Lecture Notes - Reputation Applications

Simon Board and Moritz Meyer-ter-Vehn

November 7, 2011

1 Career Concerns

- Holmstrom (1999 really early '80s)
- Background
 - Chicago: Why do we need contract theory? Reputational/Career Concerns will discipline manager
 - Holmstrom: Will it?
- How to model reputation?
 - Pure moral hazard: Equilibrium of a repeated game
 - Pure adverse selection: Learn about type
 - Moral hazard & Adverse Selection
 - * Action affects learning about type
 - · Crazy/Inept types
 - $\cdot\,$ Signal jamming
 - * Actions control inert type

1.1 Model

- 1 long-run manager & passive market
- Time $t = 1, 2, 3, \cdots$, discount rate β
- Realized output $y_t = \theta + a_t + \varepsilon_t$
 - $-\theta \sim N(m_{\theta}, 1/h_0)$ manager's type (unknown to market)
 - $-a_t$ manager's effort (unobserved)

 $-\varepsilon_t \sim N(0, 1/h_{\varepsilon})$ error (unobserved)

- Competitive wage $w_t = \mathbb{E}\left[\theta|y^{t-1}\right] + a_t^*\left(y^{t-1}\right)$, where $a_t^*\left(y^{t-1}\right)$ expected effort in equilibrium
- Learning via $z_t = y_t a_t^* (y^{t-1}) = \theta + \varepsilon_t + (a_t (y^{t-1}) a_t^* (y^{t-1}))$
 - Hamster analogy: Manager tries to pretend θ is high by choosing a_t high, but market takes account of this in equilibrium and subtracts $a_t^*(y^{t-1})$ from evaluation
- Bayesian updating -> $\theta | y^t = \theta | z^t$ normal with

$$- \operatorname{mean} \frac{h_0 m_{\theta} + h_{\varepsilon} \sum_{s=1}^{t} z_s}{h_0 + t h_{\varepsilon}}$$

- precision $h_0 + th_{\varepsilon} (\to \infty, \text{ so } \theta \text{ is perfectly learnt asymptotically})$

• Manager maximizes

$$\max_{a} \sum \beta^{t} \mathbb{E} \left[w_{t} - g \left(a_{t} \right) \right]$$

1.2 Two period model

1.2.1 Period 2

• $a_2 = 0$

•
$$w_2 = \mathbb{E}[\theta|y_1] = \frac{h_0 m_\theta + h_\varepsilon z_1}{h_0 + h_\varepsilon}$$

1.2.2 Period 1

• Choose a_1 to maximize

$$w_1 - g(a_1) + \delta w_2 = w_1 - g(a_1) + \frac{\delta}{h_0 + h_\varepsilon} \left(h_0 m_\theta + h_\varepsilon z_1 \right)$$

• FOC

$$g'(a_1) = \frac{\delta h_{\varepsilon}}{h_0 + h_{\varepsilon}}$$

1.3 Infinite period model

• FOC for one-step deviation after history y^{t-1}

$$MC(a_t) = g'(a_t)$$

$$MB(a_t) = \sum_{s=1}^{\infty} \beta^s \frac{\partial w_{t+s}}{\partial a_t} = \sum_{s=1}^{\infty} \beta^s \frac{h_{\varepsilon}}{h_0 + (t+s)h_{\varepsilon}}$$

because

$$w_{t+s} = \frac{h_0 m_\theta + h_\varepsilon \sum_{r=1}^{t+s} z_s}{h_0 + (t+s)h_\varepsilon} + a_{t+s}^*$$
$$z_t = \theta + a_t + \varepsilon_t - a_t^* (y^{t-1}) - m_\theta$$
$$\frac{\partial w_{t+s}}{\partial a_t} = \frac{h_\varepsilon}{h_0 + (t+s)h_\varepsilon}$$

- One-step deviation justified because optimal a_t is independent of
 - past outcomes y^{t-1}
 - own type θ
- Note
 - can "overwork" initially if $\beta \approx 1$
 - eventually $MB(a_t) \to 0$ as θ becomes known, i.e. $h_0 + th_{\varepsilon} \to \infty$

1.4 Extensions

- Let type θ evolve with $\theta_t = \theta_{t-1} + \delta_t$ where $\delta_t \sim N\left(0, 1/h_{\delta}\right)$
- Market is learning moving target θ_t never perfectly
- Steady state effort a_{∞} inefficiently low $MB(a_{\infty}) < 1$
- Convergence from
 - above if uncertainty decreasing over time, i.e. $h_0 < h_{\infty} = f(h_{\varepsilon}, h_{\delta})$
 - below if uncertainty increasing over time, i.e. $h_0 > h_\infty$

