Revenue Management with Forward-Looking Buyers Posted Prices and Fire-sales

Simon Board Andy Skrzypacz

UCLA

Stanford

June 4, 2013

The Problem

Seller owns K units of a good

- Seller has T periods to sell the goods.
- Buyers enter over time.
- Privately known values.

The Problem

Seller owns K units of a good

- Seller has T periods to sell the goods.
- Buyers enter over time.
- Privately known values.

Big literature on revenue management

Typically assume buyers are myopic.

Forward looking buyers

- Agents delay if expect prices to fall.
- Prefer to buy sooner rather than later.

Applications

RM is hugely successful branch of market design

- ▶ Historically: Airlines, Seasonal clothing, Hotels, Cars
- ▶ Online economy: Ad networks, Ticket distributors, e-Retailers

Buyers strategically time purchases

- Clothing (Soysal and Krishnamurthi, 2012)
- Airlines (Li, Granados and Netessine, 2012)
- ► Redzone contracts (e.g. YouTube)
- Price prediction sites (e.g. Bing Travel)

Questions

- ▶ What is the optimal mechanism?
- ▶ Is there a simple way to implement it?

Price and Cutoffs with One Units

Prices and Sales for a Sample Product

Results

Allocations determined by deterministic cutoffs.

- ▶ Only depend on (k, t),
- ▶ Not on # of agents, their values, when sold units.

When demand gets weaker over time

Cutoffs satisfy one-period-look-ahead property.

Implement in continuous time via posted prices

- With auction at time T.
- Relies on cutoffs being deterministic.

Prices depend on when previous units were sold.

Cutoffs are easy; prices are hard.

Outline

1. Allocations

- General demand Cutoffs are deterministic
- ▶ Decreasing demand One-period-look-ahead property

2. Implementation

- General demand Use posted prices
- Decreasing demand Prices given by differential equation

3. Applications

- Retailing Storage costs
- Display ads Third degree price discrimination
- Airlines Changing distribution of arrivals
- ► House selling Disappearing buyers

Literature

Gallien (2006)

- ▶ Infinite periods; Inter-arrival times have increasing failure rate.
- No delay in equilibrium.

Pai and Vohra (2013), Mierendorff (2009)

- Privately known value, entry time, exit time; No discounting.
- ▶ Show how to simplify problem, but do not fully characterize.

Aviv and Pazgal (2008), Elmaghraby et al (2008)

Similar model to ours; only allow for two prices.

MacQueen and Miller (1960), McAfee and McMillan (1988)

▶ Optimal policy for single unit.

Model

Model

- ▶ Time discrete and finite $t \in \{1, ..., T\}$
- Seller has K goods.
- ▶ Seller can commit to mechanism.

Entrants

- ▶ At start of period t, N_t buyers arrive
- $ightharpoonup N_t$ independently distributed, but distribution may vary
- $ightharpoonup N_t$ observed by seller but not other buyers

Preferences

- ▶ Buyer has value $v_i \sim f(\cdot)$ for one unit.
- Utility is $(v p_t)\delta^t$

Mechanisms

- ▶ Buyer makes report \tilde{v}_i when enters market.
- ▶ Mechanism $\langle \tau_i, TR_i \rangle$ describes allocation and transfer.
- lacktriangle Feasible if award after entry, K goods, adapted to seller's info

Buyer's problem

▶ Buyer chooses \tilde{v}_i to maximise

$$u_i(\tilde{v}_i, v_i, t_i) = E_0 \Big[v_i \delta^{\tau_i(\tilde{v}_i, \mathbf{v_{-i}, t})} - TR_i(\tilde{v}_i, v_{-i}, \mathbf{t}) \Big| v_i, t_i \Big]$$
 where E_t is expectation at the start of period t .

