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Motivation

Talent is source of competitive advantage

I Universities: Faculty are key asset.

I Netflix: “We endeavor to have only outstanding employees.”

I Empirics: Managers (Bertrand-Schoar), workers (Lazear).

Talent perpetuates via hiring

I Uni: Faculty responsible for recruiting juniors and successors.

I N: “Building a great team is manager’s most important task.”

I Empirics: Stars help recruit future talent (Waldinger)

Key questions

I Can talent dispersion persist/avoid regression to mediocrity?

I Why don’t bad firms just compete advantage away?
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Overview

Three ingredients for persistence
I High wages attract talented applicants

I Skilled management screens wheat from chaff.

I Today’s recruits become tomorrow’s managers.

Static Model
I When talent is scarce, matching is positive assortative.

I Efficient matching is negative assortative.

Dynamic model
I Persistent dispersion of talent, productivity and wages.

I Regression to mediocrity offset by PAM.

I Gradual adjustment to steady state.



Introduction Static Dynamic Welfare Extensions The End

Literature

Matching in labor markets
I Becker (1973), Lucas (1978), Garicano (2000), Levin &

Tadelis (2005), Anderson & Smith (2010).

Adverse selection
I Greenwald (1986), Lockwood (1991), Chakraborty et al

(2010), Lauermann & Wolitzky (2015), Kurlat (2016).

Wage & productivity dispersion
I Albrecht & Vroman (1992), Burdett & Mortensen (1998).

Firm dynamics
I Prescott & Lucas (1971), Jovanovic (1982), Hopenhayn

(1992), Hopenhayn & Rogerson (1993), Board & MtV (2014).



Introduction Static Dynamic Welfare Extensions The End

Static Model



Introduction Static Dynamic Welfare Extensions The End

Baseline Model
Gameform

I Unit mass of firms r ∼ F [r, r̄] post wages w(r).

I Unit mass of workers apply from top to bottom wage.

Proportion q̄ talented, 1− q̄ untalented.

I Firms sequentially screen applicants, hire one each.

Proportion r skilled recruiters θ = H; 1− r unskilled θ = L.

Screening
I Talented workers pass test.

I Untalented screened out with iid prob. pθ; 0 < pL < pH < 1.

I Quality when recruiter θ hires from applicant pool q

λ(q; θ) = q/(1− (1− q)pθ)
I Quality at firm r: λ(q; r) = rλ(q;H) + (1− r)λ(q;L)

I Profits π := µλ(q(w); r)− w − k.
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Preliminary Analysis

Applicant Pool Quality

I Top wage: Proportion q(1) = q̄ talented workers.

I Wage rank x: Applicant pool quality q(x) obeys

q′(x) =
λ(q(x); r(x))− q(x)

x

I Quality q(x):

{
strictly increases in x

positive for x > 0, but q(0) = 0.

Wage posting equilibrium

I Equilibrium wage distribution {w(r)}r has no atoms or gaps.
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Firm-Applicant Matching

Wage profile {w(r)}r induces firm-applicant matching

Q(r) = q(x(w(r)))
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Equilibrium Matching - Necessary Condition

Incentive Compatibility in Equilibrium {w(r)}r
I Firms r, r̃ do not mimic each other:

µλ(Q(r); r)− w(r) ≥ µλ(Q(r̃); r)− w(r̃)

µλ(Q(r̃); r̃)− w(r̃) ≥ µλ(Q(r); r̃)− w(r)

I Hence, λ(Q(r̃); r) supermodular in (r̃, r).

Return to Recruiter Quality

∆(q) := λ(q;H)− λ(q;L) =
∂

∂r
λ(q; r)

I IC: ∆(Q(r)) rises in r.

I ∆(·) is single-peaked, with maximum q̂ ∈ (0, 1).

I λ(q; r) is super-modular for q < q̂; sub-modular for q > q̂.
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Scarce Talent — Positive Assortative Matching

Theorem 1.
If q̄ ≤ q̂, there is a unique equilibrium. It exhibits PAM.

