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The Problem

Seller owns K units of a good

I Seller has T periods to sell the goods.

I Buyers enter over time.

I Privately known values.

Big literature on revenue management

I Typically assume buyers are myopic.

Forward looking buyers

I Agents delay if expect prices to fall.

I Prefer to buy sooner rather than later.
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Applications

RM is hugely successful branch of market design

I Historically: Airlines, Seasonal clothing, Hotels, Cars

I Online economy: Ad networks, Ticket distributors, e-Retailers

Buyers strategically time purchases

I Clothing (Soysal and Krishnamurthi, 2012)

I Airlines (Li, Granados and Netessine, 2012)

I Redzone contracts (e.g. YouTube)

I Price prediction sites (e.g. Bing Travel)

Questions

I What is the optimal mechanism?

I Is there a simple way to implement it?
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Price and Cutoffs with One Units

Soysal and Krishnamurthi: Demand Dynamics in the Seasonal Goods Industry
Marketing Science 31(2), pp. 293–316, © 2012 INFORMS 309

Figure 1 Prices and Sales for a Sample Product
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prepromotion dip documented in the marketing lit-
erature in the CPG context (e.g., Van Heerde et al.
2000). Another explanation might be that the retailer
faces different consumer segments with different lev-
els of price sensitivities. This first drop in sales might
mean that the retailer has only a small segment of
low price sensitivity consumers, and this segment is
saturated early in the season and the retailer needs
to lower prices to capture demand from more price-
sensitive consumers. This emphasizes the importance
of a model like ours, because understanding the rea-
sons behind these patterns of observed demand is
very important for the retailer’s policy. So the retailer
wants to know: Do consumers strategically wait for
markdowns? To what extent does strategic waiting
explain the observed demand peak? And can limit-
ing availability help to dampen the effect of strategic
waiting by creating urgency in consumers?

6. Empirical Results
6.1. Parameter Estimates

6.1.1. Price Process Parameter Estimates.
Table 2a reports the maximum likelihood estimates of
the parameters of the markdown probability model
(conditional on no previous markdown) specified in
Equation (2).
Table 2b, on the other hand, reports the mark-

down probability model parameters (conditional on

Table 2a Markdown Probability Model (Conditional on No Previous
MD) Parameter Estimates

Parameter Symbol Estimate S.E.

Constant a0 É602187 005809
Retail price a1 000035 000020
Time in season (week) a2 004315 000398

Note. Number of observations = 1,054; log likelihood =É25604.

Table 2b Markdown Probability Process (Conditional on Previous MD)
Parameter Estimates

Parameter Symbol Estimate S.E.

Constant b0 É302683 006151
Retail price b1 000039 000017
Time in season (week) b2 000590 000300

Note. Number of observations = 799; log likelihood =É347074.

Table 2c Markdown Depth Process Parameter Estimates

Parameter Symbol Estimate Standard error

Intercept à0 É006102 004554
ln(Retail price) à1 009201 000868
Markdown dummy à2 É007225 000566

Notes. R2 = 00535. Number of observations = 233; mean squared error
= 00184.

a previous markdown) specified in Equation (3). The
estimates indicate that the probability of markdown
conditional on a previous markdown is positively
related to the product’s retail price. The probability
of markdown is also positively related to the time in
the season (number of weeks since product j has been
introduced) both conditional on no previous mark-
down and conditional on a previous markdown.
Table 2c reports the OLS estimates of the param-

eters of the markdown depth model specified in
Equation (4). The estimates indicate that the natural
logarithm of markdown depth is positively related to
the natural logarithm of the product’s retail price and
negatively related to the markdown dummy. Products
with higher retail prices face deeper markdowns com-
pared to products with lower retail prices and first
markdowns are deeper than later markdowns.

6.1.2. Availability Process Parameter Estimates.
Table 3 reports the OLS estimates of the parameters
of the availability expectations process specified in
Equation (5). The estimates indicate that availability
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Results

Allocations determined by deterministic cutoffs.

I Only depend on (k, t),

I Not on # of agents, their values, when sold units.

When demand gets weaker over time

I Cutoffs satisfy one-period-look-ahead property.

Implement in continuous time via posted prices

I With auction at time T .

I Relies on cutoffs being deterministic.

Prices depend on when previous units were sold.

I Cutoffs are easy; prices are hard.



Introduction Model Single Unit Allocation Implementation Applications The End

Outline

1. Allocations

I General demand - Cutoffs are deterministic

I Decreasing demand - One-period-look-ahead property

2. Implementation

I General demand - Use posted prices

I Decreasing demand - Prices given by differential equation

3. Applications

I Retailing - Storage costs

I Display ads - Third degree price discrimination

I Airlines - Changing distribution of arrivals

I House selling - Disappearing buyers
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Literature

Gallien (2006)

I Infinite periods; Inter-arrival times have increasing failure rate.