2 Reputation and Exit

• Bar-Isaac (2003)

2.1 Model

- Firm has fixed type $\theta \in \{H, L\}$ where H = 1 and L = 0
- Reputation of firm $x_t = \mathbb{E}_t[\theta]$; initially x_0
- Time continuous, interest rate r
- Market learns about θ via Brownian motion

$$dY_t = \theta dt + dW_t$$

• Bayes' rule

– given θ

$$dx = x(1-x)[(\theta - x)dt + dW]$$

- in expectation

$$dx = x(1-x) + dW$$

- Payoffs
 - Consumer's gross utility θ , expectation x_t
 - Firm charges x_t and has cost c
 - Firm value

$$V = \mathbb{E}\left[\int_0^T e^{-rt} (x_t - c) dt\right]$$

if firm exits at time ${\cal T}$

• When does firm exit?

2.2 Firm does not know own type

- Take-away: Some good firms exit; market may never learn type
- Evolution of value function

$$V(x) = (x - c)dt + (1 - rdt)\mathbb{E}_x \left[V(x + dx)\right]$$

• Ito's Lemma: If

$$dx = \gamma(x)dt + \sigma(x)dW$$

and V(x) smooth, then

$$\mathbb{E}\left[dV(x)\right] = \gamma(x)V'(x)dt + \frac{1}{2}\sigma(x)^2V''(x)dt$$

• Hence

$$\mathbb{E}_x \left[V(x+dx) \right] = V(x) + \frac{1}{2}x^2(1-x)^2 V''(x)dt$$

• Thus

$$rV(x) = (x - c) + \frac{1}{2}x^2(1 - x)^2 V''(x)$$

- Boundary conditions at exit threshold x^*
 - Value matching $V(x^*) = 0$
 - Smooth pasting $V'(x^*) = 0$; Idea
 - * If $V'(x^*) > 0$, want to stay at x^*
 - * Brownian motion goes $\pm \sigma \sqrt{\Delta t}$ over Δt
 - * Then value from staying another Δt

$$V(stay) = \underbrace{\Delta t(x^* - c)}_{\text{current loss; order } -\Delta t} + (1 - rdt)(\underbrace{V(\sigma\sqrt{\Delta t})/2}_{\text{order } +\sqrt{\Delta t}} + \underbrace{V(-\sigma\sqrt{\Delta t})/2}_{=0})$$

2.3 Firm knows own type

- Staying in market is signal of quality
- Show that
 - Only low firms exit
 - Cannot have deterministic exit cutoff, where low firm exits with probability 1. Then belief $\rightarrow 1$, so low firms would deviate
 - Market eventually learns quality
- Claim: $V_H(x) = V_L(x)$ for all x
 - Idea: $x_t^H > x_t^L$ for all t and realizations of W_t
- Form of equilibrium

- At x^* , low firm quits with probability qdt
- High firm never quits
- $\ q$ chosen such that reputation does not fall below x^* and low firm stays indifferent

3 Reputation for Competence

- Mailath, Samuelson (2001) "Who wants a Good Reputation"
- Standard reputational motive: Strategic type "mimics good type", i.e. Stackelberg, high productivity, ethical...
- Alternative model: Strategic type "distinguishes from bad type":
 - Strategic type θ_0 can exert effort $\eta \in \{L, H\}$ with $L \in (0, 1/2)$ and H = 1 L
 - Incompetent type θ_L exerts effort $\eta = L$
 - Market posterior $q_t = \Pr(\theta_0 | h^{t-1})$ that firm is strategic
- Imperfect monitoring through consumer utility
 - Success $\Pr(u=1) = \eta$
 - Failure $\Pr(u=0) = 1 \eta$
- Players:
 - Long-lived firm with type $\theta \in \{\theta_0, \theta_L\}$
 - Short-lived consumers, 2 per period
- Strategies
 - Firm θ_0 exerts effort $\eta_t = \eta \left(h^{t-1} \right)$
 - Consumers "bid" $p(h^t) = \mathbb{E}\left[u|h^{t-1}, \widetilde{\eta}_t\right] = \mathbb{E}\left[\widetilde{\eta}_t|h^{t-1}\right]$
- Public history $h^t \in \{0, 1\}^{t-1}$, e.g. $(u_1 = 1, u_2 = 0, \cdots, u_{t-1} = 0)$
- Equilibrium $(\eta, \tilde{\eta})$
 - Firm plays optimally: η maximizes $\mathbb{E}\left[\sum_{t=1}^{\infty}\beta^{t}\left(p\left(h^{t}\right)-c\left(\eta\left(h^{t}\right)\right)\right)\right]$
 - Consumers play optimally: $\tilde{\eta} = \eta$
- Assume effort is
 - costly: c(H) > c(L) = 0
 - but 1st best: c(H) c(L) < H L