Mechanism is (IC) and (IR) if

$$\begin{split} \text{(INT)} \ \ u_i(v_i,v_i,t_i) &= E_0[\int_{\underline{v}}^{v_i} \delta^{\tau_i(z,\mathbf{v_{-i},t})} \, dz | v_i,t_i] \\ \text{(MON)} \ \ E_0[\delta^{\tau_i(\mathbf{v,t})} | v_i,t_i] \ \text{is increasing in} \ v_i. \end{split}$$

Buyer's expected rents

lacktriangle Taking expectations over (v_i, t_i) and integrating by parts,

$$E_0[u_i(v_i, v_i, t_i)] = E_0\left[\delta^{\tau_i(\mathbf{v}, \mathbf{t})} \frac{1 - F(v_i)}{f(v_i)}\right]$$

Seller's problem

- ▶ Define marginal revenue, m(v) := v (1 F(v))/f(v).
- Seller chooses mechanism to solve

Profit =
$$E_0 \left[\sum_i TR_i \right] = E_0 \left[\sum_i \delta^{\tau_i(\mathbf{v}, \mathbf{t})} m(v_i) \right]$$

Assume m(v) is increasing in v, so (MON) satisfied.

EXAMPLE: ONE UNIT, IID ARRIVALS

Single Unit

Proposition 0.

Suppose K=1 and N_t is IID. The seller awards the good to the buyer with the highest valuation exceeding a cutoff x_t , where

$$m(x_t) = \delta E_{t+1}[\max\{m(v_{t+1}^1), m(x_t)\}]$$
 for $t < T$
 $m(x_T) = 0$

These cutoffs are constant in periods t < T, and drop at time T.

- (i) Cutoffs deterministic: depend on t; not on # entrants, values.
- (ii) Characterized by one-period-look-ahead rule.
- (iii) Constant for t < T: Seller indifferent between selling/waiting. If delay, face same tradeoff tomorrow and indifferent again. Hence assume buy tomorrow.

Implementation in Continuous Time

- ▶ Buyers enter at Poisson rate λ .
- Optimal cutoffs are deterministic:

$$rm(x^*) = \lambda E \left[\max\{m(v) - m(x^*), 0\} \right]$$

Implementation via Posted Prices

- ▶ At time T hold SPA with reserve $m^{-1}(0)$.
- The final posted price

$$p_T = E_0 \left[\max\{v_{\leq T}^2, m^{-1}(0)\} \middle| v_{\leq T}^1 = x^* \right]$$

▶ Posted price for t < T,

$$\dot{p}_t = -(x^* - p_t) (\lambda (1 - F(x^*)) + r)$$

Price and Cutoffs with One Units

Assumptions: Buyers enter with $\lambda=5$ and have values $v\sim U[0,1].$ Total time is T=1 and the interest rate is r=1/16.

Implementation via Contingent Contract

Contingent Contract

- ▶ Netflix wishes to buy ad slot on front page of YouTube
- ▶ Buy-it-now price p_H
- ▶ Pay p_L to lock-in later if no other buyer

Implementation

- \blacktriangleright Fix price path p_t above, with final price p_T
- ▶ When buyer enters, bids b
- ▶ If $b \ge p_T$, buyer locks-in contract at time $\min\{t : p_t = b\}$
- ▶ If $b < p_T$, this is treated as bid in auction at T

MANY UNITS: ALLOCATIONS

Preliminaries

Seller has k units at start of period t

▶ Let $\mathbf{y} := \{y^1, y^2, \dots, y^k\}$ be highest buyers at time t.

Lemma 1.

The optimal mechanism uses cutoffs $x_t^j(\mathbf{y}^{-(\mathbf{k}-\mathbf{j}+1)}), j \leq k$.

- Across buyers, seller allocates to high value buyers first
- For one buyer, allocations monotone in values
- ▶ Unit j awarded iff $y^{k-\ell+1} \ge x_t^\ell(\mathbf{y^{k-\ell+1}})$ for $\ell \in \{j, \dots, k\}$

Highest values (y^1, \ldots, y^k) act as state

- ightharpoonup Buyer's t_i doesn't affect allocation, so seller need not know
- Optimal allocations independent of when past units sold

ightharpoonup "Continuation profit" at time t with k units is

$$\Pi_t^k(\mathbf{y}) := \max_{\tau_i \ge t} E_t \left[\sum_i \delta^{\tau_i(\mathbf{y}) - t} m(v_i) \right]$$
$$\tilde{\Pi}_t^k(\mathbf{y}) := \max_{\tau_i \ge t} E_{t+1} \left[\sum_i \delta^{\tau_i(\mathbf{y}) - t} m(v_i) \right]$$

Lemma 2.

