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Abstract

We study a parsimonious model of a competitive labor market in which firms privately screen
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whereby firms with superior screening skills post higher wages, attract better applicants,
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low-wage firms, leading to equilibrium inefficiency: Welfare would be higher if low-skilled
firms posted high wages and selected first. We also provide a micro-foundation for firms’
heterogeneous screening skills. When talented workers are better at screening (e.g. via
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1 Introduction

The success of most firms is built upon hundreds of individuals who take thousands of
decisions, making it critical to identify and recruit the best talent. For example, the
Netflix human resource manual states “One outstanding employee gets more done and
costs less than two adequate employees. We endeavor to have only outstanding employees”
(Hastings and McCord, 2009). Similarly, Google’s former head of human resources writes
“Hiring is the single most important people activity in any organization. [. . .] Our greatest
single constraint on growth has always, always been our ability to find great people”
(Bock, 2015). Within economics, there is a large literature that measures the importance
of employee talent, from top executives (Bertrand and Schoar, 2003) to blue-collar workers
(Lazear, 2000), and from salespeople (Benson et al., 2019) to bureaucrats (Fenizia, 2022).

The market for talent is plagued by imperfect information.1 As a result, firms carefully
screen applicants, obtaining referrals and conducting interviews. In Behrenz’s (2001)
survey, employers report that their most important source of information when hiring
are methods of “private screening” in the form of interviews (41%) and personal contacts
(25%), as compared to “public information” like references from past employers (21%),
references from schools (5%) and the application (3%). Indeed, referrals account for over
a third of US jobs (Holzer, 1987) and more than half the jobs at Google (Bock, 2015).

Firms differ in their skill at screening applicants. An exemplar is Google that is said
to have “built the world’s first self-replicating talent machine” by turning “every employee
into a recruiter” (Bock, 2015). On the flip side, VW struggled to copy Tesla’s battery
operations because of “difficulty hiring qualified engineers in fields it knew very little
about,” where one recruiter noted “you can only become an expert if you do it yourself.”2

We capture these ideas with a parsimonious model of a competitive labor market,
where firms privately screen workers (e.g. interviews, referrals). Equilibrium gives rise to
dispersion in wages and productivity across firms, whereby firms with superior screening
skills complement them by posting high wages that attract better applicants. We show
the market is inefficient in that equilibrium minimizes firms’ aggregate effectiveness in
sorting talented workers into the industry. Motivated by the Google and VW examples,
we also endogenize firms’ screening skills by considering a dynamic model in which firms
with more talented employees are more skilled at recruiting. The economy converges to

1For example, economists have examined how measures of ability filter into wages (Farber and Gibbons
(1996), Fredriksson et al. (2018)) and how certification affects wages and employment (Stanton and
Thomas (2015), Pallais (2014)).

2See “To Beat Tesla, Volkswagen Bets on Making Its Own EV Batteries,” WSJ, 8th Aug 2021.
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a steady state featuring persistent dispersion in talent, screening skills, and profits.

In Section 2, we introduce a static model of labor market competition in which firms
have private information about workers’ talent. Specifically, a continuum of firms com-
petes for a continuum of workers who have high or low ability. Talented workers have
positive value added, while untalented workers would be better employed outside the in-
dustry. Firms attract applicants by posting wages and then receive independent noisy
signals about each applicant, with more skilled firms obtaining more accurate signals.
The market is non-exclusive (workers can apply to all firms) and anonymous (firms do
not know anything about their applicants, other than the fact they apply). We model
this by assuming the highest-paying firm chooses from all workers while other firms hire
from the remaining, adversely selected pool of workers. The applicant pool quality thus
endogenously declines with the wage rank, giving rise to equilibrium dispersion of wages
and productivity. Assuming that talent is scarce, we show that firm-worker matching is
positive assortative. That is, firms with more skilled recruiters post higher wages, attract
better applicants, and hire more talented recruits. Intuitively, skilled firms have a com-
parative advantage in hiring from a high-wage applicant pool with a balance of talented
workers, rather than hiring from a low-wage pool in which few talented applicants remain.

The model is stylized but is highly tractable and speaks to important features of labor
markets. In equilibrium, wages and productivity are dispersed across firms and positively
correlated (e.g. Card et al. (2018)). The model describes how talent is allocated across
firms and how wages differ from workers’ marginal product (e.g. Card et al. (2013)).3

It also generates mismatch, with some untalented workers employed and other, talented
workers excluded (e.g. Fredriksson et al. (2018)). Firms with better management pay
higher wages, recruit better workers, and have higher productivity (e.g. Bender et al.
(2018)). The model also predicts an increase in screening skills (e.g. due to increasing
job tests and referrals) increases the dispersion of productivity and wages, as well as
segregation, with talented workers increasingly working together, consistent with recent
trends (e.g. Barth et al. (2016), Song et al. (2019)).

In Section 3 we examine the welfare consequences of the model. In sharp contrast
to classic matching models (e.g. Shapley and Shubik (1971), Becker (1973)), the posi-
tive assortative matching seen in equilibrium is inefficient. Intuitively, high-wage firms
screen applicants first and exert a negative compositional externality on low-wage firms

3The typical way to identify worker talent is via the “AKM-decomposition” of wage dispersion into
worker- and firm-effects (Abowd et al., 1999). However, this approach is problematic when firms imper-
fectly observe workers’ ability. For example, in our model, identical firms can systematically pay different
wages; differences between workers thus look like firm-effects.
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by extracting talent from the applicant pool. Positive assortative matching maximizes
this externality since the high-wage firms are skilled at extracting talent; this outweighs
the private gain from positive assortative matching. Indeed, we show that negative assor-
tative matching, whereby low-skill firms offer high wages and screen first, minimizes the
externality and optimally selects talent into the industry. Standard labor market policies
(e.g. minimum wages, progressive taxes) do not help restore efficiency, but a wage cap
can induce a random screening order and raise welfare.

In Section 4 we introduce a dynamic version of the model in which talented workers
are better at recruiting and show that persistent differences in firms’ talent and recruiting
skills arise endogenously. The talent of each firm evolves as workers retire and today’s
recruits become tomorrow’s recruiters. In the unique equilibrium, talented firms post
high wages, attract the best applicants and hire talented recruits, reinforcing their initial
advantage. If all firms start off with similar talent, the better endowed accumulate talent
over time, while the worse endowed hire from poor, deteriorating applicant pools and
lose talent. The economy converges to a steady-state with persistent talent differentials,
balancing two countervailing forces: Imperfect screening which leads to mean reversion
and equalizes firms, and positive assortative matching that amplifies differences across
firms. While low-quality firms could in principle catch up by posting higher wages and
hiring more talented workers, it is not profitable for them to do so. Thus, talent becomes a
source of sustainable competitive advantage. Importantly, steady-state talent differences
are sustained by firms’ endogenous wage choices and thus arise for any degree of correlation
between productivity and recruiting skills, however weak.

The key premise behind the dynamic model is that firms with more talented employees
are more skilled at recruiting.4 This is seen in Gupta (2018), where more productive sales
managers hire more productive salespeople who remain highly productive even after they
switch teams. Similarly, Waldinger (2012, 2016) finds that the loss of star professors in
Nazi Germany led to a permanent reduction in the quality of hires, while Huber et al.
(2021) show losing Jewish managers led to a permanent reduction in firm performance.
Given this premise, our results show that small initial differences in talent are amplified
over time and generate persistent differences in talent and productivity. These dynamics
resemble Giorcelli (2019) where a management training program generated productivity

4There are two natural mechanisms for talented employees to be better at recruiting. First, they may
provide better referrals, as is seen in the field experiments of Beaman and Magruder (2012) and Pallais
and Sands (2016). Second, talented employees may be better at recruiting, as illustrated by the famous
Dunning-Krueger effect: “The skills you need to produce a right answer are exactly the skills you need
to recognize what a right answer is”. (See David Dunning in “The Anosognosic’s Dilemma: Something’s
Wrong but You’ll Never Know What It Is,” New York Times, 10th June, 2010.)
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gains that grew from 15% in the first year to 49% after 15 years. One channel was that
“better managed firms paid higher average wages to their workers, which may indicate
that trained managers were able to hire/retain better workers.”

1.1 Literature

The static model of sequential screening is most closely related to Broecker (1990), Mont-
gomery (1991), and Kurlat (2016). Broecker considers a version of our model with a finite
number of homogenous firms with unlimited capacity. As in our model, adverse selection
induces wage dispersion, but our key questions of sorting and its inefficiency do not arise
because firms are homogeneous.

In Montgomery’s classic model of referrals, each talented employee refers one positively
selected applicant; firms then make applicant-specific wage offers. In equilibrium, firms
post random high wages for referred workers; if they strike out, they pay deterministic
low wages in the non-referred market. The model displays mean-reversion, so differences
in talent and wages across firms erode over time (see Section 4.4). In our model, firms
receive positive signals about a proportion of the applicants and then make firm-specific
wage offers. This is consistent with the idea that firms reward employees according to
a pay-scale that differs across firms (e.g. Netflix pays more than Disney).5 As a result,
our dynamic model generates persistent differences in talent and wages; intuitively, high-
talent firms pay high wages, so a talented worker hires better recruits if their colleagues
are also talented. Additionally, we study equilibrium efficiency which Montgomery does
not address.

Like us, Kurlat (2016) studies non-exclusive markets where buyers screen sellers of
uncertain quality. In Kurlat’s financial market, sellers’ assets are perfectly divisible and,
in his baseline model, buyers’ signals about the assets are nested, in that a more informed
buyer knows everything that a less informed buyer knows. In our labor market, workers
look for one, indivisible job and firms’ signals are (conditionally) independent. In the labor
market context, nested signals capture public information such as reference letters, while
independent signals capture private information such as personal referrals or interviews.6

These two modeling assumptions are crucial. Our firms post different wages, low-wage
firms are subject to adverse selection, and matching is positive assortative and inefficient;

5See http://www.econ.ucla.edu/sboard/papers/Indeed_Netflix_Disney_Aug23.pdf. This difference
between firm-level wages and applicant-level wages is also what differentiates Burdett and Mortensen
(1998) from Postel-Vinay and Robin (2002a, 2002b).

6Either modeling assumption seems plausible. Indeed, Kurlat and Scheuer (2021)’s labor market
adaptation of Kurlat (2016) to Spencian signaling, studies nested signals for indivisible jobs.
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in contrast, Kurlat’s buyers purchase at the same price, avoid adverse selection, and
matching is negative assortative and efficient. When assets are divisible, sellers can predict
how much they will sell on any given market, allowing them to simultaneously cross-list
their assets across markets with no market facing an adversely selected left-over pool of
assets. When signals are nested, high-skill firms can screen out all applicants who failed
tests of low-skill firms and so do not mind hiring last. We elaborate on these differences in
Appendix A and argue that adverse selection and wage dispersion arise whenever goods
exhibit some indivisibility and signals exhibit some independence.

Adverse selection has also been introduced into models of random search (Lockwood
(1991), Lauermann and Wolinsky (2016), Kaya and Kim (2018)) and directed search
(Guerrieri et al. (2010), Li and Shimer (2019)). With random search, selective hiring
dilutes the applicant pool at later firms, but firms do not control the order of applications.
With directed search, firms do control their applicant pool by posting contract terms, but
turned-down workers cannot apply to other firms. We combine firms’ control over their
applicants with sequential applications into a model of “directed sequential search” that
abstracts from search frictions and focuses on information frictions.

Our model complements the wider literature on wage dispersion. In Burdett and Judd
(1983) and Burdett and Mortensen (1998), dispersion derives from firms competing for
more workers in an economy with search frictions, whereas our dispersion derives from
firms competing for better workers in an economy with adverse selection. In many labor
markets, the pertinent search friction is in evaluating the quality of applicants, rather
than finding them in the first place. Van Ours and Ridder (1992) find that “76% of all
vacancies are filled by applicants who arrived during an application period that lasts for
about 2 weeks”, leading them to write that “vacancy durations should be interpreted as
selection periods and not as search periods for applicants.” This view is consistent with the
extensive evidence of imperfect information in the labor market (e.g. Farber and Gibbons
(1996)), the widespread use of referrals (e.g. Holzer (1987)), and the significant amount
firms spend on screening candidates (e.g. Barron et al. (1985), Blatter et al. (2012)).7

Our heterogeneous-firm model contributes to the literature on firm-worker matching.
Becker (1973) observes that more productive firms hire more talented workers when pro-
ductivity is supermodular. In a dynamic model, Anderson and Smith (2010) and Anderson
(2015) suppose agents match each period and evolve as a function of the match; they show

7In recent years, online job search has further reduced search frictions: For example, Davis and
Samaniego (2020) report that 45% of job applications arrive in the first 48 hours and half the job postings
are taken down in a week. The mean vacancy duration exceeds 40 days, so the average firm then spends
over four weeks screening and selecting applicants.
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that equilibrium is efficient, and derive sufficient conditions for matching to be positive
assortative. In contrast to this literature that focuses on complementary production, our
paper focuses on asymmetric information in the hiring process, and shows that comple-
mentarities arise endogenously, with more skilled firms posting higher wages. Our model
has different implications from Becker. On the normative side, we prove that equilibrium
is inefficient; surprisingly, this inefficiency can prevail even with production complemen-
tarities (see Section 3.1). On the positive side, we examine how wage dispersion and
mismatch depend on screening skills (see Section 2.2 and 3.2).

