

Recruiting Talent

Simon Board Moritz Meyer-ter-Vehn Tomasz Sadzik

UCLA

July 13, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Static	Dynamic	Welfare	Extensions	The End
		Motiv	vation		

Talent is source of competitive advantage

- Universities: Faculty are key asset.
- Netflix: "We endeavor to have only outstanding employees."
- Empirics: Managers (Bertrand-Schoar), workers (Lazear).

Talent perpetuates via hiring

- Uni: Faculty responsible for recruiting juniors and successors.
- N: "Building a great team is manager's most important task."
- Empirics: Stars help recruit future talent (Waldinger)

Key questions

- Can talent dispersion persist/avoid regression to mediocrity?
- Why don't bad firms just compete advantage away?

Introduction	Static	Dynamic	Welfare	Extensions	The End
		Over	view		

Three ingredients for persistence

- High wages attract talented applicants
- Skilled management screens wheat from chaff.
- ► Today's recruits become tomorrow's managers.

Static Model

- When talent is scarce, matching is positive assortative.
- Efficient matching is negative assortative.

Dynamic model

Persistent dispersion of talent, productivity and wages.

- Regression to mediocrity offset by PAM.
- Gradual adjustment to steady state.

Introduction	Static	Dynamic	Welfare	Extensions	The End
		Liter	ature		

Matching in labor markets

 Becker (1973), Lucas (1978), Garicano (2000), Levin & Tadelis (2005), Anderson & Smith (2010).

Adverse selection

 Greenwald (1986), Lockwood (1991), Chakraborty et al (2010), Lauermann & Wolitzky (2015), Kurlat (2016).

Wage & productivity dispersion

Albrecht & Vroman (1992), Burdett & Mortensen (1998).

Firm dynamics

 Prescott & Lucas (1971), Jovanovic (1982), Hopenhayn (1992), Hopenhayn & Rogerson (1993), Board & MtV (2014).

Introduction	Static	Dynamic	Welfare	Extensions	The End

STATIC MODEL

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Static	Dynamic	Welfare	Extensions	The End
		Baseline	e Model		

Gameform

- Unit mass of firms $r \sim F[\underline{r}, \overline{r}]$ post wages w(r).
- Unit mass of workers apply from top to bottom wage. Proportion \bar{q} talented, $1 \bar{q}$ untalented.
- Firms sequentially screen applicants, hire one each. Proportion r skilled recruiters θ = H; 1 − r unskilled θ = L.

Screening

- ► Talented workers pass test.
- Untalented screened out with iid prob. p_{θ} ; $0 < p_L < p_H < 1$.
- \blacktriangleright Quality when recruiter θ hires from applicant pool q

$$\lambda(q;\theta) = q/(1 - (1 - q)p_{\theta})$$

- Quality at firm $r: \lambda(q;r) = r\lambda(q;H) + (1-r)\lambda(q;L)$
- Profits $\pi := \mu \lambda(q(w); r) w k$.

Applicant Pool Quality

- ▶ Top wage: Proportion $q(1) = \bar{q}$ talented workers.
- Wage rank x: Applicant pool quality q(x) obeys

$$q'(x) = \frac{\lambda(q(x); r(x)) - q(x)}{x}$$

Wage posting equilibrium

• Equilibrium wage distribution $\{w(r)\}_r$ has no atoms or gaps.

Introduction Static Dynamic Welfare Extensions The End

Equilibrium Matching - Necessary Condition

Incentive Compatibility in Equilibrium $\{w(r)\}_r$

Firms r, \tilde{r} do not mimic each other:

$$\mu\lambda(Q(r);r) - w(r) \ge \mu\lambda(Q(\tilde{r});r) - w(\tilde{r})$$

$$\mu\lambda(Q(\tilde{r});\tilde{r}) - w(\tilde{r}) \ge \mu\lambda(Q(r);\tilde{r}) - w(r)$$

• Hence, $\lambda(Q(\tilde{r}); r)$ supermodular in (\tilde{r}, r) .