Proof

I ∆(q) increases for q ≤ q̄, and ∆(Q(r)) must increase.

I Hence, Q(r) must increase.

Equilibrium described by

I Profits
π(r) = µ

∫ r

r
∆(Q(r̃))dr̃.

I Wages
w(r) = µ

∫ r

r
λ′(Q(r̃); r̃)Q′(r̃)dr̃.
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PAM: Example
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Assumptions: pH = 0.8, pL = 0.2, r ∼ U [0, 1], q̄ = 0.25, µ = 1.
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Comparative Statics — Screening Skills
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Comparative Statics — Technological Change
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Abundant Talent

Theorem 2.
Assume q̄ > q̂. There is a unique equilibrium. It has PAM on
[q∗, q̂] and NAM on [q̂, q̄].

Proof

I Key fact: ∆(Q(r)) increases in r.

I Top firm r̄ matches with q̂.

I Below, r matches with QP (r) < q̂ < QN (r) s.t.

∆(QP (r)) = ∆(QN (r))

and QP , QN obey the usual differential equations.
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PAM-NAM: Example
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Dynamic Model
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Model

Basics

I Continuous time t, discount rate ρ.

I Workers enter and retire at flow rate α.

I Talented workers become skilled recruiters.

I Assume talent is scarce, q̄ < q̂.

Firm’s problem

I Firm’s product µrt; initially, r0 exogenous.

I Attract applicants qt with wage wt(qt) to manage talent rt

ṙt = α(λ(qt; rt)− rt).

I Firm value Vt(r).
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Firm’s Problem

I The firm solves

V0(r0) = max
{qt}

∫ ∞
0

e−ρt(µrt − αwt(qt))dt,

s.t. ṙt = α(λ(qt; rt)− rt).

I Bellman equation

ρVt(r) = max
q
{µr − αwt(q) + αV ′t (r)[λ(q; r)− r] + V̇t(r)}.

I First order condition

λ′(q; r)V ′t (r) = w′t(q).
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Positive Assortative Matching

Theorem 3.
Equilibrium exists and is unique. Firms with more talent post
higher wages. The distribution of talent has no atoms at t > 0.

Idea

I The value function Vt(r) is convex.

I FOC implies matching is PAM.

I FOC also implies atoms immediately dissolve.

Thus

I Time-invariant firm-rank x, s.t. rt(x), qt(x) increase in x.
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Constructing the Equilibrium

Equilibrium Matching rt(x), qt(x)

I Talent evolution

ṙt(x) = α(λ(qt(x); rt(x))− rt(x))

I Sequential Screening

q′t(x) = (λ(qt(x); rt(x))− qt(x))/x

Equilibrium Wages

w′t(q) = V ′t (r)λ′(q; r)

where q = qt(x), r = rt(x) and

V ′t (rt) =
∂

∂rt

∫ ∞
t

e−ρ(s−t)[µr∗s − αws(q∗s)]ds



Introduction Static Dynamic Welfare Extensions The End

Constructing the Equilibrium

Equilibrium Matching rt(x), qt(x)

I Talent evolution

ṙt(x) = α(λ(qt(x); rt(x))− rt(x))

I Sequential Screening

q′t(x) = (λ(qt(x); rt(x))− qt(x))/x

Equilibrium Wages

w′t(q) = V ′t (r)λ′(q; r)

where q = qt(x), r = rt(x) and

V ′t (rt) = µ

∫ ∞
t

e−ρ(s−t)∂r
∗
s

∂rt
ds
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Constructing the Equilibrium

Equilibrium Matching rt(x), qt(x)

I Talent evolution

ṙt(x) = α(λ(qt(x); rt(x))− rt(x))