Our dynamic model provides a theory of firm evolution in which a firm’s stock of talent
is its key strategic asset. In addition to Montgomery (1991), this relates to a broader set of
papers on firm dynamics in which competitive advantage stems from technology (Lucas
and Prescott (1971), Hopenhayn (1992)), reputation (Jovanovic, 1982) or the stock of
labor (Hopenhayn and Rogerson, 1993). By focusing on talent and recruiting, our paper
provides a new channel through which firms can sustain a competitive advantage and
gives rise to predictions concerning the inter- and intratemporal relationship between
productivity, wages and employee quality.

2 Competitive Screening

This Section introduces our static model and characterizes equilibrium. Section 2.1
presents the model. Section 2.2 describes the outcomes of firms’ sequential screening and
shows that wages are dispersed in equilibrium. Section 2.3 provides sufficient conditions
for positive assortative matching. Section 2.4 justifies the market clearing mechanism.

2.1 Model

A unit mass of firms, each with one vacancy, compete for a unit mass of workers. Workers
differ in their talent θ, with proportion q̄ ∈ (0, 1) talented, θ = H = 1, and the remainder
untalented, θ = L = 0. Firms select among applicants by administering a pass/fail test
to each applicant. Talented workers pass all tests, while untalented workers are screened
out with probability p ∈ (0, 1), independently across firms and workers. Firm screening
skills p are distributed according to F [p, p̄], where 0 < p ≤ p̄ < 1; for simplicity we assume
throughout that the cdf F is invertible, except for a few clearly marked parts in the paper
where we consider homogeneous screening skills.

We seek to model a labor market that is non-exclusive and anonymous. Firms simul-
taneously post wages and offer their job to any worker who passes their test. Workers
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accept their highest wage offer above their outside option. To operationalize this, order
firms in terms of their wages and suppose workers apply to firms from highest to lowest
wage, breaking ties at random. The highest firm screens applicants in a random order
and hires the first who passes their test; the adversely selected remainder then apply to
the “second” firm, and so on until all firms and workers are matched. We describe the
outcome of this procedure in Section 2.2 and provide a micro-foundation in Section 2.4.8,9

When a recruiter screens an applicant pool with expected talent q, proportion 1− (1−
q)p of the applicants pass the test. Bayes’ rule implies that the fraction of recruits who
are talented equals

λ(q, p) :=
q

1− (1− q)p. (1)

Expected talent λ(q, p) increases in both the applicant quality q and the screening skill p.
Payoffs are as follows. Workers only care about wages and so accept any job paying

more than their outside option, w ≥ 0. We call this outside option “unemployment”, but
it could be a job in a different industry.10 Productivity is normalized to 1 for talented
workers and 0 for untalented workers. Thus, when a firm posts wage w and attracts
applicants q, its expected profits are

π := λ(q, p)− w. (2)

We solve for Nash equilibrium in wages.11

8The assumption that firms use binary, pass-fail tests and that talented workers pass the test with
certainty is without loss. Indeed, consider a more general information structure with finitely many signals
s that arise with probability pθ(s). A firm that attracts any applicants attracts a continuum of them, and
thus some applicant with the signal s̄ that maximizes the odds-ratio ¯̀= pH(s̄)/pL(s̄). Recruit quality is
then q ¯̀

q ¯̀+(1−q) which collapses to (1) when ¯̀= pH(s̄)/pL(s̄) = 1/(1− p) for s̄ =“pass”.
9We can reinterpret firms’ screening as referrals. Assume that each firm is connected to each talented

worker via a referral with probability ε, and to each untalented worker with probability ε(1 − p). Each
firm extends provisional wage offers to their referrals, and the market clears from the top with workers
accepting their best offers and firms rescinding their remaining offers once their position is filled.

10Alternatively, w could be an operating cost for the firm; under this formulation, equilibrium alloca-
tions and payoffs are the same while wages are shifted down by w.

11Our firms post wages rather than contracts. If output were contractible and workers knew their types,
firms might be able to induce self-selection by paying for output. Such self-selection is rare in practice,
perhaps because individual output is non-contractible (e.g. workers may be part of a team, measures
of output may be manipulated), because workers’ types are multi-dimensional (e.g. contingent contracts
attract risk-seekers), or because contingent contracts signal the firm’s private information (e.g. equity
contracts are cheap for low-performing firms). Given our assumption that firms post wages and workers
non-strategically accept the highest wage offer, the question whether workers know their types is moot.
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2.2 Sequential Screening

To characterize equilibrium, we first study how the quality of the applicant pool depends
on the firm’s rank in the wage distribution. Suppose all firms post different wages, write
x ∈ [0, 1] for the resulting wage quantiles, and w(x), Q(x), P (x) for wage, applicant quality,
and screening skills at wage quantile x.12 Wages w(x) < w do not attract applicants and
result in zero profits.

The highest ranked firm faces applicant pool Q(1) = q̄; thus, proportion λ(Q(1), P (1))

of its recruits are talented. Since firms select talented workers disproportionately, lower-
ranked firms face an adversely selected applicant pool, meaning that Q(x) falls as the firm
rank x declines. Specifically, at rank x there is a total of xQ(x) talented workers, of which
firms [x, x + dx] hire λ(Q(x), P (x))dx; hence d[xQ(x)] = λ(Q(x), P (x))dx. Rearranging,
the talent pool evolves according to the sequential screening equation

Qx(x) = φ(Q(x), P (x), x) where φ(q, p, x) :=
λ(q, p)− q

x
. (3)

Since screening is imperfect, some talent remains, Q(x) > 0, for all x > 0. However,
firms pick over the applicants so many times that eventually no talent remains, Q(0) = 0,
assuming every worker is employed.13

In equilibrium, wages are distributed continuously. To see this, observe that if an atom
of firms offered the same wage, then a firm could attract discretely better job applicants
with a marginal wage raise. Similarly, there can be no gap [w,w′] in the wage distribution,
since firms offering w′ could attract the same applicants at the lower wage w. By the same
argument, the lowest wage in the wage distribution equals the outside option w, so the
share of unemployed workers x ≥ 0 solves w(x) = w. Since expected talent (1) and profits
(2) rise in p, firms above some p = F−1(x) enter the market with a wage above w while
those below p exit (or, equivalently, post a wage below w). To summarize:

Lemma 1. Equilibrium wages and productivity are continuously distributed with a mini-
mum of w. There is unemployment x > 0 if and only if w > 0. Firms p ∈ [p, p̄] enter.

Example 1 (Homogeneous Firms). Wage dispersion does not require heterogeneous
12This analysis assumes that firms post different wages. Otherwise, in case of a tie with an atom in the

wage distribution G(w), assume for concreteness that all workers break the tie in the same way, as if the
firms were infinitesimally differentiated. The rank x of a firm with wage w is then drawn uniformly from
[limε→0G(w − ε), G(w)]. Lemma 1, below, implies that this complication does not arise in equilibrium.

13To see Q(x) > 0 for x > 0, note that (logQ(x))x = (λ(Q(x), P (x))/Q(x) − 1)/x = (1/(1 − (1 −
Q(x))P (x))− 1)/x is bounded for any fixed x > 0 since p̄ < 1. To see Q(0) = 0, note that p > 0 implies

that (logQ(x))x is of order 1/x, and so the integral logQ(x) = log q̄ −
∫ 1

x
(logQ)x diverges as x → 0,

implying logQ(0) = −∞, or Q(0) = 0.
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screening skills, and also obtains when all firms have the same skill p. In this case, compe-
tition depletes profits and wages coincide with expected productivity, w(x) = λ(Q(x), p).
The worst applicant quality q that firms are willing to consider is given by λ(q, p) = w

and unemployment x solves Q(x) = q.
In Appendix B.1, we show that wage and productivity dispersion rises when screening

skills p rise (say, due to improvements in algorithmic hiring or employment networks).
Intuitively, the top firms extract more talented workers from the applicant pool, lowering
the productivity and wages of low-wage firms.14 4

2.3 Positive Assortative Matching

In this section, we characterize the equilibrium of our wage-posting game. We say there is
positive assortative matching (PAM) between firms and applicants if P (x) is increasing,
meaning firms with high screening skills p attract applicant pools of high quality, q.
From Becker (1973), we know that equilibrium features PAM if skilled recruiters have a
comparative advantage in screening applicants with higher expected talent, i.e. if expected
recruit quality λ(q, p) is supermodular. To ensure supermodularity, we assume that talent
is scarce, in that a worker from the unselected pool who passes the most stringent test is
more likely untalented than talented:

λ(q̄, p̄) ≤ 1/2. (4)

This is a joint condition on the distributions of talent q̄ and screening skills p̄. This
assumption is necessary for equilibrium sorting, but not for the welfare results in Section 3.
This assumption is satisfied in industries with relatively few highly productive individuals,
such as technology or sales.15

Theorem 1. Assume scarce talent (4). Equilibrium exists and is unique. The equilibrium
wage distribution is unique. Matching is positive assortative.

Proof. Note the partial derivatives

λp(q, p) =
q(1− q)

(1− p(1− q))2
and λqp(q, p) =

1− 2λ(q, p)

(1− p(1− q))2
. (5)

14We also show that wage and productivity dispersion rises when average talent q̄ falls (say, due to
skill-biased technological change that gives rise to a few superstars).

15Writing about Google and Netflix, Bock (2015, p. 62) says that “Only 10% of your applicants (at
best) will be top performers,” while Hastings and McCord (2009) say “In creative/inventive work, the
best are 10 times better than average.” Based on salespeople at 131 firms, Benson et al. (2019) confirm
“a well-known heuristic [...] that the top 20% of the sales force is responsible for 80% of sales.”
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Scarce talent (4) implies that λqp > 0 for all q ≤ q̄, p ≤ p̄, and matching is positive
assortative. That is, higher skill firms post higher wages, and so P (x) increases.

We can now construct the equilibrium. Given PAM, a firm’s rank in the skill distri-
bution equals its equilibrium wage rank, F (p) = x, and we can identify a firm by this
rank x. The skill of the firm with wage-rank x is then given by P (x) = F−1(x), its appli-
cant quality Q(x) is determined by the sequential screening equation (3), and the recruit
quality λ(Q(x), P (x)) by Bayes’ rule, (1).

From this we can derive the entry threshold p, wages, and profits. Denote the equilib-
rium wage required to attract applicants of quality q by W (q). The marginal firm pays
the outside option, so employment x is given by λ(Q(x), P (x)) = w, which determines
the entry threshold p = F−1(x). Wages are determined by firms’ first-order conditions,

Wq(Q(x)) = λq(Q(x), P (x)). (6)

Finally, profits Π(p) follow by the envelope condition

Πp(P (x)) = λp(Q(x), P (x)). (7)

Intuitively, productivity λ(q, p) depends on both the applicant pool quality and the screen-
ing ability; workers capture the marginal benefit of the former and firms capture the
marginal benefit of the latter.

The so constructed wage profile W (Q(x)) is the only possible candidate for an equi-
librium. To verify that the wages are indeed optimal, it suffices to note that marginal
profits λq(q, p) −Wq(q) single-cross in p and matching is positive assortative; hence the
FOC (6) implies global optimality.

Theorem 1 captures a natural complementarity in the recruiting function λ. Intu-
itively, recruiting skills do not matter if all applicants are either talented or untalented, but
they do matter when applicant quality is intermediate. Since Q(x) is bounded above by q̄,
our scarce-talent assumption (4) implies that skilled firms have a comparative advantage
at screening better applicants. Thus, skilled firms pay high wages, attract high-quality
applicants, recruit talented workers, and achieve high productivity and profits.16

16The comparative advantage of skilled recruiters in screening high-quality applicant pools relies on
our assumption that firms can screen applicants until one passes the test. In contrast, Li and Shimer
(2019)’s directed search model assumes that each firm screens a single applicant. Multiplying (2) with
the hiring probability yields π̃ = q − (1− (1− q)p)w with cross-partial ∂2π̃/∂p∂q = −w < 0. Intuitively
skilled recruiters hire fewer untalented workers and thus have a comparative advantage at screening bad
applicant pools with lots of untalented workers.
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Without the scarce talent assumption (4), PAM fails at the top of the distribution
for q = q̄ and p = p̄ by (5). It is not clear how to characterize equilibrium when the
sign of λqp changes over the domain of (q, p), but PAM still obtains at the bottom of the
distribution since limx→0Q(x) = 0.17

In Appendix B.2 we extend our model to continuous types with linear hiring propen-
sity. When types are exponentially distributed, equilibrium is positive assortative.

2.4 Justification of the Market Clearing Mechanism

We now justify the clearing mechanism that underlies the sequential screening equation
(3). In our model, firms choose wages wi strategically; given these wages, the market
then clears mechanically, “top-to-bottom”. A potential concern with this reduced-form
approach is that it doesn’t allow workers to “jump the queue” in an attempt to avoid
adverse selection. To understand the idea, consider a two-firm version of our model with
w1 > w2. If a worker applies to Firm 2 in “round 1”, they have higher expected talent
than a worker who applies to Firm 2 in “round 2”, after being rejected by Firm 1. This
argument assumes that (i) the worker can prove she did not apply to Firm 1, and (ii) the
worker can commit not to leave Firm 2 if Firm 1 makes her an offer later in the game.
We justify our “top-to-bottom” application order by arguing that these two assumptions
are unreasonable for the anonymous, non-exclusive labor markets we have in mind. Each
involves extending the model in a different way; since this is not the central contribution
of the paper, we keep the discussion informal.