Return to Recruiter Quality

$$\Delta(q) := \lambda(q; H) - \lambda(q; L) = \frac{\partial}{\partial r} \lambda(q; r)$$

- IC: $\Delta(Q(r))$ rises in r.
- $\Delta(\cdot)$ is single-peaked, with maximum $\hat{q} \in (0, 1)$.
- ► $\lambda(q;r)$ is super-modular for $q < \hat{q}$; sub-modular for $q > \hat{q}$.

Introduction	Static	Dynamic	Welfare	Extensions	The End
Scarce	Talent –	– Positive	Assortative	Matching	

Theorem 1.

If $\bar{q} \leq \hat{q}$, there is a unique equilibrium. It exhibits PAM.

Proof

- $\Delta(q)$ increases for $q \leq \bar{q}$, and $\Delta(Q(r))$ must increase.
- Hence, Q(r) must increase.

Equilibrium described by

Profits

\$\pi(r) = \mu \int_{\bar{r}}^r \Delta(Q(\tilde{r})) d\tilde{r}\$.

Wages

\$w(r) = \mu \int_{\bar{r}}^r \lambda'(Q(\tilde{r}); \tilde{r})Q'(\tilde{r})\$

$$u(r) = \mu \int_{\underline{r}} \lambda'(Q(\tilde{r}); \tilde{r})Q'(\tilde{r})d\tilde{r}.$$

Introduction	Static	Dynamic	Welfare	Extensions	The End
		PAM: E	Example		

Assumptions: $p_H = 0.8$, $p_L = 0.2$, $r \sim U[0, 1]$, $\bar{q} = 0.25$, $\mu = 1$.

くして 前 ふかく 山下 ふゆう ふしゃ

Assumptions: $p_H = 0.8$, $p_L = 0.2$, $\bar{q} = 0.25$, $\mu = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem 2.

Assume $\bar{q} > \hat{q}$. There is a unique equilibrium. It has PAM on $[q^*, \hat{q}]$ and NAM on $[\hat{q}, \bar{q}]$.

Proof

- Key fact: $\Delta(Q(r))$ increases in r.
- Top firm \bar{r} matches with \hat{q} .
- ▶ Below, r matches with $Q_P(r) < \hat{q} < Q_N(r)$ s.t.

$$\Delta(Q_P(r)) = \Delta(Q_N(r))$$

and Q_P, Q_N obey the usual differential equations.

Introduction	Static	Dynamic	Welfare	Extensions	The End

PAM-NAM: Example

Assumptions: $p_H = 0.8$, $p_L = 0.2$, $r \sim U[0, 1]$, $\bar{q} = 0.5$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Static	Dynamic	Welfare	Extensions	The End

Dynamic Model

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Introduction	Static	Dynamic	Welfare	Extensions	The End
		Мс	odel		

Basics

- Continuous time t, discount rate ρ .
- Workers enter and retire at flow rate α .
- Talented workers become skilled recruiters.
- Assume talent is scarce, $\bar{q} < \hat{q}$.

Firm's problem

- Firm's product μr_t ; initially, r_0 exogenous.
- Attract applicants q_t with wage $w_t(q_t)$ to manage talent r_t

$$\dot{r}_t = \alpha(\lambda(q_t; r_t) - r_t).$$

Firm value $V_t(r)$.

The firm solves

$$V_0(r_0) = \max_{\{q_t\}} \int_0^\infty e^{-\rho t} (\mu r_t - \alpha w_t(q_t)) dt,$$

s.t. $\dot{r}_t = \alpha (\lambda(q_t; r_t) - r_t).$

Bellman equation

$$\rho V_t(r) = \max_q \{ \mu r - \alpha w_t(q) + \alpha V'_t(r) [\lambda(q; r) - r] + \dot{V}_t(r) \}.$$

First order condition

$$\lambda'(q;r)V_t'(r) = w_t'(q).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem 3.