I Sequential Screening

q′t(x) = (λ(qt(x); rt(x))− qt(x))/x

Equilibrium Wages

w′t(q) = V ′t (r)λ′(q; r)

where q = qt(x), r = rt(x) and

V ′t (rt(x)) = µ

∫ ∞
t

e−
∫ s
t (ρ+α(1−∆(qu(x))))duds
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Equilibrium Firm Dynamics — Talent
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Assumptions: pH = 0.8, pL = 0.2, µ = 1, ρ = 0.1, α = 0.2, and q̄ = 0.25.
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Equilibrium Firm Dynamics — Payoffs
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The Equilibrium Steady State

Steady-state matching r∗(x), q∗(x)

I Constant quality, λ(q; r) = r, links q and r.

I Seq. screen., q′(x) = (λ(q; r)− q)/x, determines r(x), q(x).

Steady state wages w∗(q)

I Marginal value of talent

V ′(r) =
µ

ρ+ α(1−∆(q))
.

I Marginal wages

w′(q) =
µ

ρ+ α(1−∆(q))
λ′(q; r).
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Convergence to Steady State

Theorem 4.
a) Steady State {r∗(x), q∗(x), w∗(q)} is unique; no gaps or atoms.
b) For any initial talent distribution, equilibrium converges to SS.

Persistence of competitive advantage

I Random hiring: regression to mean at rate α.

I Screening applicants q: regression to mean at α(1−∆(q)).

I But under PAM, high-quality firms pay more.

I Hence, talent is source of sustainable competitive advantage.



Introduction Static Dynamic Welfare Extensions The End

Comparative Statics

Talent dispersion rises in talent-skill correlation β

I Suppose recruiting skill is (1− β)q̄ + βr.

I PAM if β > 0, but NAM if β < 0.

I Talent dispersion r∗(1)− r∗(0) rises in β.

Wages rise in turnover α

I Does not affect steady-state talent.

I Raises steady-state flow wages (ρ+ α)wt.

(ρ+ α)w′(q(x)) = µλ′(q(x); r(x))
ρ+ α

ρ+ α(1−∆(q(x)))

I Intuition: Effect of talent outlasts employment.
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Dynamic Model with Heterogenous
Technology
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Heterogeneous Technology

Two types of heterogeneity

I Exogenous technology µ ∈ {µL, µH}; mass ν low.

I Evolving talent rt.

I Firms stratified, if rt and µ correlate perfectly.

Wages increase in µ and r

I Recall FOC
w′t(q) = V ′t (r;µ)λ′(q; r)

I Higher r raises V ′t (r;µ) and λ′(q; r).

I Higher µ raises V ′t (r;µ).
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Convergence to Steady State

Theorem 5.
a) There is a unique steady-state equilibrium.
b) The steady state is stratified.
c) Any equilibrium converges to this steady-state.
d) Distribution r∗(x), q∗(x) independent of {µL, µH}.

Idea

I Talent distribution becomes continuous.

I High-tech firms outbid low-tech firms when talent is close.
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Adjustment Dynamics of Single Firm

I Steady state with firms r ≥ r∗ high tech; wages w∗(r).

I Low-tech firm with r < r∗ becomes high-tech.

Theorem 6.
a) Wages satisfy wt ∈ (w∗(rt), w

∗(r∗)]
b) Talent rt converges to r∗ as t→∞.

Idea

I wt > w∗(rt) since firm has higher tech.

I wt ≤ w∗(r∗) since firm has less talent.

I Since wt > w∗(rt), talent rt rises over time.
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Saddle-point Stable Adjustment Path

0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Productivity, µ

Worker Quality

Hired, R(µ)

Market, q(µ)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4
Adjustment Dynamics

Firm Quality, R

R
ep

or
t, 

r

dR/dt=0

dr/dt=0

I r0 chosen to hit r∗. Near steady state,[
rt − r∗
rt − r∗

]
= (r0 − r∗)

[
0.2032

1

]
e−0.2281t.



Introduction Static Dynamic Welfare Extensions The End

Welfare
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Welfare

Introducing Welfare

I Entry cost k > 0.