Our preferred justification is that our static model represents the steady state in a
larger, dynamic game. At each time, mass 1 of workers enter the market and each firm x

has has an evergreen job post that pays wage w(x). With a single generation of applicants,
a worker could apply to Firm 2 in “round 1” and avoid adverse selection; with multiple
generations, a worker who jumps over Firm 1 will reach Firm 2 at the same time as all the
rejected workers from the “prior generation”. Indeed, in many real-world labor markets,
firms entertain applications on a continuous basis and treat those arriving on June 1st and
June 2nd symmetrically. We say a firm has passive beliefs, in that its acceptance decisions
depend only on its signals and its wage-rank, as in the steady-state of a dynamic game.
Given passive beliefs, workers optimally apply top-to-bottom.18

17This assumes w small, so enough firms enter the market. In a previous version of this paper, with
a slightly different parametrization of firms’ screening skills (Board et al. (2017)), we fully characterize
equilibrium sorting and show wages w(p) are hump-shaped when talent is abundant.

18Even in a one-generation model, passive beliefs can arise if application times are subject to noise,
so that all application times are on-path. Top-to-bottom applications then constitute an equilibrium,
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Another justification is that application orders other than top-to-bottom give rise to
“unstable” matches. Consider a model with finite workers and firms; workers do not
know their own types, and firms observe private signals about workers. Workers choose
application orders, and the market clears according to Gale-Shapley’s worker-proposing
deferred acceptance mechanism. Now, suppose worker A ranks Firm 2 ahead of Firm 1,
even though Firm 1 pays higher wages. With positive probability A gets accepted by
Firm 2. While Firm 1 cannot directly observe Firm 2’s offer to A in our anonymous labor
market, it does observe that A never applies for its job and infers that A found some other
job. If A also scores highly on Firm 1’s test, this positive inferences renders worker A and
Firm 1 a blocking pair to the resulting matching; the matching thus fails Chakraborty et
al.’s (2010) notion of weak stability. One problem with such non-cooperative notions of
stability is that equilibrium inferences may be overly sensitive to fine details of the game.
A promising avenue for future research is thus to extend cooperative notions of stability
with incomplete information (e.g. Liu et al. (2014), Liu (2020)), to our setting where
wages are fixed before the matching. One challenge with this approach is to capture the
anonymity of our market, which prevents it from aggregating firms’ information.

These arguments provide support for our top-to-bottom application order. It is also
highly tractable, allowing us to study sorting and welfare, to which we now turn.

3 Welfare

In the model, a worker’s productivity equals θ in our industry and w elsewhere. The
social value of screening consists in sorting talented workers, θ = H, into the industry
and untalented workers, θ = L, out of the industry. In other words, mismatch arises
from unemployed talented workers, and employed untalented workers. Section 3.1 studies
firms’ screening order while Section 3.2 studies the level of firms’ screening skills.

3.1 Screening Order

Equilibria in matching models with transferable utility are typically efficient (e.g. Shapley
and Shubik (1971), Becker (1973)). Surprisingly, this welfare theorem fails in our model.
In particular, Theorem 2 shows that welfare is minimized by positive assortative matching
and maximized by negative assortative matching (NAM). The key difference to standard

since firms’ inferences depend only on their equilibrium beliefs and not on application times; this in turn
justifies top-to-bottom applications.
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matching models is the compositional externality: The applicant pool quality is endoge-
nous and depends on the screening skill of higher-paying firms. Intuitively, high-skilled
firms pick out more talented workers than low-skilled firms and introduce more adverse
selection. This externality is maximized by PAM and minimized by NAM.19 The following
example illustrates the idea.

Example 2 (Two Types of Firms). Suppose mass ηH of firms are skilled, p > 0 and
mass ηL are unskilled, p = 0. To abstract from entry, assume firms are on the short
side of the market and the minimum wage w does not bind, so all firms enter. Under
PAM, skilled firms first hire from the unselected pool q̄; unskilled firms then hire from
an adversely selected pool with quality q < q̄. In contrast, under NAM, unskilled firms
hire from the unselected pool q̄; they do not change the quality of the talent pool, and
so the skilled firms also hire from a pool of quality q̄. Since the unskilled firm impose
no compositional externality on the skilled firms, more talented workers are hired under
NAM than under PAM, raising social surplus.

The welfare loss from incorrect sorting can be substantial: For example, (ηH , ηL) =

(0.09, 0.90) firms screening with NAM has the same welfare as (η′H , η
′
L) = (0.90, 0.09) firms

screening under PAM. To see this, note that with unemployment fixed at x = 1−ηH−ηL,
welfare is decreasing in the talent remaining among the unemployed Q(x). By (3), Qx

scales inversely with the number of remaining applicants x. Thus, mass ηH skilled re-
cruiters screening at wage ranks x ∈ [x, 1−ηL] under NAM reduces applicant quality by the
same amount as mass ηH/(1−ηL) skilled recruiters at wage ranks x ∈ [1−ηH/(1−ηL), 1]

under PAM. Thus, switching from PAM to NAM has the same welfare consequence as
sticking to PAM while scaling up the number of skilled firms by a factor 1/(1− ηL). 4

To argue the inefficiency of the competitive equilibrium more generally, consider a
planner who can direct all firms’ entry and wage decisions but is subject to the same infor-
mational frictions.20 Her problem is to choose employment 1−x and a measure-preserving
matching function, or equivalently screening order, P : [x, 1]→[p, p̄] to maximize welfare

19Compositional externalities of a different nature are seen in models of directed search. In Albrecht
et al. (2023), workers applying to recent job postings exert an externality on later applicants if employers
fail to remove their filled “phantom vacancies” from the market. In Athey and Ellison (2011)’s model of
position auctions, high-quality advertisers serve more searchers than low-quality advertisers when winning
first position in the ad auction; this order minimizes search costs, meaning equilibrium is efficient.

20In particular, the planner cannot communicate firms’ test results to each other. With a continuum
of firms and independent tests, allowing such communication would trivially solve any mismatch.
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S :=

∫ 1

x

[λ(Q(x), P (x))− w]dx. (8)

For example, in equilibrium, matching is positive assortative PPAM(x) = F−1(x), with
entry cutoff x satisfying λ(Q(x), PPAM(x)) = w; assuming the same entry behavior, NAM
is characterized by PNAM(x) = F−1(x + 1 − x). In contrast to the standard assignment
model, the surplus of the x-ranked firm in the integrand of (8) depends on P (x′) for x′ > x

via the applicant quality Q(x).
We first argue that the planner wants the highest skilled firms to enter; hence the

matching function P has range [p, p̄], where p = F−1(x). Increasing skills P (x) at wage
rank x increases the surplus at that rank, λ(Q(x), P (x)); however, it reduces applicant
quality Q(x̌) at lower ranks x̌ ∈ [x, x]. This negative indirect effect diminishes but does
not overturn the positive direct effect. Formally, the proof of Theorem 2 shows that the
indirect effect scales down the direct effect by a factor

δ := exp

(
−
∫ x

x

λq(Q(x̌), P (x̌))

x̌
dx̌

)
. (9)

Turning to the screening order P (·), we claim that surplus (8) increases whenever a
low-skill firm p is promoted from wage rank x to x′ > x past firms with higher skills
P (x̂) > p for x̂ ∈ [x, x′]. Thus PAM minimizes surplus, and NAM maximizes it. In a
discrete analogue of our model, consider two firms with screening skills p and p′ = p+ dp

at adjacent wage ranks x and x′ = x + dx under PAM. The corresponding applicant
quality equals q = q′ − φ(q′, p′, x′)dx and q′, recalling the compositional externality φ

from (3). How does switching their screening order affect their joint recruited talent and
hence surplus? First, the low-skill firm p now screens the better pool; since λ(q, p) is
supermodular, this lowers total surplus of the two firms by λqpφdpdx. In Figure 1 this is
represented by the vertical shift from white circles representing PAM to the black circles
representing NAM. If the pool quality was exogenous as in Becker, this would be the end
of the story. In our model, there is a second effect: firm p extracts φpdpdx less talent,
increasing surplus by λqφpdpdx. In Figure 1, this is represented by the applicant quality of
firm p′ rising from q′ to q′′, and the associated shift of the black circle to the black square.
The next inequality shows that the second term outweighs the first, and so moving the
low-skill firm p ahead of the high-skill firm p′ raises surplus

λqp
λq

= 2
1− q

1− p(1− q) −
1

1− p <
1− q

1− p(1− q) =
λp
λ
<
λp
λ

λ

λ− q =
φp
φ
. (10)
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Inefficiency Picture

Applicant quality, q

Recruit quality, λ

0 q′ q′′ q

λ(·, p)

λ(·, p′)

φpdpdx

Compositional
externality
λqφpdpdx

Complementarity
λpqφdpdx

1

Figure 1: This figure illustrates the supermodularity and compositional externality that arise in Theo-
rem 2. The empty dots represent PAM, the solid dots represent NAM if applicant quality were exogenous
(the “Becker effect”), and the shift to the square comes from the endogeneity of the applicant pool (the
“Akerlof effect”).

In words, marginal recruiting success λq is less sensitive to p than absolute recruiting
success λ, which in turn is less sensitive to p than the compositional externality φ. Thus,
total surplus of the two firms p, p′ is maximized by NAM; the effect on aggregate surplus
(8) must be discounted by (9), but the sign remains unchanged. The compositional
externality overturns one of the most fundamental insights of the assignment model,
namely the First Welfare Theorem.

Theorem 2. For any level of unemployment x > 0, PAM minimizes surplus (8) and
NAM maximizes surplus.

Proof. See Appendix C.2.

From a policy perspective, it is hard to solve the inefficiency seen in equilibrium. In
some rare cases, the planner might be able to directly implement negative assortative
matching. For example, in the NFL “reverse” draft the lowest-ranked football teams pick
first. To induce negative assortative matching indirectly through Pigouvian taxes on
wages, the planner would need to charge higher wage taxes to firms with higher screening
skills p. If the planner cannot observe the skill of different firms but can restrict the
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set of admissible wages, her best policy is a single industry-level wage, inducing firms
to select in a random order.21 The same outcome can be achieved by a wage cap (see
Appendix C.3). More common labor market policies do not address the inefficiency.
Unemployment benefits or minimum wages raise w but don’t change the equilibrium
screening order; these policies lower welfare since equilibrium entry is optimal given the
screening order. Progressive taxes on wages or profits flatten net wages w(x) without
changing the screening order; this policy may also change the number of firms x, and thus
lower welfare.

The positive assortative matching that arises in equilibrium (Theorem 1) and its inef-
ficiency (Theorem 2) are robust to natural generalizations of our model. First, consider a
model with production complementarities, where a firm’s revenue is multiplicative in firm-
type and expected worker-type p · λ(q, p), so high-type firms also have a higher marginal
product. Since the (exogenous) productive-complementarity reinforces the (endogenous)
screening-complementarity, equilibrium sorting remains positive assortative. More sur-
prisingly, the compositional externality overcomes both the productive complementarity
and the screening complementarity, and PAM remains inefficient (see Appendix C.4).

Second, the theorems are robust to screening costs. If there is a cost κ to screen
each applicant and firms screen applicants until one passes their test, profit (2) becomes
π := λ(q, p)−κ/(1−p(1−q))−w. Since skilled firms are more selective, they incur higher
screening costs and are more sensitive to applicant quality; thus equilibrium continues to
exhibit PAM. Moreover, this equilibrium continues to be inefficient, with the planner
improving on PAM by swapping neighboring firms (see Appendix C.5).

3.2 Implications of the Compositional Externality

In the last section, we saw that the compositional externality generates inefficient sorting
of firms. In this section we show that it impairs the market’s ability to aggregate infor-
mation and induces firms to over-invest in their screening skills.

Limits of Information Aggregation. In the model, each firm has independent sig-
nals about each worker. Intuition from multi-unit auctions might suggest a “wisdom of
crowds” results, whereby the market perfectly aggregates information (e.g. Pesendorfer
and Swinkels (1997)). However, our model works very differently because, unlike common-

21To see this, note that high-skill firms always offer weakly higher wages than low-skill firms (by
Theorem 1), while welfare increases with any promotion of low-skill over high-skilled firms (by Theorem
2).
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value auctions, each worker’s quality is independent. To study this question we will, for
simplicity, focus on the case of homogeneous firms with screening skills p (Example 1).
We quantify information aggregation in two ways:

First, we observe that imprecise signals are of no value to society. Formally, the
impact of screening skills p on surplus S(p) is initially zero, Sp(0) = 0, even though such
skills improve the selection of individual firms, λp(q, 0) > 0.22 That is, a continuum of
imprecise, independent signals is perfectly informative when aggregated by an auction for
homogeneous goods, but perfectly uninformative when aggregated by our market clearing
mechanism for heterogeneous workers. Intuitively, imprecise signals enable firms to weed
out some untalented applicants, but workers get so many attempts at different firms that
every worker passes one of the tests, resulting in no increase in social surplus.