Proposition 1 If c(H) small, then "grim-trigger in beliefs" is an equilibrium

$$\widetilde{\eta}(h^t) = \eta(h^t) = \begin{cases} H & \text{if } h^t = (1, 1, \cdots, 1) \\ L & else \end{cases}$$

Proof.

- Punishment phase $\tilde{\eta}(h^t) = \eta(h^t) = L$ is an equilibrium with payoffs (0,0)
- Effort phase is equilibrium as long as

$$-c(H) + \frac{\beta}{1-\beta} \Pr(u=1|H) v \ge \frac{\beta}{1-\beta} \Pr(u=1|L) v$$
$$c(H) \le \frac{\beta}{1-\beta} (H-L) v$$

where the firm equilibrium value v is given by $v = \frac{1}{1-\beta H} (H - c(H))$

- But one idea of reputation models was to get away from "boot-strapped" equilibria
- Markovian equilibria $\eta(q), \tilde{\eta}(q)$ where $q = \Pr(\theta_0)$
- In pure-strategy equilibrium posterior hops on a grid:

$$\frac{q\left(h^{t}\right)}{1-q\left(h^{t}\right)} = \frac{q\left(h^{t-1}\right)}{1-q\left(h^{t-1}\right)} * \begin{cases} 1 & \text{if } \widetilde{\eta}\left(h^{t-1}\right) = L\\ H/L & \text{if } \widetilde{\eta}\left(h^{t-1}\right) = H \text{ and } u_{t} = 1\\ L/H & \text{if } \widetilde{\eta}\left(h^{t-1}\right) = H \text{ and } u_{t} = 0 \end{cases}$$

• Denote posteriors on grid by $q_t = q(z)$ for $z \in \mathbb{Z}$, where

$$z = \# (s \le t : \tilde{\eta}_s = H, u = 1) - \# (s \le t : \tilde{\eta}_s = H, u = 0)$$

• Note: Every posterior q with $\tilde{\eta}(q) = L$ is absorbing and v(q) = 0

Proposition 2 There is a unique Markov-perfect equilibrium in pure strategies: $\eta \equiv L$

Proof.

- Clearly, $\eta \equiv L$ is an equilibrium
- This is the only pure strategy equilibrium

- 1. Induction Base: $\eta(q(z)) = H$ for all $z \ge z^*$ is not an equilibrium: For $z \ge z^{**} \gg z^*$, the posterior will stay above z^* for too long to incentivize effort $\eta = H$; more formally $\Pr(\tilde{\eta}_T = H | u_0 = \cdots = u_{T-1} = 0) \approx 1$ for T finite but large
- 2. Induction Step: If $\eta(q_z) = L$ then $\eta(q_{z-1}) = L$:

$$v(H, q_{z-1}) = -c(H) + \beta (Hv(q_z) + Lv(q_{z-2}))$$

$$v(L, q_{z-1}) = \beta (Lv(q_z) + Hv(q_{z-2}))$$

so $v(H, q_{z-1}) < v(L, q_{z-1})$ because $v(q_z) = 0$ and $v(q_{z-2}) \ge 0$.

- Idea:
 - Reputation for competence q is only valuable in conjunction with $\tilde{\eta}(q) = 1$
 - Reputation for commitment on contrary is more directly valuable

• Paper then goes on to firms selling their name/reputation; this re-introduces uncertainty about θ and bounds q away from 0 and 1

4 Reputation Acquisition in Debt Markets

- Diamond (1989)
- T rounds
- Manager can invest \$1 in one of two projects
 - Good with certain payoff G > 1 + r
 - Bad with payoff

$$\begin{cases} B & \text{with prob. } \pi \\ 0 & \text{else} \end{cases}$$

where B > G but $\pi B < 1 + r$

- Three types of debtors
 - BG: can choose between B and G
 - B: always picks B
 - G: always picks G

- $\bullet\,$ Combination of KW 82 and MS 01 $\,$
 - separate yourself from B
 - mimic G
- In round t, debtor
 - gets loan at rate $r_t \in (r, G-1)$ (lender breaks even in eq.)
 - picks project B or G
 - privately observes payoff 0, G, or B
 - * repays $1 + r_t$ after G or B
 - * defaults after 0 (game over)

