2013), Mierendorff (2009)

» Privately known value, entry time, exit time; No discounting.

» Show how to simplify problem, but do not fully characterize.

Aviv and Pazgal (2008), Elmaghraby et al (2008)

» Similar model to ours; only allow for two prices.

MacQueen and Miller (1960), McAfee and McMillan (1988)

» Optimal policy for single unit.
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Model

Model

» Time discrete and finite t € {1,...,T}
> Seller has K goods.

» Seller can commit to mechanism.

Entrants

» At start of period ¢, N; buyers arrive
» N, independently distributed, but distribution may vary

> N, observed by seller but not other buyers

Preferences

» Buyer has value v; ~ f(-) for one unit.
» Utility is (v — pg)d*
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Mechanisms

» Buyer makes report ©; when enters market.
» Mechanism (7;, TR;) describes allocation and transfer.

» Feasible if award after entry, K goods, adapted to seller’s info

Buyer's problem
» Buyer chooses v; to maximise
wi (04, i, t;) = EO[ 0TVt TR (3,04, t)

where E, is expectation at the start of period .

vy, ti}

Mechanism is (IC) and (IR) if

(lNT) 'U/Z(’Uz,’l)l, % EO frUZ 57—1 ZV*“ dZ|Uf“ Z]
(MON) Eg[67(v®)|v;, t;] is increasing in v;.
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Buyer's expected rents

» Taking expectations over (v;,t;) and integrating by parts,

Eofui(vi, vi, )] = Eo [va 1}(F<)> ]

Seller’s problem

» Define marginal revenue, m(v) :=v — (1 — F(v))/f(v).

» Seller chooses mechanism to solve

Profit = Bo| > TR;| = Eo| Y- 67 Dm(vy)

» Assume m(v) is increasing in v, so (MON) satisfied.
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ExamMpLE: ONE UNIT, IID ARRIVALS



Single Unit

Single Unit

Proposition 0.

Suppose K =1 and Ny is IID. The seller awards the good to the
buyer with the highest valuation exceeding a cutoff x;, where

m(z¢) = 6 Epp [max{m(vjy), m(zs)}] fort <T
m(xr) =0

These cutoffs are constant in periodst < T, and drop at time T'.

(i) Cutoffs deterministic: depend on t; not on # entrants, values.
(i) Characterized by one-period-look-ahead rule.

(iii) Constant for ¢t < T": Seller indifferent between selling/waiting.
If delay, face same tradeoff tomorrow and indifferent again.
Hence assume buy tomorrow.
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Implementation in Continuous Time

» Buyers enter at Poisson rate .

» Optimal cutoffs are deterministic:

rm(z*) = AE [ max{m(v) — m(z"), 0}

Implementation via Posted Prices

» At time T hold SPA with reserve m~1(0).
» The final posted price

pr = Ey [max{v%T, m_l(O)}‘U%T = x*]
» Posted price fort < T,

pr=—(z* —p) (A1 = F(z¥)) +r)
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Price and Cutoffs with One Units

Assumptions: Buyers enter with A = 5 and have values v ~ U|0, 1]. Total time
is T'=1 and the interest rate is r = 1/16.

1 —
Cutoffs
0.9
0.8
ﬁ \
07F Prices
Auction —>
0.6
05 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time, t
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Implementation via Contingent Contract

Contingent Contract

» Netflix wishes to buy ad slot on front page of YouTube
» Buy-it-now price pg

» Pay pr, to lock-in later if no other buyer

Implementation

» Fix price path p; above, with final price pr

» When buyer enters, bids b

» If b > pr, buyer locks-in contract at time min{¢ : p, = b}
> If b < pr, this is treated as bid in auction at T
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Preliminaries

Seller has k units at start of period ¢

» Lety :={y', 52 ...,9"} be highest buyers at time .
Lemma 1. 4
The optimal mechanism uses cutoffs ] (y~&=+1)) j < k.

» Across buyers, seller allocates to high value buyers first
» For one buyer, allocations monotone in values
» Unit j awarded iff "=+ > of (yk=+1) for £ € {3,..., k}

Highest values (y',...,9") act as state

» Buyer's t; doesn't affect allocation, so seller need not know

» Optimal allocations independent of when past units sold



Allocation

» “Continuation profit” at time ¢t with k units is

I (y) := max E, [Z 5Ti()’)—tm(vi)i|

M (y) := max Ei 1 [Z 5Ti()’)—tm(vi)i|

Lemma 2.