Suppose $x_t^j(\cdot)$ are decreasing in j. Then unit j is allocated iff $y^{k-j+1} \geq x_t^j(\mathbf{y^{k-j+1}})$

Idea

▶ If want to sell j^{th} unit then want to sell units $\{j+1,\ldots,k\}$

- $\qquad \qquad \Delta \tilde{\Pi}^k_t(\mathbf{y}) := \tilde{\Pi}^k_t(\text{sell 1 today}) \tilde{\Pi}^k_t(\text{sell 0 today})$
- \blacktriangleright Cutoff $x_t^j(\cdot)$ is deterministic if it is independent of $\mathbf{y}^{-(\mathbf{k}-\mathbf{j}+\mathbf{1})}$

Lemma 3.

Suppose $\{x_s^j\}_{s\geq t+1}$ are deterministic and decreasing in j. Then:

- (a) $\Delta \tilde{\Pi}_t^k(\mathbf{y})$ is independent of \mathbf{y}^{-1}
- (b) $\Delta \tilde{\Pi}_t^k(y^1)$ is continuous and strictly increasing in y^1
- (c) $\Delta \tilde{\Pi}_t^k(y^1)$ is increasing in k.

Idea

- (a) Allocation to y^j determined by rank relative to no. of goods. Decision today does not affect when y^j gets good. Hence value of y^j does not affect difference $\Delta \tilde{\Pi}_t^k(\mathbf{y})$.
- (b) A higher y^1 is more valuable if sell earlier.
- (c) The option value of waiting declines with more goods.

Deterministic Allocations

Theorem 1.

The optimal cutoffs x_t^k are deterministic, decreasing in k and uniquely determined by $\Delta \tilde{\Pi}_t^k(x_t^k)=0$

▶ At T, $m(x_T^k) = 0$. By induction, suppose $x_t^k(\mathbf{y^{-1}}) > x_t^{k-1}$

$$0 \geq \Delta \tilde{\Pi}_t^k(x_t^k(\mathbf{y}^{-1})) > \Delta \tilde{\Pi}_t^k(x_t^{k-1}) \geq \Delta \tilde{\Pi}_t^{k-1}(x_t^{k-1}) = 0$$

- Using (i) $\tilde{\Pi}_t^k(\text{sell} \geq 1 \text{ today}) \geq \tilde{\Pi}_t^k(\text{sell } 1 \text{ today})$
 - (ii) monotonicity of $\Delta \tilde{\Pi}_t^k(y^1)$ in y^1
 - (iii) monotonicity of $\Delta \tilde{\Pi}_t^k(y^1)$ in k
 - (iv) induction.
- ▶ As $x_t^k(\mathbf{y^{-1}}) \ge x_t^{k-1}$, $\Delta \tilde{\Pi}_t^k(x_t^k(\mathbf{y^{-1}})) = 0$ and x_t^k deterministic
- ▶ Hence seller need not elicit y^{-1} to determine allocation.

Decreasing Demand

- $\blacktriangleright \ D\tilde{\Pi}^k_t(y^1) := \tilde{\Pi}^k_t(\text{sell 1 today}) \tilde{\Pi}^k_t(\text{sell} \geq 1 \text{ tomorrow})$
- ▶ Note $D\tilde{\Pi}^k_t(y^1) \geq \Delta \tilde{\Pi}^k_t(y^1)$, with equality if $x^k_t \geq x^k_{t+1}$

Theorem 2.

Suppose N_t is decreasing in FOSD. Then x_t^k are decreasing in t, and determined by a one-period-look-ahead policy, $D\tilde{\Pi}_t^k(x_t^k)=0$.