Second, we argue that social surplus is higher when firms have access to one public
signal per worker that screens out bad workers with probability p (akin to Phelps (1972)),
rather than each firm having a (conditionally) independent signal. That is, the indepen-
dence of information across firms induces adverse selection rather than contributing new
information. To see this, note that with the public signal, posterior expected talent equals
λ(q̄, p) for the 1− (1− q)p applicants who pass the test, and 0 for the (1− q)p applicants
who fail the test. This distribution of expected talent is a mean-preserving spread of
the distribution of expected talent with private signals, which consists of a continuous
distribution from w to λ(q̄, p) for employed workers and an atom at q for the unemployed.
Since hiring decisions are efficient conditional on the available information, the superior
information with public signals implies higher welfare. Intuitively, failing a public test
black-lists an untalented job applicant, while failing a private test allows him to re-enter
the pool, inducing adverse selection for other firms. Since firms earn zero profits, workers
are better off, on average, if they each have a single, public, standardized test rather than
lots of independent tests that give them “a second chance”.23

Investment Inefficiency. In the model, firms’ screening skills p are exogenous. In prac-
tice, firms can raise the skills by improving their recruiting infrastructure (e.g. developing

22There are two cases. If q̄ < w then no-one is hired for small p and the result trivially follows. If
q̄ > w, then everyone is hired when p = 0, and unemployment is x = X(p) = 0. The result then follows
because the integral in the discount factor (9) diverges.

23This Blackwell-comparison between perfectly correlated and independent signals extends to hetero-
geneous firms, p ∼ F [p, p̄]. In particular, welfare is higher when agents have nested signals than when
they have independent signals. To see this, recall Kurlat’s (2016) insight that equilibrium matching
with nested signals is negative assortative and features no adverse selection. One can then argue that
the induced distribution of expected talent is a mean preserving spread of the distribution induced by
independent signals and any screening order, so in particular of equilibrium PAM.
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referral systems, training recruiters, engaging headhunters). If firms can choose their
screening skill p at cost c(p), then wages and screening skills are dispersed and positively
correlated across firms, with p(x) solving c′(p) = λp(Q(x), p) > 0 by (7). From soci-
ety’s perspective, firms over-invest in screening skills. Using equation (9), the marginal
gain to society is δ · λp(Q(x), p), where 1 − δ reflects the compositional externality on
lower-ranked firms. In the extreme case when w = 0, we have full employment x = 0,
the screening game is constant-sum, and all investment is wasteful. This overinvestment
contrasts with the finding of efficient investment found in classic matching models (e.g.
Cole et al. (2001)). Overinvestment can be important in practice: Bock (2015, p. 60)
urges companies to spend more on screening recruits, writing that “you can find a way
to hire the very best, or you can hire average performers and try to turn them into the
best. [. . .] At Google, we front-load our people investment. This means the majority of
our time and money spent on people is invested in attracting, assessing, and cultivating
new hires.” Alas, not every firm can hire the best.

4 Endogenous Screening Skills and Firm Dynamics

We now embed our static labor market into a model of firm dynamics to endogenize
firms’ screening skills and study the evolution of talent over time. The key premise is
that firms with more talented employees are more skilled at recruiting. As discussed in
the introduction, this might happen because talented employees provide better referrals,
or because they are better at identifying talented applicants. Firms thus desire talented
workers both for the immediate increase in productivity, and for the benefit of having
skilled recruiters in the future.

Section 4.1 describes the model. Section 4.2 solves for a firm’s optimal wage path.
Section 4.3 shows equilibrium is unique with high-talent firms offering high wages that
complement their superior screening skills; they thus attract superior applicants, ampli-
fying their talent advantage. Section 4.4 characterizes firm dynamics, and shows that the
economy converges to a steady state that exhibits persistent dispersion in talent, wages
and productivity. In equilibrium, the positive assortative firm-applicant matching offsets
the regression to mediocrity that results from imperfect screening.

4.1 Model

Time t ≥ 0 is continuous. There is a unit mass of firms, each with a unit mass of jobs.
At time t, a firm is described by its proportion of talented workers r(t); initially, the
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distribution of r(0) is exogenous. At every instant [t, t + dt], proportion αdt workers
retire, leaving firms with vacancies. In the job market, there are then αdt open jobs and
αdt applicants, of whom fraction q̄ are talented. Analogous to the static model, firms
compete for these applicants by posting life-time wages w(t).

Talented workers have an advantage in recruiting. We describe this relationship by a
skill function ψ(r) satisfying ψr > 0 and ψrr ≥ 0. For example, if an employee with talent
θ ∈ {L,H} has screening skill pθ and firms ask random employees to act as recruiters,
then the skill function is linear, ψ(r) = pL + r(pH − pL). As before, we assume that talent
is scarce for all firms, which holds if24

λ(q̄, ψ(1)) < 1/2. (11)

The job market is analogous to that in Section 2.1. If a firm with talent r posts wage
w with rank x at time t, it attracts applicants with quality Q(x, t) and hires recruits of
quality λ(Q(x, t), ψ(r)). Writing R(x, t) for the talent of the firm with wage rank x at
time t, Q(x, t) is determined by the sequential screening equation,

Qx(x, t) = φ(Q(x, t), ψ(R(x, t)), x) and Q(1, t) = q̄, (12)

as in (3). In turn, the evolution of a given firm’s talent r(t) with wage rank x(t) is given
by the difference between its inflow λ and outflow r,

rt(t) = α
(
λ(Q(x(t), t), ψ(r(t)))− r(t)

)
. (13)

Turning to payoffs, workers maximize lifetime wages w(t), while firms’ revenue equals
r(t). To abstract from entry and exit, suppose that there is no outside option, w = 0.
A firm’s problem is to choose wages to maximize total discounted profits. Denoting the
discount rate by β > 0, its value function is

V (r, s) = max
{w(t)}t≥s

∫ ∞
s

e−β(t−s)(r(t)− αw(t))dt, (14)

where r(t) evolves according to (13) with initial condition r(s) = r.25

24This assumption is stronger than necessary. It states that a firm exclusively endowed with talented
workers has less that 50% talented recruits. In Section 4.3 we consider an example where firms are initially
similar; the assumption can then be weakened to λ(q̄, ψ(R∗(1))) < 1/2, where R∗(x) is the steady-state
talent of firm x.

25Note that the “wages” w(t) are really one-time payments to each of the α newly hired employees at
time t. More realistically, one could model worker compensation as constant flow wage (β+α)w(s) until
retirement, but it simplifies the accounting to have firms incur these costs up-front.
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An equilibrium is given by a wage path {w(t)}t≥0 for every firm,26 so that given the in-
duced wage ranks x(w, t) and applicant qualities Q(x, t), every firm’s wage path is optimal.
We say an equilibrium is essentially unique, if the induced distribution over equilibrium
trajectories {r(t)}t≥0 is unique.27

Remarks. We assume that employment is for life. If firms identify and fire low types at
a constant rate, the analysis would be qualitatively unchanged. The possibility of firing
would introduce a new term into the evolution of talent (13) and lower the quality of
workers in the market, q̄. However, the firms’ FOCs (16) are unchanged, meaning we
still obtain positive assortative matching and steady-state dispersion, as in Theorems 3-4
below.

Unlike Section 3, there are no welfare margins in the dynamic model. In comparison
to Section 3.1, the outside option is zero, w = 0, so all workers are hired and the game
is constant sum. And in comparison to Section 3.2, investments into screening skills are
transfers to workers, rather than real economic costs.

4.2 Firm’s Problem

First, we study a firm’s optimal wage path {w(t)}t≥0 for any given applicant function
Q(x(w, t), t) without imposing equilibrium restrictions on other firms. As in Section 2.3,
it is convenient to write W (q, t) for the wage required to attract applicants q at time t,
and let the firm optimize directly over the applicant pools {qt}t≥0. After this change of
variable, the firm’s Bellman equation becomes

βV (r, t) = max
q
{r − αW (q, t) + α(λ(q, ψ(r))− r)Vr(r, t) + Vt(r, t)}. (15)

Firm value is determined by its flow profits plus appreciation due to talent acquisition
and a secular trend. Assuming wages are differentiable, the first-order condition is

Wq(q, t) = λq(q, ψ(r))Vr(r, t). (16)
26As in the static model, the restriction to deterministic wages is without loss. In principle, a firm

might mix between two wages by switching between them arbitrarily fast. To avoid measurability issues
associated with such strategies, we allow for “distributional wage strategies” but show in Section 4.3 that
equilibrium strategies are almost always pure.

27This definition avoids two spurious notions of multiplicity. First, in continuous time, any firm’s
optimal strategy {wt}t≥0 can be unique only almost always. Second, if two or more firms are initially
identical but then drift apart, only the distribution of trajectories can be determined uniquely.
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Intuitively, the cost of attracting better applicants (the LHS) must balance the gains of
a higher quality applicant pool which increases the recruit quality and thereby firm value
(the RHS). The RHS of (16) is increasing in r, so firms with more talent have a higher
marginal benefit from attracting better applicants, yielding positive assortative matching.
Intuitively, firms with more talent have higher marginal benefit from better applicants
λq(q, ψ(r)) because of the supermodularity of λ (see Theorem 1) and the convexity if ψ,
and such firms have a higher marginal value of talent Vr(r, t) because V (r, t) is convex in
r (see Appendix D.1). Hence, wages are dynamic complements: an increase in today’s
wage raises tomorrow’s talent, and thereby tomorrow’s optimal wage.

To compute equilibrium wages from the first-order condition (16), we write r(u) and
q(u) for the equilibrium trajectory of talent and applicant quality, and apply the envelope
theorem and the law of motion of firm talent (13) to compute (see Appendix D.1 for
details)

Vr(r(t), t) =

∫ ∞
t

e−
∫ s
t β+α

(
1−λp(q(u),ψ(r(u)))ψr(r(u))

)
duds. (17)

Intuitively, the future benefit of better employees is discounted both at the interest rate
β and the retirement rate α. But selective recruiting raises the persistence of firm talent
or, equivalently, reduces the talent decay rate by a factor 1− λpψr.

4.3 Equilibrium

Given the single-firm analysis, it is straightforward to characterize equilibrium. Firms
with more talent post higher wages and attract better applicants. More strongly, even
if firms share the same talent r(0) initially, they post different wages (as in the static
model), recruit different types of workers, and diverge immediately (see Appendix D.2).
Thus, in equilibrium, each firm is characterized by a rank x, which describes the firm’s
position in the talent, applicant, and wage distribution at all times t > 0.

Equilibrium is then characterized in two steps

(1) Allocations. At time t, applicant quality Q(x, t) is determined by sequential screen-
ing (12). The evolution of firm x’s talent R(x, t) is then given by the firm dynamics
equation (13) with x(t) ≡ x.

(2) Payoffs. Firm x’s marginal value of talent is determined by (17), with q(u) =

Q(x, u). Using this, wages W (q, t) are given by the first-order condition (16), with
r = R(x, t), q = Q(x, t), and W (0, t) = w = 0.
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Given these wages, the FOC (16) implies global optimality because the net benefit of
better applicants λq(q, ψ(r))Vr(r, t) −Wq(q, t) single-crosses in r. Standard verification
theorems then imply that the policy functions are indeed optimal. To summarize:

Theorem 3. Assume talent is scarce (11). Equilibrium exists and is essentially unique.
Firm-applicant matching is positive assortative and the distribution of talent has no atoms
at any t > 0.

Proof. Only the claim about no atoms remains to be shown. See Appendix D.2.

Thus, even if firms start off with identical talent, some post higher wages than others,
attract better applicants, and hire better recruits. These firms accumulate talent, con-
tinue to pay high wages, and the distribution of talent disperses over time.

Example 3 (Initially Homogeneous Firms). To understand the evolution of talent
R(x, t) and applicant quality Q(x, t), consider Figure 2. At t = 0, all firms employ average
workers, with quality q̄ = 0.25. In panel (a), the “vertical” lines represent the cross-
sectional distribution of (r, q) at different times, while the “horizontal” lines represent the
sample-paths of selected firms. The top-ranked firm recruits from the constant applicant
pool Q(1, t) = q̄, and so (13) implies that its talent grows monotonically and converges
to a steady state. For lower-ranked firms, the dynamics are more subtle. For instance,
firm x = 0.5 initially improves as its recruits are more talented than its retirees. However,
as higher-ranked firms become better at identifying talent, its applicant pool deteriorates
and its quality eventually falls back. These time paths are shown in panel (b).

Turning to payoffs, note that firms earn zero lifetime value since they start homoge-
neous. The top firms initially lose money as they post high wages and invest in talent;
this raises both their productivity and their screening skill, giving them an advantage in
the labor market, and delivering a steady stream of profits. Over time, rents shift from
workers to firms: early workers are paid more than their productivity as firms invest; later
workers are paid less than their productivity as differentiation softens competition. 4

4.4 Steady-State Allocations

Steady-state talent among recruits and applicants {R∗(x), Q∗(x)} is easily characterized.
First, the talent of each firm’s recruits and retirees balance,

λ(q, ψ(r)) = r. (18)
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(a) Evolution of Recruits and Applicants (b) Recruit Talent over Time
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Figure 2: Equilibrium Dynamics of Applicant and Recruit Quality. All firms start with talent
q̄ = 0.25, and choose wages optimally as characterized in the text. The skill function is ψ(r) = 0.4 + 0.5r

and (annual) turnover is α = 0.2.