Equilibrium exists and is unique. Firms with more talent post higher wages. The distribution of talent has no atoms at t > 0.

Idea

- The value function $V_t(r)$ is convex.
- FOC implies matching is PAM.
- ► FOC also implies atoms immediately dissolve.

Thus

Fine-invariant firm-rank x, s.t. $r_t(x), q_t(x)$ increase in x.

Introduction	Static	Dynamic	Welfare	Extensions	The End

Constructing the Equilibrium

Equilibrium Matching $r_t(x)$, $q_t(x)$

Talent evolution

$$\dot{r}_t(x) = \alpha(\lambda(q_t(x); r_t(x)) - r_t(x))$$

Sequential Screening

$$q_t'(x) = (\lambda(q_t(x); r_t(x)) - q_t(x))/x$$

Equilibrium Wages

$$w_t'(q) = V_t'(r)\lambda'(q;r)$$

where $q = q_t(x)$, $r = r_t(x)$ and

$$V_t'(r_t) = \frac{\partial}{\partial r_t} \int_t^\infty e^{-\rho(s-t)} [\mu r_s^* - \alpha w_s(q_s^*)] ds$$

Introduction	Static	Dynamic	Welfare	Extensions	The End

Constructing the Equilibrium

Equilibrium Matching $r_t(x)$, $q_t(x)$

Talent evolution

$$\dot{r}_t(x) = \alpha(\lambda(q_t(x); r_t(x)) - r_t(x))$$

Sequential Screening

$$q_t'(x) = (\lambda(q_t(x); r_t(x)) - q_t(x))/x$$

Equilibrium Wages

$$w_t'(q) = V_t'(r)\lambda'(q;r)$$

where $q = q_t(x)$, $r = r_t(x)$ and

$$V_t'(r_t) = \mu \int_t^\infty e^{-\rho(s-t)} \frac{\partial r_s^*}{\partial r_t} ds$$

Introduction	Static	Dynamic	Welfare	Extensions	The End

Constructing the Equilibrium

Equilibrium Matching $r_t(x)$, $q_t(x)$

Talent evolution

$$\dot{r}_t(x) = \alpha(\lambda(q_t(x); r_t(x)) - r_t(x))$$

Sequential Screening

$$q_t'(x) = (\lambda(q_t(x); r_t(x)) - q_t(x))/x$$

Equilibrium Wages

$$w_t'(q) = V_t'(r)\lambda'(q;r)$$

where $q = q_t(x)$, $r = r_t(x)$ and

$$V_t'(r_t(x)) = \mu \int_t^\infty e^{-\int_t^s (\rho + \alpha(1 - \Delta(q_u(x)))) du} ds$$

Introduction	Static	Dynamic	Welfare	Extensions	The End
	Equilibr	ium Firm D)ynamics –	— Talent	

Assumptions: $p_H = 0.8$, $p_L = 0.2$, $\mu = 1$, $\rho = 0.1$, $\alpha = 0.2$, and $\bar{q} = 0.25$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Static	Dynamic	Welfare	Extensions	The End
	Equilibrium	Firm	Dynamics —	- Pavoffs	

Assumptions: $p_H = 0.8$, $p_L = 0.2$, $\mu = 1$, $\rho = 0.1$, $\alpha = 0.2$, and $\bar{q} = 0.25$.

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Steady-state matching $r^*(x)$, $q^*(x)$

- Constant quality, $\lambda(q;r) = r$, links q and r.
- Seq. screen., $q'(x) = (\lambda(q;r) q)/x$, determines r(x), q(x).

Steady state wages $w^*(q)$

Marginal value of talent

$$V'(r) = \frac{\mu}{\rho + \alpha(1 - \Delta(q))}.$$

Marginal wages

$$w'(q) = \frac{\mu}{\rho + \alpha(1 - \Delta(q))} \lambda'(q; r).$$

Theorem 4.

a) Steady State {r*(x), q*(x), w*(q)} is unique; no gaps or atoms.
b) For any initial talent distribution, equilibrium converges to SS.