- ▶ If $\{x_s^k\}_{s \geq t+1}$ are decreasing in s, then $D\tilde{\Pi}_{t+1}^k(y^1) \geq D\tilde{\Pi}_t^k(y^1)$. Idea: Option value lower when fewer periods.
- ▶ By contradiction, if $x_t^k < x_{t+1}^k$ then $0 \le D\tilde{\Pi}_t^k(x_t^k) < D\tilde{\Pi}_t^k(x_{t+1}^k) \le D\tilde{\Pi}_{t+1}^k(x_{t+1}^k) = 0.$
- ▶ Using (i) $\tilde{\Pi}_t^k(\text{sell }0\text{ today}) \geq \tilde{\Pi}_t^k(\text{sell }\geq 1\text{ tomorrow})$ (ii) monotonicity of $D\tilde{\Pi}_t^k(y^1)$ in y^1 (iii) monotonicity of $D\tilde{\Pi}_t^k(y^1)$ in t (iv) induction.

Decreasing Demand: Indifference Equations

The optimal cutoffs x_t^k are given by local indifference conditions

▶ At time *T*,

$$m(x_T^k) = 0$$

▶ At time T-1,

$$m(x_{T-1}^k) = \delta E_{T-1} \left[\max\{m(x_{T-1}^k), m(v_T^k)\} \right]$$

▶ At time t < T - 1,

$$\begin{split} m(x_t^k) + \delta E_{t+1} \left[\tilde{\Pi}_{t+1}^{k-1}(\mathbf{v_{t+1}}) \right] \\ = \delta E_{t+1} \left[\max\{m(x_t^k), m(v_{t+1}^1)\} \right] + \delta E_{t+1} \left[\tilde{\Pi}_{t+1}^{k-1}(\{x_t^k, \mathbf{v_{t+1}}\}_k^2) \right] \end{split}$$

IMPLEMENTATION WITH POSTED PRICES

General Demand

- Assume Poisson arrivals λ_t , discount rate r, period length h
- Price mechanism: Single posted price in each period; if there is excess demand, good is rationed randomly.

Theorem 3.

Suppose λ_t is Lipschitz continuous. Then lost profit from using posted prices and auction for final good in final period is O(h).

- (i) Cutoffs do not jump down by more than O(h) Idea: If t < T h, follows from continuity of λ_t . For t = T h, have $m(x_t^k) \approx 0$ for $k \geq 2$
- (ii) Prices wrong because (1) don't adjust cutoffs within a period; and (2) may ration incorrectly. But the prob. of 2 sales in one period is $O(h^2)$.
 - Poisson arrivals important since imply common expectations

Decreasing Demand: Allocations

Poisson rate λ_t decreasing in t.

▶ Optimal cutoffs given by infinitesimal-period-look-ahead rule:

$$rm(x_t^k) = \lambda_t E_v \Big[\max\{m(v) - m(x_t^k), 0\} + \Pi_t^{k-1} \Big(\min\{v, x_t^k\} \Big) - \Pi_t^{k-1}(v) \Big]$$

$$m(x_T^k) = 0$$

where v is drawn from $F(\cdot)$

End game, $t \to T$

- ▶ If $k \ge 2$, then $x_t^k \to m^{-1}(0)$.
- ▶ If k = 1, then x_t^k jumps down to $m^{-1}(0)$

Decreasing Demand: Prices

Period T

- ▶ For k = 1, hold SPA with reserve $m^{-1}(0)$
- Final posted price

$$p_T = E_0 \left[\max\{y^2, m^{-1}(0)\} \middle| y^1 = \lim_{h \to 0} x_{T-h}^1, \{s_T(x)\}_{x \le y^1} \right]$$

where $s_T(x)$ is last time the cutoff went below x.

For $k \geq 2$, $p_t \to m^{-1}(0)$ as $t \to T$.

For t < T, prices determined by

$$\dot{p}_{t}^{k} = \left[\dot{x}_{t}^{k} \left(\int_{s_{t}(x_{t}^{k})}^{t} \lambda_{s} ds \right) f(x_{t}^{k}) - \lambda_{t} (1 - F(x_{t}^{k})) \right] \left[x_{t}^{k} - p_{t}^{k} - U_{t}^{k-1}(x_{t}^{k}) \right] - r \left(x_{t}^{k} - p_{t}^{k} \right)$$

- ▶ If other units purchased earlier, p_t^k is higher.
- Price falls over time but jumps with every sale.