I No delay in equilibrium.

Pai and Vohra (2013), Mierendorff (2009)

I Privately known value, entry time, exit time; No discounting.

I Show how to simplify problem, but do not fully characterize.

Aviv and Pazgal (2008), Elmaghraby et al (2008)

I Similar model to ours; only allow for two prices.

MacQueen and Miller (1960), McAfee and McMillan (1988)

I Optimal policy for single unit.
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Model
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Model

I Time discrete and finite t ∈ {1, . . . , T}
I Seller has K goods.

I Seller can commit to mechanism.

Entrants

I At start of period t, Nt buyers arrive

I Nt independently distributed, but distribution may vary

I Nt observed by seller but not other buyers

Preferences

I Buyer has value vi ∼ f(·) for one unit.

I Utility is (v − pt)δt
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Mechanisms

I Buyer makes report ṽi when enters market.

I Mechanism 〈τi,TRi〉 describes allocation and transfer.

I Feasible if award after entry, K goods, adapted to seller’s info

Buyer’s problem

I Buyer chooses ṽi to maximise

ui(ṽi, vi, ti) = E0

[
viδ

τi(ṽi,v−i,t) − TRi(ṽi, v−i, t)
∣∣∣vi, ti]

where Et is expectation at the start of period t.

Mechanism is (IC) and (IR) if

(INT) ui(vi, vi, ti) = E0[
∫ vi
v δτi(z,v−i,t) dz|vi, ti]

(MON) E0[δ
τi(v,t)|vi, ti] is increasing in vi.
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Buyer’s expected rents

I Taking expectations over (vi, ti) and integrating by parts,

E0[ui(vi, vi, ti)] = E0

[
δτi(v,t)

1− F (vi)

f(vi)

]

Seller’s problem

I Define marginal revenue, m(v) := v − (1− F (v))/f(v).

I Seller chooses mechanism to solve

Profit = E0

[∑
i

TRi

]
= E0

[∑
i

δτi(v,t)m(vi)
]

I Assume m(v) is increasing in v, so (MON) satisfied.



Introduction Model Single Unit Allocation Implementation Applications The End

Example: One Unit, IID Arrivals
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Single Unit

Proposition 0.

Suppose K = 1 and Nt is IID. The seller awards the good to the
buyer with the highest valuation exceeding a cutoff xt, where

m(xt) = δEt+1[max{m(v1t+1),m(xt)}] for t < T

m(xT ) = 0

These cutoffs are constant in periods t < T , and drop at time T .

(i) Cutoffs deterministic: depend on t; not on # entrants, values.

(ii) Characterized by one-period-look-ahead rule.

(iii) Constant for t < T : Seller indifferent between selling/waiting.
If delay, face same tradeoff tomorrow and indifferent again.
Hence assume buy tomorrow.
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Implementation in Continuous Time

I Buyers enter at Poisson rate λ.

I Optimal cutoffs are deterministic:

rm(x∗) = λE
[

max{m(v)−m(x∗), 0}
]

Implementation via Posted Prices

I At time T hold SPA with reserve m−1(0).

I The final posted price

pT = E0

[
max{v2≤T ,m−1(0)}

∣∣v1≤T = x∗
]

I Posted price for t < T ,

ṗt = −(x∗ − pt)
(
λ(1− F (x∗)) + r

)
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Price and Cutoffs with One Units
Assumptions: Buyers enter with λ = 5 and have values v ∼ U [0, 1]. Total time

is T = 1 and the interest rate is r = 1/16.
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Implementation via Contingent Contract

Contingent Contract

I Netflix wishes to buy ad slot on front page of YouTube

I Buy-it-now price pH
I Pay pL to lock-in later if no other buyer

Implementation

I Fix price path pt above, with final price pT
I When buyer enters, bids b

I If b ≥ pT , buyer locks-in contract at time min{t : pt = b}
I If b < pT , this is treated as bid in auction at T
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Many Units: Allocations
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Preliminaries

Seller has k units at start of period t

I Let y := {y1, y2, . . . , yk} be highest buyers at time t.

Lemma 1.
The optimal mechanism uses cutoffs xjt (y

−(k−j+1)), j ≤ k.