This has a unique fixed point, r = ρ(q), since λ(q, ψ(r))− r is convex (see Appendix D.1),
positive at r = 0, negative at r = 1, and hence crosses zero exactly once. Naturally, firms
with better applicants have higher talent; formally, ρ(q) increases since λ(q, ψ(r))−r rises
in q and single-crosses from above in r.

Second, substituting R∗(x) = ρ(Q(x)) into the sequential screening equation (12),
steady-state applicant quality Q∗(x) is given by

Q∗x(x) = φ (Q∗(x), ψ(ρ(Q∗(x))), x) . (19)

Together (18) and (19) pin down firm x’s talent R∗(x) and applicant quality Q∗(x) in
steady state. Differentiating and dropping arguments for legibility, steady-state talent
dispersion is given by28

R∗x = ρqQ
∗
x =

λq
1− λpψr

Q∗x. (20)

Indeed, the economy converges to this steady state from any initial condition.

Theorem 4. Assume talent is scarce (11). The steady-state talent distribution R∗(x) is
unique and has no gaps or atoms. For any distribution of initial talent r(0), firm x’s
equilibrium talent R(x, t) converges to R∗(x).

28Note that the denominator in this expression is positive around the steady state: While 1 −
λp(q, ψ(r))ψr(r) may be negative for arbitrary values of r, this cannot happen in steady state where
r = ρ(q), since we know that ρ(q) increases in q and, by the Implicit Function Theorem, Rq(q) =
λq(q, ψ(ρ(q)))/(1− λp(q, ψ(ρ(q)))ψr(ρ(q))).
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Proof. See Appendix D.3

To show convergence, Figure 2 suggests a “proof by induction.” The top firm recruits
from a pool of constant quality, so equation (13) implies that its talent converges to steady
state. Then consider firm x close to 1. As the talent of higher firms converges, firm x’s
applicant pool converges, and then firm x’s talent converges, too, by (13).

In steady state, talent R(x) are dispersed. If all firms were hiring from the same
applicant pool q, talent differences from the steady state level r − ρ(q) would decay
exponentially. The link between talent and recruiting skills slows this decay but cannot
stop it. Rather, the decay is halted by positive assortative matching: firms with skilled
employees post higher wages and recruit from a better pool. As a result, the steady state
supports permanent heterogeneity in firm quality, productivity and profits.

Talent thus generates a sustainable competitive advantage. One might wonder why
a firm with untalented workers doesn’t compete more aggressively in wages to build its
talent over time. This strategy is feasible, but too expensive. High-talent firms have a
higher marginal benefit from raising wages because recruiting skills and applicant quality
are complements in the job market.

This logic relies on our assumption that firms have firm-specific wage policies. In
contrast, Montgomery (1991)’s model of applicant-specific wage offers does not generate
persistent dispersion.29 If we interpret the skill function ψ(r) as the firm sampling its
current employees for referrals, our model predicts that a talented worker recruits better
referrals if their colleagues are also talented. This is because high-talent firms pay high
wages, and help convert the recommendation of the talented worker into a talented recruit.
This does not happen in Montgomery, where each referral receives a separate wage offer.

29Montgomery (1991) only has two periods. For an apples-to-apples comparison with our model, assume
an infinite time horizon, continuous time, and that firms employ a unit mass of workers with aggregate
talent r(t) who retire at rate α. When a firm has a vacancy, a random current employee makes a referral.
Write λ̄ (resp. λ) for the equilibrium expected talent of a recruit who was referred by a talented (resp.
untalented) employee. Since wage offers are applicant specific, λ̄ and λ do not depend on the talent of
the firm’s other employees. Talent evolution is then governed by rt = α(λ+ (λ̄− λ)r − r) and converges
to r∗ = λ/(1− λ̄+ λ), irrespective of initial talent.
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4.5 Steady-State Payoffs

The model generates predictions about how value is shared between workers and firms.
In steady state the flow wages (β + α)W ∗(q) are given by30

(β + α)W ∗
q =

(β + α)λq
β + α (1− λpψr)

. (21)

Steady-state flow profits Π∗(q) in turn are given by

Π∗q = ρq − (β + α)W ∗
q =

βλpψr
(1− λpψr) (β + α (1− λpψr))

. (22)

Two comparative statics help illustrate the inner workings of the model. First, we note
that any degree of correlation between productivity and recruiting skills ψr > 0 gives rise
to non-vanishing talent dispersion. In the limit, as the direct talent-skill relationship
ψr goes to zero, equation (20) shows that the strategic effect gives rise to dispersion
R∗x = λqQ

∗
x. Despite this talent dispersion, equation (22) shows that steady-state profits

are zero since firms have weak incentives, as in Example 1. An increase in the importance
of referrals in recruiting talent ψr then amplifies talent dispersion (20) and raises steady-
state profits (22). This arises because (i) high-paying firms fish out more of the talented
workers from the applicant pool, and (ii) talent accumulates at the top firms, further
raising their screening ability and the talent of their recruits.

Second, a rise in turnover α raises wages and shifts steady-state rents from firms to
workers. Indeed, a rise in turnover has no impact on the steady-state distribution of talent
R∗(x), but raises the rate at which the economy converges to steady state. Equations (21)
and (22) then imply that flow wages (β + α)W ∗(Q∗(x)) rise, and flow profits Π∗(Q∗(x))

fall for all firms x. Intuitively, when turnover is high, a firm’s stock of talent quickly
depletes and a low-talent firm can achieve almost the same profits as a high-talent firm
by mimicking its wage policy; this intensifies competition and drives up wages.

Our analysis assumes revenue is linear, and screening skills are weakly convex in talent
r. Complementarities in production (in the form of convex revenue) reinforce equilibrium
sorting and leaves steady-state dispersion unchanged. Our results are also robust to a
little concavity in revenue or screening since incentives for positive assortative matching
are strict. But sufficient concavity induces negative assortative matching: For example, if
10% of talented employees suffice to guarantee good screening outcomes, then firms below
the 10% threshold would bid aggressively to improve their screening.

30To see this, note that in steady state, the marginal value of talent (17) simplifies to V ∗r (ρ(q)) =

[β + α (1− λpψr)]−1. Substituting this into the first-order condition (16) yields the result.
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5 Conclusion

In their survey on personnel economics, Oyer and Schaefer (2011) write that “This liter-
ature has been very successful in generating models and empirical work about incentive
systems [. . .] The literature has been been less successful at explaining how firms can find
the right employees in the first place.” By studying the equilibrium interaction of firms’
recruiting strategies, we hope this paper takes a step in this direction.

The paper has three major contributions. First, it provides a simple model to under-
stand a competitive labor market where firms have independent information. Second, we
show that compositional externalities mean that equilibrium sorting is inefficient and that
the market is poor at aggregating firms’ private information. Third, we propose a new
model of firm dynamics where similar firms diverge over time and the economy converges
to a steady state with persistent dispersion in talent, wages, and productivity.

The tractable nature of the model means it can be extended in a number of directions.
First, it would be natural to allow firms to differ in their technology as well as their
talent, and study how they combine to define firms’ competitive advantages. For example,
Waldinger (2016) argues the loss of human capital at German universities had a large,
persistent effect on output, whereas the loss of physical capital had a small, temporary
effect. Second, going beyond our one-dimensional model of talent, one might assume that
firms also differ in the type of talent they seek to hire (e.g. generalists vs. specialists) which
typically complements their broader organizational strategy. Third, we suppose that each
worker is only on the job market once, but it would be natural to extend the model to
allow for job-to-job transitions. Workers in low-wage jobs would then compete with new
cohorts for high-wage jobs. Fourth, in many settings workers value peer quality or status
as well as wages. For example, if all types of worker prefer to work at a firm with more
talented colleagues, the allocation of talent is unchanged but wages are more compressed;
moreover, firms have yet another reason to invest in talent, further transferring surplus
from later generations to earlier ones.

The paper also raises questions further afield. On the theoretical side, our baseline
model calls for a parsimonious foundation of firm-worker matching with fixed wages when
firms are asymmetrically informed about worker talent. On the empirical side, we hope
the paper stimulates work on the “production function of hiring”. What makes some
managers (or firms) better at recruiting than others? How does this skill interact with
the firms’ strategy (e.g. wage, advertising) in order to produce better recruits?
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Appendix

A Comparison with Kurlat (2016)

In this section we clarify the relationship between our model and that of Kurlat (2016)
with “false positives”. As discussed in Section 1.1, the key differences are that, in the
language of our model, Kurlat models workers’ labor as perfectly divisible and firms’
signals as perfectly nested.31

To appreciate these differences, we consider the effect of nested signals and divisible
labor in our model. To reduce formalities, we try to keep these model variants as simple
as possible. Indeed, we suppose that the outside option w is close to 0 throughout.

Nested Signals. Assume there are two types of firms (skilled and unskilled). Signals
are “nested” in that an untalented worker who passes the test of a skilled firm also passes
the test of an unskilled firm. Workers thus fall into one of four categories: A) talented
workers, who automatically pass both tests, B) untalented workers who pass both tests,
C) untalented workers who pass the test of the unskilled firm but fail the test of the skilled
firm, and D) untalented workers who fail both tests.32

With such perfectly nested signals, adverse selection and outbidding incentives are
one-sided. Unskilled firms, who hire proportionally from categories A, B, and C, do
not impose adverse selection on other firms. Skilled firms, who hire proportionally from
categories A and B, but screen out C workers, impose a negative externality on unskilled
firms. Thus, unskilled firms have an incentive to outbid skilled firms but not vice versa
(and neither type of firm has an incentive to outbid its own type).

The equilibrium wage distribution is thus degenerate, with all entering firms offering
some wage w∗ and workers endogenously breaking ties in favor of unskilled firms. The
wage w∗ is determined by the entry condition of unskilled firms. This equilibrium has
negative assortative matching and efficient aggregate sorting, in contrast to the positive
assortative matching and inefficient aggregate sorting of our model with independent sig-
nals. Note how the single-wage equilibrium relies on signals being perfectly nested: If

31Other differences between our model and Kurlat’s are less relevant for the analysis. For instance,
Kurlat also allows for patient sellers of good assets, who never trade; in our model this would correspond
to additional talented workers with reservation wage w = 1. And Kurlat models buyers’ demand in terms
of a monetary budget, while our firms have a single, physical job.

32Category A corresponds to the “green assets” in Kurlat’s table I, category C to “red assets,” and
category D to the “black assets.”
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there are two firms who cannot perfectly screen out applicants who fail the other’s test,
both firms have an incentive to outbid each other, and equilibrium wages are dispersed.

Divisible Labor. Returning to independent signals, consider a version of our model
with divisible labor, i.e. workers can rent themselves out by the second across many firms.
As in Kurlat (2016) workers apply to all firms simultaneously, anticipating perfectly how
much time each firm will buy. For simplicity, assume homogeneous firms with skill p.

In equilibrium, 1− (1− q̄)p firms enter and post the same wage w∗ = λ(q̄, p); workers
offer their entire time to each of these firms. At each entering firm, 1− (1− q̄)p applicants
pass the test and each sells an infinitesimal share 1/(1 − (1 − q̄)p) of their time to the
firm. High types pass all tests, and so sell all of their time. In contrast, low types
pass each test with probability 1 − p, and thus share p of their time remains unsold.
Thus, adverse selection is avoided by firms hiring simultaneously and workers perfectly
anticipating rationing outcomes to satisfy the budget constraint on their unit of labor.

This construction corresponds to the equilibrium in Kurlat (2016)’s online appendix
with non-nested signals. The equilibrium is robust to any correlation structure between
firms’ signals. However, it relies on labor being perfectly divisible: If a worker can only
work for finitely many firms, rationing is random, markets cannot clear simultaneously,
and some firms face adversely selected applicants.

Closely related to the issue of divisibility is Kurlat’s assumption of multiple markets
with endogenous screening orders (e.g. top-to-bottom, or bottom-to-top), all of which
clear simultaneously. Simultaneous market clearing requires workers to hit their budget
constraint of selling one time unit across all markets; this requires perfectly divisible labor.
With indivisible labor, markets cannot clear simultaneously: Workers that are not hired
in market A apply in market B, inducing adverse selection. We must therefore specify a
clearing order across markets, which means A and B are not really different markets, and
renders moot the issue of endogenous clearing orders within markets.

Summary. The key differences in Kurlat’s model are that labor is perfectly divisible and
firms’ signals are perfectly nested. Either one of these assumptions allows firms to avoid
adverse selection, and equilibrium features a single wage and efficient aggregate sorting.
But if labor is not perfectly divisible and signals are not perfectly nested, adverse selection
emerges and equilibrium wages fan out. Our model assumes more strongly that labor is
indivisible and signals are conditionally independent. Equilibrium sorting is then positive
assortative and inefficient.
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B Proofs from Section 2

B.1 Example 1: Comparative Statics of Wage Dispersion

Here we show that dispersion rises as screening improves and talent becomes more scarce.
To see this, we use the demanding log-dispersive order (Shaked, 1982), so dispersion
increases in p if the talent ratio λ(Q(x′), p)/λ(Q(x), p) increases in p for all x′ > x (where
applicant quality Q(x) also depends on q̄, p), and similarly for q̄.