Price and Cutoffs with Two Units

Probability of Sale

Forward-Looking vs. Myopic Buyers

Myopic Buyers

- Buyers buy when enter, or leave forever
- ▶ Cutoffs $m(x_t^k) = \delta(V_{t+1}^k V_{t+1}^{k-1})$, where V_t^k is value in (k,t).
- Implement with prices equal to cutoff.

Under forward-looking buyers

- Profits higher
- Total sales higher
- Sales later in season

Retailing data suggest forward-looking buyers

- Price reductions lead to large numbers of sales
- ▶ Burst of sales quickly dies down
- Prices fall rapidly near the end of season

Cutoffs, Prices and Sales with Myopic Buyers

APPLICATIONS

Retail Markets - Inventory Costs

- ▶ Inventory cost c_t if good held until time t.
- ▶ Assume marginal cost $\Delta c_t = c_{t+1} c_t$ is increasing in t.

Cutoffs are deterministic and decreasing over time.

▶ For t = T, $m(x_T^k) = -\Delta c_T$. For t < T,

$$m(x_t^k) + E_{t+1} \left[\tilde{\Pi}_{t+1}^{k-1}(\mathbf{v_{t+1}}) \right]$$

$$= E_{t+1} \left[\max\{m(x_t^k), m(v_{t+1}^1)\} \right] + E_{t+1} \left[\tilde{\Pi}_{t+1}^{k-1}(\{x_t^k, \mathbf{v_{t+1}}\}_k^2) \right] - \Delta c_t$$

In continuous time,

$$\dot{c}_t = \lambda_t E\left[\max\{m(v) - m(x_t^k), 0\} + \Pi_t^{k-1}\left(\min\{v, x_t^k\}\right) - \Pi_t^{k-1}(v)\right]$$

$$\dot{p}_t^k = \left[\dot{x}_t^k \left(\int_{s_t(x_t^k)}^t \lambda_s ds\right) f(x_t^k) - \lambda_t (1 - F(x_t^k))\right] \left[x_t^k - p_t^k - U_t^{k-1}(x_t^k)\right]$$

Display Ads - Price Discrimination

- lacktriangle Rich media ad buyers have values $v \sim f_R$
- lacktriangle Static ad buyers have values $v\sim f_S$

Solving the problem

▶ Letting $m_i \in \{m_R, m_S\}$, the seller maximizes

$$\mathsf{Profit} = E_0 \Big[\sum_i \delta^{\tau_i} m_i(v_i) \Big]$$

- State variable is now k highest marginal revenues
- ► Cutoffs are deterministic in marginal revenue space

Implementation

- Use two price schedules for two types of buyer
- ▶ If rich media buyers have higher values, their marginal revenues are lower and prices are higher.

Airlines - Changing Distributions

- ightharpoonup Demand f_t gets stronger over time
- Seller maximizes

$$E_0\Big[\sum_i \delta^{\tau_i} m_{t_i}(v_i)\Big]$$

Optimal discriminations

- ▶ If t_i observed, have cohort specific cutoffs/prices.
- Bias towards earlier cohorts.
- ▶ This is (IC) if *t*_i not observed.
- ▶ e.g. If $f_t \sim \exp(\mu_t)$, then issue coupon of μ_t for cohort t.

Selling a House - Disappearing Buyers

- ▶ Buyers exit the game with probability $\in (0,1)$.
- Now need to carry around all past entrants as state

Cutoffs no longer deterministic

- ▶ If delay buyer y^1 may disappear, so value of y^2 matters
- Prices no longer optimal
- Explanation for indicative bidding in real estate

Also have problem if

- ▶ Buyers have different discount rates
- ▶ Mix of myopic and forward-looking buyers
- ▶ General problem: ranking of buyer's values changes

Conclusion

Optimal cutoffs

- Deterministic (only depend on k and t).
- Characterised by one-period-look-ahead rule.

Implemented by posted prices

- Sequence of prices with auction at time T.
- Prices depend on when sold previous units.

Extensions

- $ightharpoonup N_t$ correlated (e.g. learning)
- Different quality of ad slots
- Cost of paying attention to prices.