Suppose x](-) are decreasing in j. Then unit j is allocated iff
yk—j—H > m{(yk—j—l-l)

ldea
» If want to sell 5 unit then want to sell units {j +1,...,k}



Allocation

» ATIF(y) := IT¥(sell 1 today) — I (sell 0 today)
» Cutoff xi() is deterministic if it is independent of y—(k=i+1)

Lemma 3.
Suppose {1}s>¢41 are deterministic and decreasing in j. Then:

(a) Af:[f(y) is independent of y~!

(b) AIIF(y") is continuous and strictly increasing in y'
(c) AIIF(y') is increasing in k.

ldea

(a) Allocation to 3/ determined by rank relative to no. of goods.
Decision today does not affect when 3/ gets good.
Hence value of 3/ does not affect difference AIIF(y).

(b) A higher y' is more valuable if sell earlier.

(c) The option value of waiting declines with more goods.



Allocation

Deterministic Allocations

Theorem 1.
The optimal cutoffs z are deterministic, decreasing in k and
uniquely determined by ATIF(zf) =0

» At T, m(z%) = 0. By induction, suppose zF(y~1) > 21
T t t

0 > AIlf (27 (y ™)) > Allf (") > AL (271 =0

Using (i) TI¥(sell > 1 today) > IT%(sell 1 today)
(ii) monotonicity of Al_{f(yl iny!
(i) monotonicity of ATIF(y') in k
(iv) induction.
> As zf(y~1) > 2P ATTF(2F(y~1)) = 0 and zF deterministic

» Hence seller need not elicit y~! to determine allocation.



Allocation

Decreasing Demand

» DITF(y') := IT¥(sell 1 today) — II¥(sell > 1 tomorrow)
» Note DIIf(y') > ATIf(y'), with equality if 2 > o¥

Theorem 2.
Suppose Ny is decreasing in FOSD. Then x¥ are decreasing in t,
and determined by a one-period-look-ahead policy, DIIF(zF) = 0.

> If {¥} 5411 are decreasing in s, then DHt—H( 1) > DITF (y1).
Idea: Option value lower when fewer periods.
» By contradiction, if 2f < fo then
0 < DIIf(z}) < DY (2}, ;) < DIIY,  (zf, ;) = 0.
» Using (i) TI¥(sell 0 today) > Hk(sell >1 tomorrow)
i) monotonicity of DIIF(y ) iny!

(
(iii) monotonicity of DITF(y!) in ¢
(iv) induction.
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Decreasing Demand: Indifference Equations

The optimal cutoffs z§ are given by local indifference conditions

» At time T,
m(zk) =0
> Attime T — 1,
m(eh_y) = 0By [max{m(ah_),m(vf)}]
» Attimet<T —1,
m(z}) + 0B |:Ht+1 (Vt+1)]

=0FE; [max{m(xf),m(vtlﬂ)}] + 0B {ﬁf;f({xfa"tﬂ}i)]
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IMPLEMENTATION WITH POSTED PRICES



Implementation

General Demand

» Assume Poisson arrivals \;, discount rate r, period length h

» Price mechanism: Single posted price in each period; if there
is excess demand, good is rationed randomly.

Theorem 3.
Suppose \; is Lipschitz continuous. Then lost profit from using
posted prices and auction for final good in final period is O(h).

(i) Cutoffs do not jump down by more than O(h)
Idea: If t < T — h, follows from continuity of A;.
For t = T — h, have m(zf) ~ 0 for k > 2
(ii) Prices wrong because (1) don't adjust cutoffs within a period;
and (2) may ration incorrectly.
But the prob. of 2 sales in one period is O(h?).

» Poisson arrivals important since imply common expectations
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Decreasing Demand: Allocations

Poisson rate \; decreasing in t.