I Across buyers, seller allocates to high value buyers first

I For one buyer, allocations monotone in values

I Unit j awarded iff yk−`+1 ≥ x`t(yk−`+1) for ` ∈ {j, . . . , k}

Highest values (y1, . . . , yk) act as state

I Buyer’s ti doesn’t affect allocation, so seller need not know

I Optimal allocations independent of when past units sold
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I “Continuation profit” at time t with k units is

Πk
t (y) := max

τi≥t
Et

[∑
i

δτi(y)−tm(vi)
]

Π̃k
t (y) := max

τi≥t
Et+1

[∑
i

δτi(y)−tm(vi)
]

Lemma 2.
Suppose xjt (·) are decreasing in j. Then unit j is allocated iff
yk−j+1 ≥ xjt (yk−j+1)

Idea

I If want to sell jth unit then want to sell units {j + 1, . . . , k}
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I ∆Π̃k
t (y) := Π̃k

t (sell 1 today)− Π̃k
t (sell 0 today)

I Cutoff xjt (·) is deterministic if it is independent of y−(k−j+1)

Lemma 3.
Suppose {xjs}s≥t+1 are deterministic and decreasing in j. Then:
(a) ∆Π̃k

t (y) is independent of y−1

(b) ∆Π̃k
t (y

1) is continuous and strictly increasing in y1

(c) ∆Π̃k
t (y

1) is increasing in k.

Idea

(a) Allocation to yj determined by rank relative to no. of goods.
Decision today does not affect when yj gets good.
Hence value of yj does not affect difference ∆Π̃k

t (y).

(b) A higher y1 is more valuable if sell earlier.

(c) The option value of waiting declines with more goods.
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Deterministic Allocations

Theorem 1.
The optimal cutoffs xkt are deterministic, decreasing in k and
uniquely determined by ∆Π̃k

t (x
k
t ) = 0

I At T , m(xkT ) = 0. By induction, suppose xkt (y
−1) > xk−1t

0 ≥ ∆Π̃k
t (x

k
t (y
−1)) > ∆Π̃k

t (x
k−1
t ) ≥ ∆Π̃k−1

t (xk−1t ) = 0

Using (i) Π̃k
t (sell ≥ 1 today) ≥ Π̃k

t (sell 1 today)
(ii) monotonicity of ∆Π̃k

t (y
1) in y1

(iii) monotonicity of ∆Π̃k
t (y

1) in k
(iv) induction.

I As xkt (y
−1) ≥ xk−1t , ∆Π̃k

t (x
k
t (y
−1)) = 0 and xkt deterministic

I Hence seller need not elicit y−1 to determine allocation.
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Decreasing Demand

I DΠ̃k
t (y

1) := Π̃k
t (sell 1 today)− Π̃k

t (sell ≥ 1 tomorrow)

I Note DΠ̃k
t (y

1) ≥ ∆Π̃k
t (y

1), with equality if xkt ≥ xkt+1

Theorem 2.
Suppose Nt is decreasing in FOSD. Then xkt are decreasing in t,
and determined by a one-period-look-ahead policy, DΠ̃k

t (x
k
t ) = 0.

I If {xks}s≥t+1 are decreasing in s, then DΠ̃k
t+1(y

1) ≥ DΠ̃k
t (y

1).
Idea: Option value lower when fewer periods.

I By contradiction, if xkt < xkt+1 then

0 ≤ DΠ̃k
t (x

k
t ) < DΠ̃k

t (x
k
t+1) ≤ DΠ̃k

t+1(x
k
t+1) = 0.

I Using (i) Π̃k
t (sell 0 today) ≥ Π̃k

t (sell ≥ 1 tomorrow)
(ii) monotonicity of DΠ̃k

t (y
1) in y1

(iii) monotonicity of DΠ̃k
t (y

1) in t
(iv) induction.
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Decreasing Demand: Indifference Equations

The optimal cutoffs xkt are given by local indifference conditions

I At time T ,
m(xkT ) = 0

I At time T − 1,

m(xkT−1) = δET−1

[
max{m(xkT−1),m(vkT )}

]
I At time t < T − 1,

m(xkt ) + δEt+1

[
Π̃k−1
t+1 (vt+1)

]
= δEt+1

[
max{m(xkt ),m(v1t+1)}

]
+ δEt+1

[
Π̃k−1
t+1 ({xkt ,vt+1}2k)

]
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Implementation with Posted Prices
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General Demand

I Assume Poisson arrivals λt, discount rate r, period length h

I Price mechanism: Single posted price in each period; if there
is excess demand, good is rationed randomly.

Theorem 3.
Suppose λt is Lipschitz continuous. Then lost profit from using
posted prices and auction for final good in final period is O(h).

(i) Cutoffs do not jump down by more than O(h)
Idea: If t < T − h, follows from continuity of λt.
For t = T − h, have m(xkt ) ≈ 0 for k ≥ 2

(ii) Prices wrong because (1) don’t adjust cutoffs within a period;
and (2) may ration incorrectly.
But the prob. of 2 sales in one period is O(h2).

I Poisson arrivals important since imply common expectations
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Decreasing Demand: Allocations

Poisson rate λt decreasing in t.