Proposition 1. Assume talent is scarce, λ(q̄, p) ≤ 1/2:
(a) The dispersion of wages and productivity increases in screening skill, p.
(b) The dispersion of wages and productivity falls in average talent, q̄.

Part (a) means that as screening skills improve, the top-wage firms raise their pro-
ductivity relative to the mean. Intuitively, these top firms extract more talented workers
from the applicant pool, lowering the productivity and wages of lower-wage firms (even
though their screening skill p increased by the same amount). Part (b) shows that a
reduction in the number of talented workers, q̄, also leads to an increase in the dispersion
of productivity and wages. Intuitively, if the number of talented workers halves, the top
firm’s talent drops by less than half, as they are able to screen out many of the untalented
workers, leaving proportionally less talent for lower firms, thereby raising inequality.

To prove Proposition 1, we first establish how applicant quality and employment de-
pend on p and q̄. Write the applicant quality for a firm with rank x as Q(x, q̄, p) to make
explicit the effect of aggregate talent q̄ and screening skills p. Recall from (1) and (3) that

λ(q, p) :=
q

1− p(1− q) and φ(x, q, p) :=
λ(q, p)− q

x
.

Lemma 2. Applicant quality Q(x, q̄, p) is:
(a) Increasing in wage rank x with derivative Qx(x, q̄, p) = φ(x,Q(x, q̄, p), p).
(b) Increasing in aggregate talent q̄ with derivative

Qq̄(x, q̄, p) = exp

(
−
∫ 1

x

φq(x̂, Q(x̂, q̄, p), p)dx̂

)
.

(c) Decreasing in screening skills p with derivative

Qp(x, q̄, p) = −
∫ 1

x

exp

(
−
∫ x̂

x

φq(x̌, Q(x̌, q̄, p), p)dx̌

)
φp(x̂, Q(x̂, q̄, p), p)dx̂.
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(d) Log-submodular in (x, q̄).
(e) Log-supermodular in (x, p).

Proof. (a) is the sequential screening equation (3). Parts (b) and (c) follow from the
theory of ordinary differential equations, e.g. Hartman (2002, Theorem 3.1), whereby the
solution of the ODEQx(x, q̄, p) = φ(x,Q(x, q̄, p), p) with boundary conditionQ(1, q̄, p) = q̄

satisfies Qxq̄ = φqQq̄ and Qxp = φqQp + φp with boundary conditions Qq̄(1, q̄, p) = 1 and
Qp(1, q̄, p) = 0. Parts (d) and (e) follow because

(logQ(x, q̄, p))x =
λ(Q(x, q̄, p), p)−Q(x, q̄, p)

Q(x, q̄, p)x
=

1

x

(
1

1− p(1−Q(x, q̄, p))
− 1

)
falls in q̄ by (b) and rises in p by (c).

Proof of Proposition 1. We wish to show that λ(Q(x, q̄, p), p) = Q(x,q̄,p)
1−p+pQ(x,q̄,p))

is (a) log-
supermodular in (x, p) and (b) log-submodular in (x, q̄). For part (a) we compute

(log λ(Q(x, q̄, p), p))p =
λq(Q(x, q̄, p), p)Qp(x, q̄, p) + λp(Q(x, q̄, p), p)

λ(Q(x, q̄, p), p)

and, omitting arguments for legibility,

(log λ(Q(x, q̄, p), p))px =
1

λ2

[
λλqqQxQp + λλqpQx − λqQxλqQp + (λλqQpx − λqλpQx)

]
.

To see that this is positive, recall Qx = φ > 0, Qp < 0 from Lemma 2(a,c), and λqq < 0

and λqp > 0 from (5), using (4). Then the first three terms are positive. Using Qx = φ,
the term in brackets then equals λq(λφp − λpφ) = λq(λλp − λp(λ− q))/x > 0.

For part (b) we compute

(log λ(Q(x, q̄, p), p))q̄ = (logQ(x, q̄, p))q̄ −
pQq̄(x, q̄, p)

1− p+ pQ(x, q̄, p))

= (logQ(x, q̄, p))q̄

(
1− p

1− p+ pQ(x, q̄, p)

)
which falls in x since Q(x, q̄, p) rises in x and is log-submodular in x and q̄ by Lemma
2(a,d). Intuitively, the larger proportional decline of applicant quality at lower-ranked
firms is aggravated by the concavity of recruit quality λ(q, p) in applicant quality q. �
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B.2 A Continuum Type Model

Our baseline model has two types, θ ∈ {0, 1}. We now propose a version with continuous
types θ ≥ 0. When they are exponentially distributed, we show that equilibrium matching
is positive assortative.

Workers’ types θ ≥ 0 are distributed with pdf g(θ). Firms’ screening skills p ∈ [0, 1]

are distributed with cdf F (p). We assume firms have linear hiring propensity, so the
chance a type-θ worker is hired by firm p is proportional to

µ(θ, p) = 1− (1− θ)p ≥ 0. (23)

Firm p = 0 hires indiscriminately; at firm p = 1, hiring chances scale with θ. For
θ ∈ {0, 1}, equation (23) reduces to our baseline model.

We first show how the distribution of worker types evolves as firms selectively recruit
from the applicant pool. At wage rank x, write the pdf, expectation, and variance of
types as g(θ;x), θ(x) :=

∫
θ̂g(θ̂;x)dθ̂, and V (x) := θ2(x)− θ(x)2. Analogous to equation

(1), the distribution of workers hired by firm p is then

λ(θ;x, p) :=
µ(θ, p)g(θ;x)

µ(x, p)

where µ(x, p) :=
∫
µ(θ̂, p)g(θ̂, x)dθ̂ = 1− (1− θ(x))p. And the expected productivity is

λ(x, p) :=
µθ(x, p)

µ(x, p)
:=

∫
µ(θ̂, p)θ̂g(θ̂, x)dθ̂

µ(x, p)
=

∫
θ̂λ(θ̂;x, p)dθ̂. (24)

The following result describes how the distribution of workers evolves. As in the baseline
model, let P (x) be the screening skill of firm x.

Lemma 3. Assume linear hiring propensity (23). Relative applicant density decays expo-
nentially:

g(θ′;x)

g(θ;x)
=
g(θ′; 1)

g(θ; 1)
exp

(
−(θ′ − θ)

∫ 1

x

P (x̂)

µ(x̂, P (x̂))x̂
dx̂

)
, (25)

and the marginal benefit of screening skills is given by

λp(x, p) =
V (x)

(1− (1− θ(x))p)2
. (26)

Proof. To see (25), let ξ(θ;x) := xg(θ;x) be the non-normalized mass of type-θ applicants

36



at wage rank x; this evolves according to

ξx(θ;x) = λ(θ;x, P (x)) =
µ(θ, P (x))ξ(θ;x)

µ(x, P (x))x
.

Then

d

dx
log

g(θ′;x)

g(θ;x)
=

d

dx
log

ξ(θ′;x)

ξ(θ;x)
=
ξx(θ

′;x)

ξ(θ′;x)
− ξx(θ;x)

ξ(θ;x)
=
µ(θ′, P (x))− µ(θ, P (x))

µ(x, P (x))x
=

(θ′ − θ)P (x)

µ(x, P (x))x
.

Integrating yields (25). To see (26), differentiate (24) and multiply through with µ̄2,
noting that equation (23) implies µp = θ − 1,

µ̄2λp = µpθµ− µpµθ = (θ2 − θ)(1− (1− θ)p) + (1− θ)(θ − (θ − θ2)p) = θ2 − θ2

yielding (26). Note that for binary types θ ∈ {0, 1}, we have θ̄ = q and V = q(1− q), and
so we recover the left expression in (5).

To prove that firms with better screening skills post higher wages, we wish to show the
x-derivative of (26) is positive. This is tricky in general since the distribution of worker
types evolves with the wage rank x. Fortunately, if worker types are initially exponentially
distributed with g(θ) = ν exp(−νθ), they remain exponentially distributed for all x.

Proposition 2. Assume linear hiring propensity (23) and exponentially distributed types.
Equilibrium exists and is unique. The equilibrium wage distribution is unique. Matching
is positive assortative.

Proof. Using (25), the wage-rank-x applicant distribution is exponential g(θ;x) = ν(x) exp(−ν(x)θ)

with coefficient

ν(x) = ν +

∫ 1

x

P (x̂)

µ(x̂, P (x̂))x̂
dx̂.

For the exponential, V (x) = θ(x)2, so (26) simplifies to λp = ((1 − p)/θ̄(x) + p)−2 with
positive cross-partial λxp > 0, and matching is PAM.

C Proofs from Section 3

In this section we prove our main inefficiency result, Theorem 2, and extend it to two model
variants with production complementarities and screening costs, introduced in Section
3.1. To accommodate these variants, we first formulate a more general model where the
surplus when a firm with skills p hires from an applicant pool with quality q is given
by a general function ω(q, p). The baseline model corresponds to ω(q, p) = λ(q, p) − w,
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production complementarities correspond to ω(q, p) = p · λ(q, p)−w, and screening costs
to ω(q, p) = λ(q, p)− κ/(1− p(1− q))− w.

We develop the apparatus to analyze aggregate surplus for general surplus functions
ω(q, p) in Appendix C.1, specialize to the baseline model and prove Theorem 2 in Ap-
pendix C.2, prove some auxiliary claims from Section 3.1 in Appendix C.3, and then
extend the inefficiency result to models with production complementarities and screening
costs in Appendices C.4 and C.5.

C.1 Aggregate Surplus for General Surplus Functions ω(q, p)

Fix the number of entering firms, and thereby the cutoff x. Aggregate surplus under
matching P (·) is given by

S(P (·)) =

∫ 1

x

ω(Q(x), P (x))d.x (27)

Consider adding a new firm p at rank x. This has three effects on surplus. First,
firm p hires from a applicant pool with quality Q(x) and so generates surplus ω(Q(x), p).
Second, firm p pushes out the marginal firm, P (x). Third, it lowers the ranking of
intermediate firms, x̌ < x, thereby lowering their applicant quality, Q(x̌). To quantify
the latter externality, note that firm p’s hiring reduces applicant quality just below x by
dQ(x) = φ(Q(x), p, x)dx. For lower ranking firms x̌, this effect is mitigated since firm
p pushes intermediate firms x̂ ∈ [x̌, x] to lower wage ranks and thereby reduces their
externality by −φx(Q(x̂), p(x̂), x̂). By standard results on ODEs in the proof of Lemma
2, firm p’s total effect on applicant quality Q(x̌) is given by

χ(x̌; p, x, P (·)) = −φ(Q(x), p, x) exp

(
−
∫ x

x̌

φq

)
−
∫ x

x̌

[
exp

(
−
∫ x̂

x̌

φq

)
(−φx(Q(x̂), P (x̂), x̂))

]
dx̂

(28)

where we dropped the arguments in the integrand φq = φq(Q(x̃), P (x̃), x̃) to enhance
legibility. Putting these three effects together, firm p’s (infinitesimal) net-contribution to
surplus when assigned to wage rank x in matching P (·) is thus given by

s(p, x, P (·)) = ω(Q(x), p) +

∫ x

x

χ(x̌; p, x, P (·))ωq(Q(x̌), P (x̌))dx̌− ω(Q(x), P (x)). (29)

We wish to evaluate the effect of changing a matching function P (·) into a second
matching function P ′(·). To do this, suppose we move one firm p from rank x(p) to x̄(p)
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given matching P (·). The (infinitesimal) change in surplus equals∫ x̄(p)

x(p)

sx(p, x, P (·))dx.

More generally, let us sequentially move all firms p ∈ [p, p̄] in order of increasing p. The
matching function changes over the course of this transformation, and we write P p(·)
for the matching function after firms p′ < p have been shifted; thus P p(·) = P (·) and
P p̄(·) = P ′(·).33 The aggregate change in surplus is given by

S(P ′(·))− S(P (·)) =

∫ p̄

p

[∫ x̄(p)

x(p)

sx(p, x, P
p(·))dx

]
dF (p). (30)

We first establish a general formula for the integrand in (30).