Proposition 3 For adequate parameter values, there is a reputation acquisition equilibrium, characterized by $\underline{t} < \overline{t} < T$ such that manager BG chooses project

$$B \quad at \ t \leq \underline{t} \\ G \quad at \ t \in (\underline{t}, \overline{t}) \\ B, G \quad at \ t \geq \overline{t} \end{cases}$$

- Initially
 - interest rate r_t is high because of B types in population
 - this reduces margin $G r_t$ of good projects and gambling on bad projects with payoff $\pi (B r_t)$ is profitable
- Then, if manager survives
 - as B types are sorted out interest rate falls
 - margin $G r_t$ large enough to protect reputation by choosing G
- Eventually, in the endgame as T t becomes small effects like in Kreps, Wilson

5 Regulating a Firm with Reputational Concerns

- Atkeson, Hellwig, Ordonez (2010)
- Firm with moral hazard to produce experience good of high quality
- Reputational concerns provide incentives, but not perfectly
- How can regulation improve incentives?

5.1 Model

- Time $t \in [0, \infty)$
- Continuum of firms (but they don't really interact)
- Strategies: At time t
 - Enter and choose type θ
 - Exit (with rate bounded below)
- Type = Quality $\theta \in \{L, H\}$ chosen once and for all; constant; L < 0, H > 0
- Reputation $x_t \in \mathbb{E}\left[\theta | h^t\right]$
- Reputational Evolution
 - Three cases of learning:
 - * Good news: Learn $\theta = H$ at rate μ
 - * Bad news: Learn $\theta = L$ at rate μ
 - * Brownian news: Learn from $dZ = \mu \theta dt + dW$
 - If $\theta = L$ exits at x^* , then $x_t \ge x^*$

5.1.1 Payoffs

- Price $p_t = x_t Y^{-\eta}$
 - Expected quality x_t
 - Marginal utility of quality $Y^{-\eta}$ (where Y total production and $-\eta$ funky macro stuff)

• Value function

$$V_{\theta}(x_{0}) Y^{-\eta}$$
$$V_{\theta}(x_{0}) = \mathbb{E}_{\theta,x_{0}} \left[\int_{0}^{Exit} e^{-rt} x_{t} dt \right]$$

• Free entry, but type $\theta = H \text{ costs } C > 0$

5.2 Equilibrium

- Value functions $V_{\theta}(x)$ pinned down by ODE
- Entry and exit at x^* with

$$V_L\left(x^*\right) = 0$$

• Indifference condition for investment

$$V_H(x^*) Y^{-\eta} = C$$

pins down $Y^{-\eta}$

• (Very weird: With fixed Y there is no equilibrium.... Why?)

5.2.1 Good News

- Low firm stuck at $x^* \rightarrow x^* = 0$; might as well exit
- High firm waits to jump to x = H
- $(V_H V_L)(x)$ decreasing to 0
- (draw it)

5.2.2 Bad News

- Firms drift up from $x^* \rightarrow x^* < 0$
- Low firm fails eventually
- High firm drifts to x = H
- $(V_H V_L)(x)$ increasing
- (draw it)

5.2.3 Brownian News

• $(V_H - V_L)(x)$ hump-shaped

5.3 Regulation

- If government can tax/subsidize based on reputation it can almost achieve first best
 - Choose \hat{x} close to H
 - Heavily subsidize firms with $x > \hat{x}$
 - Heavily tax firms with $x < \hat{x}$
 - Then get $x^* = \hat{x} \varepsilon$
 - (draw it)
- But what if it can only impose an entry fee F?
- Entry conditions

$$V_L(x^e) Y^{-\eta} = F$$

$$V_H(x^e) Y^{-\eta} = C + F$$

- Twin goals
 - Quality: $x^{e}(F)$ increasing in F because

$$\frac{F}{F+C} = \frac{V_L\left(x^e\right)}{V_H\left(x^e\right)}$$

which is increasing in all three cases -> so maximize F

– Quantity:

$$Y = \sqrt[\eta]{\left(V_H\left(x_e\right) - V_L\left(x_e\right)\right)/C}$$

so maximize $V_H(x_e) - V_L(x_e)$

5.3.1 Bad news

- Two goals coincide
- Set $F = rC/\mu$ to achieve first-best quality $x^e = 1$ and first-best quantity

5.3.2 Good news

- Goals opposed
- May be optimal to set F = 0 so as not to decrease Y