I Optimal cutoffs given by infinitesimal-period-look-ahead rule:

rm(xkt ) = λtEv

[
max{m(v)−m(xkt ), 0}+ Πk−1

t

(
min{v, xkt }

)
−Πk−1

t (v)
]

m(xkT ) = 0

where v is drawn from F (·)

End game, t→ T

I If k ≥ 2, then xkt → m−1(0).

I If k = 1, then xkt jumps down to m−1(0)
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Decreasing Demand: Prices

Period T

I For k = 1, hold SPA with reserve m−1(0)

I Final posted price

pT = E0

[
max{y2,m−1(0)}

∣∣∣y1 = lim
h→0

x1T−h, {sT (x)}x≤y1
]

where sT (x) is last time the cutoff went below x.

I For k ≥ 2, pt → m−1(0) as t→ T .

For t < T , prices determined by

ṗkt =
[
ẋkt

(∫ t

st(xk
t )

λs ds
)
f(xkt )−λt(1−F (xkt ))

] [
xkt − pkt − Uk−1

t (xkt )
]
−r
(
xkt − pkt

)
I If other units purchased earlier, pkt is higher.

I Price falls over time but jumps with every sale.
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Price and Cutoffs with Two Units
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Probability of Sale

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of Sale

Time, t

Last Unit

Penultimate Unit



Introduction Model Single Unit Allocation Implementation Applications The End

Forward-Looking vs. Myopic Buyers

Myopic Buyers
I Buyers buy when enter, or leave forever

I Cutoffs m(xkt ) = δ(V k
t+1 − V

k−1
t+1 ), where V k

t is value in (k, t).

I Implement with prices equal to cutoff.

Under forward-looking buyers
I Profits higher

I Total sales higher

I Sales later in season

Retailing data suggest forward-looking buyers
I Price reductions lead to large numbers of sales

I Burst of sales quickly dies down

I Prices fall rapidly near the end of season
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Cutoffs, Prices and Sales with Myopic Buyers
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Applications
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Retail Markets - Inventory Costs

I Inventory cost ct if good held until time t.

I Assume marginal cost ∆ct = ct+1 − ct is increasing in t.

Cutoffs are deterministic and decreasing over time.

I For t = T , m(xkT ) = −∆cT . For t < T ,

m(xkt ) + Et+1

[
Π̃k−1
t+1 (vt+1)

]
= Et+1

[
max{m(xkt ),m(v1t+1)}

]
+ Et+1

[
Π̃k−1
t+1 ({xkt ,vt+1}2k)

]
−∆ct

I In continuous time,

ċt = λtE
[
max{m(v)−m(xkt ), 0}+ Πk−1

t

(
min{v, xkt }

)
−Πk−1

t (v)
]

ṗkt =
[
ẋkt

(∫ t

st(xkt )
λsds

)
f(xkt )− λt(1− F (xkt ))

] [
xkt − pkt − Uk−1t (xkt )

]



Introduction Model Single Unit Allocation Implementation Applications The End

Display Ads - Price Discrimination

I Rich media ad buyers have values v ∼ fR
I Static ad buyers have values v ∼ fS

Solving the problem
I Letting mi ∈ {mR,mS}, the seller maximizes

Profit = E0

[∑
i

δτimi(vi)
]

I State variable is now k highest marginal revenues

I Cutoffs are deterministic in marginal revenue space

Implementation
I Use two price schedules for two types of buyer

I If rich media buyers have higher values, their marginal
revenues are lower and prices are higher.
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Airlines - Changing Distributions

I Demand ft gets stronger over time

I Seller maximizes
E0

[∑
i

δτimti(vi)
]

Optimal discriminations

I If ti observed, have cohort specific cutoffs/prices.

I Bias towards earlier cohorts.

I This is (IC) if ti not observed.

I e.g. If ft ∼ exp(µt), then issue coupon of µt for cohort t.
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Selling a House - Disappearing Buyers

I Buyers exit the game with probability ∈ (0, 1).

I Now need to carry around all past entrants as state

Cutoffs no longer deterministic

I If delay buyer y1 may disappear, so value of y2 matters

I Prices no longer optimal

I Explanation for indicative bidding in real estate

Also have problem if

I Buyers have different discount rates

I Mix of myopic and forward-looking buyers

I General problem: ranking of buyer’s values changes
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Conclusion

Optimal cutoffs

I Deterministic (only depend on k and t).

I Characterised by one-period-look-ahead rule.

Implemented by posted prices

I Sequence of prices with auction at time T .

I Prices depend on when sold previous units.

Extensions

I Nt correlated (e.g. learning)

I Different quality of ad slots

I Cost of paying attention to prices.
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