I Marginal firm: µλ(Q(ř); ř) = k.

I Welfare
∫ 1
x̌ (µλ(q(x); r(x))− k)dx.

Maximize Aggregate Sorting

I Planner chooses entry and rank x for every firm r.

I Equilibrium entry threshold x̌ is efficient (given PAM).

I But, does PAM for x ∈ [x̌, 1] maximize employed talent?
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Efficient Matching

Theorem 7.
For any entry threshold x̌, NAM maximizes employed talent.

Two economics forces
I Becker: PAM maximizes comparative advantage (if q < q̂).

I Akerlof: PAM also maximizes adverse selection.

I And. . .
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Efficient Matching

Theorem 7.
For any entry threshold x̌, NAM maximizes employed talent.

Two economics forces
I Becker: PAM maximizes comparative advantage (if q < q̂).

I Akerlof: PAM also maximizes adverse selection.

I And. . . Akerlof wins!
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Proof Sketch

Marginal Employed Talent

I Employed talent ω(x̌), where ω(x) = q̄ − xq(x)

I Effect of better screening skills at rank x

ζ(x) :=
∂ω(x̂)

“∂r(x)”
=

∂ω(x̂)

∂ω(x)

∂ω(x)

∂r(x)

= exp

(
−
∫ x

x̂

λ′(q(x); r(x))

x
dx

)
∆(q(x))

Shifting Screening Skills Up

ζ ′(x) ' ∆′(q(x))q′(x)︸ ︷︷ ︸
Becker

−λ′(q(x); r(x))∆(x)/x︸ ︷︷ ︸
Akerlof

< 0.
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Dynamic Efficiency

I Upfront entry cost k/ρ > 0.

I Present surplus
∫∞

0 e−ρt(µRt − k)dt, with Rt =
∫ 1
x̌ rt(x)dx.

I Choose entry and wage ranks to maximize surplus.

Theorem 8.
For any x̌, NAM surplus exceeds PAM surplus at all times.

Idea

I For fixed recruiting skills Rt, NAM maximizes talent input.

I Additional talent under NAM helps recruit even more talent.
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Extensions
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Model of Hierarchies

Hierarchy

I N + 1 layers: Level n = 0 directors; level n = N workers.

I Mass 1 of firms; each has αn positions at level n.

I Mass αn of job seekers at each level; proportion q̄ skilled.

Firms

I Director quality r0 exogenous.

I Level n agents hire level n+ 1 agents, rn+1 = λ(qn+1, rn).

I Only workers produce, vN = µαNrN .



Introduction Static Dynamic Welfare Extensions The End

Hierarchies: Equilibrium Wages

Equilibrium with q̄ < q̂
I Assume r0 ∼ F0 steady state; then rn+1 = rn.

I Level-(n− 1) value vn−1(r) := vn(λ(qn; r))− αnwn; then

v′n(r) = µαN∆(q)N−n

I Marginal level-n wages

w′n(q) = λ′(q; r)µ(α∆(q))N−n.

I Assume α∆(q) > 1; then wages increase in rank.

Wage dispersion across firms q > q̃ and levels n < ñ

I Inter-firm dispersion greater at high levels: wn(q)
wn(q̃) ≥

wñ(q)
wñ(q̃) .

I Intra-firm dispersion greater at high firms: wn(q)
wñ(q) ≥

wn(q̃)
wñ(q̃) .



Introduction Static Dynamic Welfare Extensions The End

Conclusion

We’ve proposed a model in which

I Firms compete to identify and recruit talent.

I Today’s recruits become tomorrow’s recruiters.

Main results

I Positive assortative matching.

I Persistent productivity dispersion.

I Equilibrium inefficiency due to adverse selection.

Next steps

I Characterize dynamic matching with q̄ > q̂.

I Characterize dynamic and steady state dispersion.

I Study dynamics when µt are stochastic.
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