Persistence of competitive advantage

- Random hiring: regression to mean at rate α .
- Screening applicants q: regression to mean at $\alpha(1 \Delta(q))$.
- But under PAM, high-quality firms pay more.
- Hence, talent is source of sustainable competitive advantage.

Talent dispersion rises in talent-skill correlation β

- Suppose recruiting skill is $(1 \beta)\bar{q} + \beta r$.
- PAM if $\beta > 0$, but NAM if $\beta < 0$.
- Talent dispersion $r^*(1) r^*(0)$ rises in β .

Wages rise in turnover α

- Does not affect steady-state talent.
- Raises steady-state flow wages $(\rho + \alpha)w_t$.

$$(\rho + \alpha)w'(q(x)) = \mu\lambda'(q(x); r(x))\frac{\rho + \alpha}{\rho + \alpha(1 - \Delta(q(x)))}$$

Intuition: Effect of talent outlasts employment.

Introduction	Static	Dynamic	Welfare	Extensions	The End

Dynamic Model with Heterogenous Technology

Two types of heterogeneity

- Exogenous technology $\mu \in {\mu_L, \mu_H}$; mass ν low.
- Evolving talent r_t .
- Firms *stratified*, if r_t and μ correlate perfectly.

Wages increase in μ and r

Recall FOC

$$w_t'(q) = V_t'(r;\mu)\lambda'(q;r)$$

- Higher r raises $V'_t(r;\mu)$ and $\lambda'(q;r)$.
- Higher μ raises $V'_t(r; \mu)$.

Theorem 5.

- a) There is a unique steady-state equilibrium.
- b) The steady state is stratified.
- c) Any equilibrium converges to this steady-state.
- d) Distribution $r^*(x), q^*(x)$ independent of $\{\mu_L, \mu_H\}$.

Idea

- Talent distribution becomes continuous.
- High-tech firms outbid low-tech firms when talent is close.

Introduction	Static	Dynamic	Welfare	Extensions	The End
	Adjustm	nent Dynan	nics of Sin	gle Firm	

- Steady state with firms $r \ge r^*$ high tech; wages $w^*(r)$.
- Low-tech firm with $r < r^*$ becomes high-tech.

Theorem 6.

- a) Wages satisfy $w_t \in (w^*(r_t), w^*(r^*)]$
- b) Talent r_t converges to r^* as $t \to \infty$.

Idea

- $w_t > w^*(r_t)$ since firm has higher tech.
- $w_t \leq w^*(r^*)$ since firm has less talent.
- Since $w_t > w^*(r_t)$, talent r_t rises over time.

Introduction	Static	Dynamic	Welfare	Extensions	The End
	Saddle-poin	t Stable	e Adjustme	nt Path	
0.45	Worker Quality		0.4	Adjustment Dynamics	dt-0
0.4		Hired, R(μ)	0.35	///////////////////////////////////////	

▶ r₀ chosen to hit r^{*}. Near steady state,

$$\begin{bmatrix} r_t - r^* \\ r_t - r^* \end{bmatrix} = (r_0 - r^*) \begin{bmatrix} 0.2032 \\ 1 \end{bmatrix} e^{-0.2281t}.$$

(日) (同) (日) (日)

æ

Introduction	Static	Dynamic	Welfare	Extensions	The End

WELFARE

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introducing Welfare

- ► Entry cost k > 0.
- Marginal firm: $\mu\lambda(Q(\check{r});\check{r}) = k$.
- Welfare $\int_{\check{x}}^{1} (\mu \lambda(q(x); r(x)) k) dx$.

Maximize Aggregate Sorting

- Planner chooses entry and rank x for every firm r.
- Equilibrium entry threshold \check{x} is efficient (given PAM).
- But, does PAM for $x \in [\check{x}, 1]$ maximize employed talent?

Theorem 7.

For any entry threshold \check{x} , NAM maximizes employed talent.