Lemma 4. The marginal surplus of moving firm p past wage rank x given matching P (·)
with P (x) = p̂ equals

sx(p, x, P (·)) =

[
ωq(Q(x), p)φ(Q(x), p̂, x)− ωq(Q(x), p̂)φ(Q(x), p, x)

]
(31)

−
[
φq(Q(x), p, x)φ(Q(x), p̂, x) + φx(Q(x), p, x)− φq(Q(x), p̂, x)φ(Q(x), p, x)− φx(Q(x), p̂, x)

]
γ

where

γ = γ(x, P (·)) =

∫ x

x

exp

(
−
∫ x

x̌

φq(Q(x̂), P (x̂), x̂)dx̂

)
ωq(Q(x̌), P (x̌))dx̌. (32)

To understand these equations, consider swapping p and p̂, and let us drop the argu-
ments Q(x) and x to enhance legibility. The first term in the first line of (31) ωq(p)φ(p̂)

is the increased surplus contribution of firm p when selecting before p̂ from a pool with
dQ(x) = φ(p̂)dx higher quality. Conversely, the second term ωq(p̂)φ(p) is p̂’s decreased
surplus when selecting after p. The term in the second line of (31) is the effect of switch-
ing p and p̂’s screening order on residual pool quality Q(x − dx). By screening appli-
cants q + φ(p̂)dx from a pool of size x + dx (rather than applicants q from pool size
x), firm p’s selection increases by [φq(p)φ(p̂) + φx(p)]dx; conversely firm p̂’s selection de-

33There are multiple ways to transform P (·) into P ′(·). In a discrete analogue, if p1 < p2 < p3, we can
transform {p1, p3, p2} into {p3, p1, p2} by either moving p1 to second position, or by moving p1 to the top
and then moving p2 above it. Formally, a transformation is fully specified by the original matching P (·)
and the intermediate target positions x̄(·); the intermediate matchings P p(·) as well as x(·) are generated
endogenously. In the two applications used in the proofs of Lemma 5 and Theorem 2 we move each firm
immediately into its final position, P ′(x̄(p)) = p, but this need not be the case in general.
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creases by [φq(p̂)φ(p) + φx(p̂)] dx. This change in applicant quality dQ(x) affects revenue
ω(Q(x̌), P (x̌)) of all lower-ranking firms x̌ ∈ [x, x], where the exponential term in (32)
equals dQ(x̌)/dQ(x) and captures differential selection by intermediate firms x̂ ∈ [x̌, x].

Clearly, switching two identical firms p = p̂ = P (x) makes no difference; formally

sx(P (x), x, P (·)) = 0. (33)

Proof. Differentiating (29)

sx(p, x, P (·)) =ωq(Q(x), p)Qx(x) + χ(x; p, x, P (·))ωq(Q(x), P (x))

+

∫ x

x

χx(x̌; p, x, P (·))ωq(Q(x), P (x̌))dx̌.

SinceQx(x) = φ(Q(x), P (x), x) and χ(x; p, x, P (·)) = −φ(Q(x), p, x), and recalling P (x) =

p̂, the first two terms correspond to the first line of (31).
As for the last term, χx(x̌; p, x) equals

−
[
φq(Q(x), p, x)Qx(x)+φx(Q(x), p, x)−φ(Q(x), p, x)φq(Q(x), P (x), x)−φx(Q(x), P (x), x)

]
exp

(
−
∫ x

x̌

φq

)
where the term is square-brackets equals the square-bracket term in the second line of
(31), while integration over x̌ ∈ [x, x] yields

∫ x
x

exp
(
−
∫ x
x̌
φq
)
ωq(Q(x̌), P (x̌))dx̌ = γ.

We cannot determine the sign of (31) in general. But at the lowest wage rank x = x,

the analysis simplifies because the integral domain in (32) collapses and so γ = 0, yielding
a necessary condition for optimality of PAM that is easy to check. We will check that
this condition is violated for the model variants in Propositions 3 and 4, below.

Lemma 5. Assume that 1− x firms p ∈ [p, p̄] enter. If

ωqp(Q(x), p)

ωq(Q(x), p)
<
φp(Q(x), p, x)

φ(Q(x), p, x)
(34)

then PAM does not maximize surplus.

Proof. Let us transform P (·) = P PAM(·) into another matching P ′(·) with NAM for
x ∈ [x, x + ε] and PAM for x ∈ (x + ε, 1]. Intuitively, if there were 10 firms with
skill p1 < . . . < p10 then this would mean swapping p1 and p2, so firms are ranked
{p2, p1, p3, . . . p10}, from lowest to highest. Formally P ′(x) = F−1(x + ε − (x − x)) for
x ∈ [x, x+ ε], and P ′(x) = F−1(x) for x > x+ ε, where ε > 0 is small. We transform P (·)
into P ′(·) by shifting firms p ∈ [p, F−1(x + ε)] (in rising order of p) to their P ′(·)-wage
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rank x̄(p) = x+ ε− [F (p)− F (p)]. Since lower firms p′ < p have already been shifted to
x̄(p′) > x̄(p) at firm p’s “turn,” firm p starts at rank x(p) = F (p) < x̄(p) and is shifted
exclusively past firms with higher screening skills P p(x) = F−1[F (p)+x−x] ≥ p, recalling
the definition of the matching function P p(·) at p’s “turn.”

We now argue that given (34) the net value of this transformation (30) is positive.
Using (33), the integrand in (30) equals

sx(p, x, P
p(·)) = sx(P

p(x), x, P p(·))−
∫ P p(x)

p

sxp(p̌, x, P
p(·))dp̌ = −

∫ P p(x)

p

sxp(p̌, x, P
p(·))dp̌.

(35)
To see that this is positive, differentiate (31) wrt p, and evaluate for firm p at wage rank
x. The derivative of the second line is zero because γ = 0 for x = x. Thus,

sxp(p, x, P
PAM(·)) = ωqp(Q(x), p)φ(Q(x), p, x)− ωq(Q(x), p)φp(Q(x), p, x)

which is negative by (34). Next, (p̌, x, P p(·)) converges to (p, x, P PAM(·)) for all p̌, p ∈
[p, F−1(x + ε)] and x ∈ [x, x + ε] as ε → 0, using for instance the topology of uniform
convergence on matching functions P (·). Thus, the integrand of (35) is negative, and so
the integral (30) is positive, so the transformation from P (·) to P ′(·) raises welfare.

C.2 Proof of Theorem 2

We now return to the baseline model where surplus is given by ω(q, p) = λ(q, p) − w.
The comparison of the elasticities (10) implies (34), and so Lemma 5 already implies that
PAM is inefficient. In particular, the proof of Lemma 5 shows that locally near the cutoff
x shifting low-skill firms ahead of high-skill firms increases surplus.

Theorem 2 claims more strongly that surplus is minimized by PAM and maximized by
NAM. We show this by arguing that for the baseline surplus function ω(q, p) = λ(q, p)−w
our local argument at the bottom of the wage distribution in fact holds globally.

Indeed, (31) simplifies considerably:

Lemma 6. When ω(q, p) = λ(q, p)−w, the marginal surplus of moving firm p past wage
rank x given matching P (·) with P (x) = p̂ equals

sx(p, x, P (·)) = [λq(p)φ(p̂)− λq(p̂)φ(p)] (1− γ/x) (36)

where 1− γ/x = δ = exp
(
−
∫ x
x

λq(Q(x̌),P (x̌))

x̌
dx̌
)
∈ (0, 1).

The term in square-brackets corresponds to the incremental talent hired by firms p
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and p̂ when the former is shifted ahead of the latter. The effect on aggregate surplus is
scaled down by the factor δ from (9) since incremental talent hired by the marginal firms
p and p̂ reduces the talent hired by lower-ranking firms.

Proof. We will show that the marginal surplus (31) equals

sx(p, x, P (·)) =
[
λq(p)φ(p̂)− λq(p̂)φ(p)

]
−
[
λq(p)φ(p̂)− λq(p̂)φ(p)

]γ
x

(37)

and thus collapses to (36). Using the definition of ω(q, p), the first line in (31) equals the
first square-bracket term in (37). Turning to the second line in (31) and recalling φ = λ−q

x
,

elementary algebra implies

φq(p)φ(p̂) + φx(p)− φq(p̂)φ(p)− φx(p̂) =
1

x
[λq(p)φ(p̂)− λq(p̂)φ(p)] . (38)

Multiplying by γ, the second line in (31) equals the second square-bracket term in (37).
To evaluate γ observe that

exp

(
−
∫ x

x̌

φq

)
= exp

(
−
∫ x

x̌

λq(Q(x̂), P (x̂))− 1

x̂
dx̂

)
=
x

x̌
exp

(
−
∫ x

x̌

λq(Q(x̂), P (x̂))

x̂
dx̂

)
.

Equation (32) thus simplifies to

γ = x

∫ x

x

exp

(
−
∫ x

x̌

λq(Q(x̂), P (x̂))

x̂
dx̂

)
λq(Q(x̌), P (x̌))

x̌
dx̌

= x

∫ x

x

d

dx̌
exp

(
−
∫ x

x̌

λq(Q(x̂), P (x̂))

x̂
dx̂

)
dx̌ = x

[
1− exp

(
−
∫ x

x

λq(Q(x̌), P (x̌))

x̌
dx̌

)]
,

(39)

as required.

In the proof sketch in the body of the paper we argued that (36) is positive when
p̂ = p + dp by noting that λq(p)φ(p + dp) − λq(p + dp)φ(p) = (λqφp − λqpφ)dp > 0, as
shown in (10). To prove Theorem 2, we now generalize this local argument to show that
transforming an arbitrary matching P (·) into P ′(·) = PNAM(·) raises surplus. Intuitively,
if there were 10 firms with skill p1 < . . . < p10, we would shift firm p1 to the highest
position, then shift firm p2 to the second-highest position, and so on. Formally, we shift
type-p firms in rising order of p to their NAM-rank x̄(p) = 1 − [F (p) − F (p)]. At firm
p’s turn, i.e. in matching P p(·), lower-skill firms p′ < p have already been shifted to
their NAM rank in x̄(p′) > x̄(p), and so firm p starts at x(p) ≤ x̄(p) and is shifted past
higher-skill firms P p(x) ≥ p for all x ∈ [x(p), x̄(p)].
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Recalling sx(P p(x), x, P p(·)) = 0 from (33), the marginal surplus along this transfor-
mation is given by

sx(p, x, P
p(·)) = −

∫ P p(x)

p

sxp(p̌, x, P
p(·))dp̌. (40)

To sign the integrand of this expression, we differentiate (35) with respect to p

sxp(p, x, P
p(·)) = [λqp(p)φ(p̂)− φp(p)λq(p̂)] (1− γ/x) < 0.

Substituting back into (40) and recalling that p < P p(x), marginal surplus (40) is positive.
Finally, integrating (40) over p ∈ [p, p̄] and x ∈ [x(p), x̄(p)], we conclude that the aggregate
change of surplus (30) from this transformation is positive, and NAMmaximizes aggregate
surplus. The analogue argument implies that PAM minimizes aggregate surplus.

Finally we establish that the planner indeed wants the firms with the highest screening
skills to enter the market. To see this, differentiate firm p’s contribution to surplus (29)
with respect to p

sp(p, x, P (·)) = λp(Q(x), p) +

∫ x

x

χp(x̌; p, x, P (·))λq(Q(x̌), P (x̌))dx̌

= λp(Q(x), p)− φp(Q(x), p, x)

∫ x

x

exp

(
−
∫ x

x̌

φq

)
λq(Q(x̌), P (x̌))dx̌

= λp(Q(x), p)−
(
λp(Q(x), p)

x

)
x

[
1− exp

(
−
∫ x

x

λq(Q(x̌), P (x̌))

x̌
dx̌

)]
= λp(Q(x), p) exp

(
−
∫ x

x

λq(Q(x̌), P (x̌))

x̌
dx̌

)
> 0, (41)

where the second equality uses the definition of the externality χ in (28), and the third
equality uses the definition of γ (32) and its evaluation in (39).

C.3 Wage Caps

Restricting firms to a single wage w̌ implements a random screening order, which is con-
strained efficient by the proof of Theorem 2. The wage level w̌ does not affect the screening
order, but rather pins down the marginal entering firm p̌ = p̌(w̌) via the indifference con-
dition

∫ 1

F (p̌)
λ(Q(x), p̌)dx = w̌. The optimal wage level w̌ is the one that maximizes surplus∫ p̄

p̌
[
∫ 1

F (p̌)
λ(Q(x), p̌)dx − w]dF (p). Since the marginal firm p̌ exerts a negative externality

on firms p > p̌, we know that firms pay workers more than their outside option, w̌ > w.
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Here we argue that firms have no incentives to underbid, offering w < w̌; hence,
making w̌ a wage cap that firms are free to underbid also implements the second-best
outcome. To see this, we need to check that the marginal firm p̌ (which is most tempted
to underbid) does not want to cut its wage to w (which is the most profitable deviation).
Indeed, note that at w = w firm p̌ exerts no externality on other firms or workers, so
captures its full contribution to social surplus. By definition of p̌, this social surplus is
zero when the firm offers w̌ and screens at a random rank, as instructed by the planner.
When the firm disobeys the planner and posts w = w, the contribution to social surplus
is thus negative, meaning the firm’s profits are also negative.

C.4 Production Complementarities

Theorem 2 is in stark contrast to the efficiency of equilibrium in the assignment model,
where equilibrium also features PAM when the production function is supermodular. We
now show that equilibrium continues to be inefficient even with exogenous complemen-
tarities.

Proposition 3. Suppose firm p’s surplus equals ω(q, p) = h(p)λ(q, p)−w with h, hp > 0.34

(a) Assume scarce talent (4). Equilibrium exists, and is unique. All firms above some
threshold p ≥ p enter and sort according to PAM.
(b) If h(p) = p, PAM is inefficient. For any h(p) with bounded hp/h, there exists q̄, p̄, w
such that PAM is inefficient.

Proof. (a) Surplus ω is increasing in p and supermodular, ωqp = λqph + λqhp > 0, so in
equilibrium firms p ≥ p enter and matching is PAM. Equilibrium existence and uniqueness
then follow as in Theorem 1.