» Optimal cutoffs given by infinitesimal-period-look-ahead rule:

rm(x,]f) =ME, [max{m(v) — m(xf), 0} + Hf_l(min{v, mf}) — Hf‘l(v)}

where v is drawn from F'(-)

End game, t - T

> If k> 2, then zF — m~1(0).
» If k=1, then 2} jumps down to m~1(0)
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Decreasing Demand: Prices

Period T'
» For k =1, hold SPA with reserve m~—1(0)

» Final posted price
pr = B [max{y?,m Ot = i oh . {570y

where s (z) is last time the cutoff went below z.
» Fork>2,p, ->m 1(0)ast—T.

For t < T', prices determined by
t
ot =[at( [ o e ds) SN @] [of = pt = UF )] = (ot~ 40)

» If other units purchased earlier, p,’f is higher.

> Price falls over time but jumps with every sale.
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Price and Cutoffs with Two Units

Penultimate Unit Last Unit

Cutoffs
0.9F 0.9

07} —

0.6

Cutoffs

Prices

05 R R R R
0 0.2 0.4 0.6 0.8 1
Time, t Time, t
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Probability of Sale

0.8
06
Penultimate Unit

04r

02r

Last Unit

0 1 1 1 J
0 0.2 0.4 0.6 0.8 1

Time, t
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Forward-Looking vs. Myopic Buyers
Myopic Buyers
» Buyers buy when enter, or leave forever
» Cutoffs m(zf) = 6(VE | — Vt]_fll), where V¥ is value in (k,t).

» Implement with prices equal to cutoff.

Under forward-looking buyers
» Profits higher
» Total sales higher

» Sales later in season

Retailing data suggest forward-looking buyers
» Price reductions lead to large numbers of sales
» Burst of sales quickly dies down

» Prices fall rapidly near the end of season
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Cutoffs, Prices and Sales with Myopic Buyers

Cutoffs/Prices Probability of Sale

Penultimate Unit
08¢ 0.6

0.7 Last Unit 04}
Last Unit
0.6 Penultimate Unit 0.2r
0.5 - - 0 n s
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Time, t Time, t
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Introduction Model

Retail Markets - Inventory Costs

> Inventory cost ¢; if good held until time ¢.
> Assume marginal cost Ac; = ¢441 — ¢ is increasing in t

Cutoffs are deterministic and decreasing over time.

» Fort =T, m(zk) = —Acyp. Fort < T,

m(z}) + By |:Ht+1l(vt+1)}

= By [max{m(af). m(of)}| + B [T ({of vesa )| = Aer

» In continuous time,
m(af), 0} + T~ (minfo,of}) — T~ (v)|

o = |t ( / ;m?) Nds) f(af) = M(1 = F(af)] [of —pf = UF ! (af)]

& =ME {max{m(v) -
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Display Ads - Price Discrimination

» Rich media ad buyers have values v ~ fg

» Static ad buyers have values v ~ fg

Solving the problem
> Letting m; € {mp, mg}, the seller maximizes

Profit = Ej [Z 5Timi(vi)}

K3
» State variable is now k highest marginal revenues

> Cutoffs are deterministic in marginal revenue space

Implementation
> Use two price schedules for two types of buyer

» If rich media buyers have higher values, their marginal
revenues are lower and prices are higher.
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Airlines - Changing Distributions

» Demand f; gets stronger over time

Ey [ Z dTmy, (vl)]

%

» Seller maximizes

Optimal discriminations

» If ¢; observed, have cohort specific cutoffs/prices.

» Bias towards earlier cohorts.

» This is (IC) if ¢; not observed.

» e.g. If fy ~exp(ue), then issue coupon of py for cohort ¢.
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Selling a House - Disappearing Buyers

» Buyers exit the game with probability € (0, 1).

» Now need to carry around all past entrants as state

Cutoffs no longer deterministic
» If delay buyer y' may disappear, so value of 3> matters
» Prices no longer optimal

» Explanation for indicative bidding in real estate

Also have problem if
» Buyers have different discount rates
» Mix of myopic and forward-looking buyers

» General problem: ranking of buyer's values changes
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Conclusion

Optimal cutoffs

» Deterministic (only depend on k and t).

» Characterised by one-period-look-ahead rule.

Implemented by posted prices

» Sequence of prices with auction at time 7.

» Prices depend on when sold previous units.

Extensions

» N, correlated (e.g. learning)
» Different quality of ad slots

» Cost of paying attention to prices.
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