Two economics forces

• Becker: PAM maximizes comparative advantage (if $q < \hat{q}$).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Akerlof: PAM also maximizes adverse selection.
- And...

Theorem 7.

For any entry threshold \check{x} , NAM maximizes employed talent.

Two economics forces

• Becker: PAM maximizes comparative advantage (if $q < \hat{q}$).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Akerlof: PAM also maximizes adverse selection.
- And... Akerlof wins!

Introduction	Static	Dynamic	Welfare	Extensions	The End
		Proof	Sketch		

Marginal Employed Talent

- Employed talent $\omega(\check{x})$, where $\omega(x) = \bar{q} xq(x)$
- Effect of better screening skills at rank x

$$\begin{split} \zeta(x) &:= \frac{\partial \omega(\hat{x})}{``\partial r(x)''} &= \frac{\partial \omega(\hat{x})}{\partial \omega(x)} \frac{\partial \omega(x)}{\partial r(x)} \\ &= \exp\left(-\int_{\hat{x}}^{x} \frac{\lambda'(q(x); r(x))}{x} dx\right) \Delta(q(x)) \end{split}$$

Shifting Screening Skills Up

$$\zeta'(x)\simeq \underbrace{\Delta'(q(x))q'(x)}_{\text{Becker}} - \underbrace{\lambda'(q(x);r(x))\Delta(x)/x}_{\text{Akerlof}} < 0.$$

- Upfront entry cost $k/\rho > 0$.
- Present surplus $\int_0^\infty e^{-\rho t} (\mu R_t k) dt$, with $R_t = \int_{\check{x}}^1 r_t(x) dx$.
- Choose entry and wage ranks to maximize surplus.

Theorem 8.

For any \check{x} , NAM surplus exceeds PAM surplus at all times.

Idea

- For fixed recruiting skills R_t , NAM maximizes talent input.
- Additional talent under NAM helps recruit even more talent.

Introduction	Static	Dynamic	Welfare	Extensions	The End

EXTENSIONS

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Hierarchy

- ▶ N + 1 layers: Level n = 0 directors; level n = N workers.
- Mass 1 of firms; each has α^n positions at level n.
- Mass α^n of job seekers at each level; proportion \bar{q} skilled.

Firms

- Director quality r_0 exogenous.
- ► Level *n* agents hire level n + 1 agents, $r_{n+1} = \lambda(q_{n+1}, r_n)$.

• Only workers produce, $v_N = \mu \alpha^N r_N$.

Introduction

Hierarchies: Equilibrium Wages

Equilibrium with $\bar{q} < \hat{q}$

- Assume $r_0 \sim F_0$ steady state; then $r_{n+1} = r_n$.
- ► Level-(n-1) value $v_{n-1}(r) := v_n(\lambda(q_n; r)) \alpha^n w_n$; then $v'_n(r) = \mu \alpha^N \Delta(q)^{N-n}$
- Marginal level-n wages

$$w'_n(q) = \lambda'(q; r) \mu(\alpha \Delta(q))^{N-n}.$$

• Assume $\alpha \Delta(q) > 1$; then wages increase in rank.

Wage dispersion across firms $q>\tilde{q}$ and levels $n<\tilde{n}$

▶ Intra-firm dispersion greater at high firms: $\frac{w_n(q)}{w_{\hat{\pi}}(q)} \ge \frac{w_n(\tilde{q})}{w_{\hat{\pi}}(\tilde{a})}$.

・ロト・西ト・モン・モー うへぐ

Introduction	Static	Dynamic	Welfare	Extensions	The End	
Conclusion						

We've proposed a model in which

- Firms compete to identify and recruit talent.
- Today's recruits become tomorrow's recruiters.

Main results

- Positive assortative matching.
- Persistent productivity dispersion.
- Equilibrium inefficiency due to adverse selection.

Next steps

- Characterize dynamic matching with $\bar{q} > \hat{q}$.
- Characterize dynamic and steady state dispersion.
- Study dynamics when μ_t are stochastic.