(b) To check the sufficient condition for inefficiency (34), note first that

λqp
λq

= − 1

1− p + 2
1− q

1− p(1− q) =
2(1− p)(1− q)− (1− p(1− q))

(1− p)(1− p(1− q))

and
φp
φ

= λp ·
1

λ− q =
q(1− q)

(1− p(1− q))2
· 1− p(1− q)
qp(1− q) =

1

1− p(1− q) ·
1

p
.

34Given binary types θ ∈ {L,H}, our functional form is essentially without loss. Indeed, consider
any increasing, supermodular surplus function ν(θ, p). Expected productivity of a worker with expected
talent Pr(θ = H) = λ(q, p) is then λν(H, p) + (1− λ)ν(L, p) = λ[ν(H, p)− ν(L, p)] + ν(L, p); the additive
term ν(L, p) does not depend on θ, and so matters for neither equilibrium sorting nor efficient sorting.
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Thus, equilibrium is inefficient (and could be improved by re-ordering low-wage firms) if

φp
φ
− ωqp

ωq
=

(
φp
φ
− λqp

λq

)
− h′

h
=

q

(1− p)(1− p(1− q)) +
1

p
− h′

h
(42)

is positive. This depends on the degree of supermodularity. For the standard specification
with h(p) = p, it is positive. For general h, we choose p̄ such that 1

2(1−p̄) = sup h′(p)
h(p)

, and
q̄ such that λ(q̄, p̄) = 1/2, so that the positive first term in (42) outweighs the negative
third term for p̄, q̄. For w close enough to 1/2 we have p ≈ p̄ and q ≈ q̄, so the positive
second term ensures that (42) is positive also for p, q, as required by (34).

Thus, the compositional externality outweighs two sources of supermodularity: one in
the recruiting function λ(q, p), and another one in the production function ω = λh−w.

C.5 Screening Costs

Here we show that Theorems 1 and 2 extend to a model with screening costs, where net
surplus is given by ω(q, p) = λ(q, p)− κ/(1− p(1− q))−w. Observe that screening costs
κ/(1 − p(1 − q)) fall in applicant quality q but increase in screening skills p since more
skillful firms interview more candidates.35

Proposition 4. Suppose there is a cost κ ≥ 0 to screen each applicant.
(a) Assume scarce talent (4). Equilibrium exists, and is unique. All firms above some
threshold p ≥ p enter and sort according to PAM.
(b) PAM is inefficient.

Proof. (a) As in Theorem 1, skilled firms post higher wages since

ωqp = λqp −
(

κ

1− p(1− q)

)
pq

=
1− p(1− q)− 2q

(1− p(1− q))3
+

1 + p(1− q)
(1− p(1− q))3

κ > 0.

As before, the first term is positive since λ = q/(1 − p(1 − q)) < 1/2. Additionally, the
second term is always positive. Thus ω(q, p) is supermodular on q ∈ [0, q̄], as required.
As for entry, note that ωp = ω(1 − q)/(1 − p(1 − q)) ≥ 0. Equilibrium existence and
uniqueness then follow as in Theorem 1.

35By adopting this surplus function, we implicitly assume that firms prefer to screen candidates rather
than hiring a random, unscreened candidate. This mild condition is satisfied if (i) the minimum wage
w is sufficiently high such that ω(q, p) > q for any firm p willing to hire a worker, λ(q, p) ≥ w, or (ii)
screening additionally screens out unmodeled “terrible” types of workers.
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(b) We apply Lemma 5 to show that PAM is inefficient. Indeed

ωqp
ωq

= 2
1− q

1− p(1− q) −
1− κ

1− p(1− κ)
<

1− q
1− p(1− q) =

λp
λ
<
λp
λ

λ

λ− q =
φp
φ

where the first inequality follows because κ < q, which in turn follows from ω(q, p) =

(q − κ)/(1− p(1− q))− w ≥ 0.

Proposition 4 shows that the main insights of our paper carry over to a model with
screening costs. This extension also creates a role for different information structures
because our “perfect bad news” screening is no longer without loss. We can show that
Proposition 4 extends to “symmetric signals” where high (resp. low) types pass the screen-
ing tests with probability p (resp. 1−p), and firms differ in their screening skill p ∈ (0.5, 1).
However, if firms receive “perfect good news” information whereby untalented applicants
fail all tests, while firms differ in their probability p of identifying talented workers, then
equilibrium matching is NAM and equilibrium is efficient. Intuitively, all firms are equally
effective at screening and hire only talented workers, λ = 1, but skilled firms are more effi-
cient and need not search as long to find a talented worker. We dislike this signal structure
because of its counter-factual predictions that all firms hire workers of the same quality,
and high-quality firms have lower search expenditure. Indeed, high-wage firms have more
applications (Belot et al. (2022), Banfi and Villena-Roldán (2019)) and interview more
applicants (Barron et al. (1985)).

D Proofs from Section 4

D.1 Derivation of Equation (17) and Proof that V (r) is Convex

The envelope theorem applied to (14) implies

Vr(r(t), t) =

∫ ∞
t

e−β(s−t)∂r(s)

∂r(t)
ds.

To compute the integrand, we write the solution of the talent evolution (13) as a function
of its initial condition rs(s, r) = ζ(r(s, r), s) where ζ(r, s) = α(λ(Q(s), ψ(r)) − r) and
r(t, r) = r. Hartman (2002, Theorem 3.1) implies rsr = ζrrr with boundary condition
rs(t, r) = 1. Hence, (17) follows from

∂r(s)

∂r(t)
= rr(s, r(t)) = exp

(∫ t

s

ζr(r(u), u)du

)
= exp

(
−α
∫ t

s

[1− λp(Q(u), ψ(r(u)))ψr(r(u))]du

)
.
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To see that V (r, t) is convex in r, we differentiate again to obtain

Vrr(r(t), t) =

∫ ∞
t

e−β(s−t)∂
2r(s)

∂r(t)2
ds

=

∫ ∞
t

e−β(s−t)∂r(s)

∂r(t)
α

∫ t

s

[
λpp(Q(u), ψ(r(u)))ψr(r(u))2 + λp(Q(u), ψ(r(u)))ψrr(r(u))

] ∂r(u)

∂r(t)
duds

which is positive since λp = q(1−q)
(1−p(1−q))2 , λpp = 2q(1−q)2

(1−p(1−q))3 , ψr, ψrr are all positive. For an
intuition consider the random recruiter example where ψ(r) = pL + r(pH − pL). Inter-
mediate levels of recruiting skills r have the draw-back that the firm’s wage must strike
a compromise between the firm’s low-skill and high-skill recruiters, while a firm with
homogeneous recruiters, r = 0 or 1, can choose the optimal wage for all.

D.2 Proof of Theorem 3

Here we complete the proof of Theorem 3 by arguing that if there is an atom of initially
identical firms, these firms diverge immediately. Assume to the contrary, that at time
t > 0 an atom of firms has the same worker quality r(t) and write [x0, x1] for the talent-
ranks of these firms. Since optimal wages rise in talent and hence talent differences never
vanish, firms in the atom must have identical talent r(s) for all s < t. At any time s < t

the wage distribution must be smooth by the arguments in Section 2.2. If firms in the
atom post different wages, they drift apart. Hence the firms must employ non-degenerate
distributional strategies,36 posting both high and low wages to attract good and bad
applicants; they must thus be indifferent across a range of applicants [q0(s), q1(s)] for all
s < t. Thus, the first order condition (16) must hold with equality on [q0(s), q1(s)] for all
s < t and the atom quality r(s).

Such distributional strategies cannot be optimal because wages are dynamic comple-
ments: consider a firm that deviates by always attracting the best applicants in the atom
q1(s), rather than mixing over good and bad applicants. At time s = 0, the choice q1(0)

is optimal. Moreover, over time the firm’s quality rises above r(s) since it attracts bet-
ter applicants. Since the marginal benefit of attracting better applicants, the RHS of
(16), strictly increases in r, this deviation strictly improves on the posited distributional
strategy. This proves that initially identical firms diverge immediately.

36When using a distributional strategy, a firm posts an entire distribution of wages ν = ν(w, t) of wages
at any time t; we then interpret ψ(R(x, t)) as the weighted-average skill of firms posting the x-ranked
wage, and solve for the firm’s evolution of talent by taking expectations over the RHS of (13).
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D.3 Proof of Theorem 4

Here we show that firm x’s talent R(x, t) and applicant quality Q(x, t) converge to their
steady state levels R∗(x) and Q∗(x). For constant applicants Q(x, t) ≡ q, talent drifts
towards ρ(q). The complication is that firm x’s applicant quality Q(x, t) also changes over
time, with Qx(x, t) given by (12) and rt(x, t) by (13). As discussed in Section 4.4, Figure
2 suggests a “proof by induction.” The formal proof is more complicated because x is
continuous; it proceeds by showing that the steady state satisfies a contraction property,
and then applies the contraction mapping theorem over a small interval, akin to the proof
of the Picard-Lindelöf theorem.

First, we establish a contraction property. Define the limits Q(x) := lim inftQ(x, t),
Q̄(x) := lim suptQ(x, t), r(x) := lim inftR(x, t), and R̄(x) := lim suptR(x, t) and inter-
pret (12) as an operator Q, mapping firm quality functions R(·, t) into applicant quality
functions Q(·, t) = Q[R(·, t)](·). We claim that:

Q[ρ(Q̄(·))](x) ≤ Q(x) ≤ Q̄(x) ≤ Q[ρ(Q(·))](x). (43)

To understand (43), first note that Q is antitone: if R(x) ≥ R̂(x) for all x then Q(x) =

Q(R(·))(x) ≤ Q(R̂(·))(x) = Q̂(x), since Q(1) = Q̂(1) = q̄ and φ(q, ψ(r), x) rises in
r. Intuitively, better recruiters introduce more adverse selection. Inequalities (43) then
state that if applicant quality was equal to one of its limits, Q and Q̄, and talent r was in
steady state, the induced difference in applicant pools is larger than the original difference.

We prove (43) in two steps. First, since R(x, t) drifts towards ρ(Q(x, t)), which is
asymptotically bounded by ρ(Q(x)) and ρ(Q̄(x)), we have

ρ(Q(x)) ≤ R(x) ≤ R̄(x) ≤ ρ(Q̄(x)) (44)

for all x. Second,

Q(x) = lim
t→∞

inf
t′>t

Q(x, t′) = lim
t→∞

inf
t′>t
{Q[R(·, t′)](x)} ≥ lim

t→∞
Q[sup

t′>t
{R(·, t′)}](x) = Q[R̄(·)](x).

The first equality is the definition of the lim inf, and the second the definition of the
operator Q. The inequality uses the antitonicity of Q: since R(x̂, t′) ≤ supt′>t{R(x̂, t′)}
for all t′ > t and x̂, we know that Q[R(·, t′)](x) (weakly) exceeds Q[supt′>t{R(·, t′)}](x)

for all t′ > t and x, and hence so does inft′>tQ[R(·, t′)](x). The final equality uses the
dominated convergence theorem to exchange the limit t → ∞ and the operator Q, as
well as the definition of the limsup, R̄(x) = limt→∞ supt′>tR(x, t′). Together with the
analogue argument that Q̄(x) ≤ Q[R(·)](x), and applying the antitone operator Q to (44)
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we get

Q[ρ(Q̄(·))](x) ≤ Q[R̄(·)](x) ≤ Q(x) ≤ Q̄(x) ≤ Q[R(·)](x) ≤ Q[ρ(Q(·))](x)

establishing (43).
To complete the proof of convergence, suppose “inductively” that applicant and firm

quality converge above some x̂ ∈ (0, 1], i.e. Q(x) = Q̄(x), and hence R(x) = R̄(x), for
all x ∈ (x̂, 1]. Fix ε, and let δ(ε) := max x∈[x̂−ε,x̂]

∣∣Q̄(x)−Q(x)
∣∣ be the maximum distance

between the liminf and limsup on [x̂ − ε, x̂]. Since ρ(q) is locally Lipschitz in q with
constant K,37 we have

max
x∈[x̂−ε,x̂]

∣∣ρ(Q(·))(x)− ρ(Q̄(·))(x)
∣∣ ≤ Kδ(ε).

Next, since Q[R(·)](x) solves (12), the RHS of which is locally Lipschitz in q and r with
constant K ′, and choosing ε < 1/K ′(1 +K) we get

max
x∈[x̂−ε,x̂]

∣∣Q[ρ(Q(·))](x)−Q[ρ(Q̄(·))](x)
∣∣ ≤ K ′ε(1 +K)δ(ε) < max x∈[x̂−ε,x̂]

∣∣Q̄(x)−Q(x)
∣∣ .

contradicting (43). Hence we must have Q(x) = Q̄(x) and hence R(x) = R̄(x), for all
x ∈ [x̂− ε, 1], and thus for all x ∈ [0, 1].

37Indeed, recall that ρ(q) = r ∈ [0, 1) solves λ(q, ψ(r))− r = 0. Thus, by convexity of the LHS we have
λp(q, ψ(ρ(q)))ψr(ρ(q)) − 1 < (λ(q, ψ(1)) − 1)/(1 − ρ(q)) < 0 and so Rq(q) = − λq(q,ψ(ρ(q)))

λp(q,ψ(ρ(q)))ψr(ρ(q))−1 <
λq(q,ψ(ρ(q)))(1−ρ(q))

1−λ(q,ψ(1)) =: K.
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