Eco02102, Fall 2004 Simon Board

Economics 2102: Final

17 December, 2004

1. Random Pricing

Consider the pricing problem of a monopolist who has 300 units to sell and is only allowed to
choose a price p per unit (i.e. no first degree price discrimination). There are 100 agents who

are identical and have the following demand:

D) = 0 if p>2
— 1 if pe(1,2
= 5 if pe|0,]1]

(a) [5 points] Suppose the firm can charge a single price, p, per unit. What is the best they can
do?

(b) [10 points] Suppose the firm can separate the agents into two groups. The first group of N
are charged price p; per unit. The second are charged ps per unit. What is the best they can
do?

(c) [5 points| Agents are identical so, intuitively, how can splitting them into two groups help?

Does this relate to anything we covered in class? [100 words max.]

2. Nonlinear Pricing with Outside Options

Consider a second degree price discriminating firm facing customers with two possible types
0 € {3,4} with equal probability. An agent with type 6 gains utility u(f) = 6q — p from quality
q supplied at price p. If the agent does not purchase they gain utility 0. The cost of quality ¢
is ¢(q) = ¢°/2.

(a)[5 points]. Suppose the firm could observe each agents type . What quantity would she

choose for each type?
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For the next two parts assume the firm cannot observe agents’ types. She can choose two
quantity—price bundles {q(6),p(0)} for 6 € {3, 4}.

(b)[10 points]. Suppose there is a single outside good of quality ¢* = 1 and price p* = 1. What
quantity would the firm choose for each type?

(¢)[10 points]. Now suppose the outside good has quality ¢* = 6 and price p* = 18. What
quantity would the firm choose for each type?

3. Auctions with Hidden Quality

The economics department is trying to procure teaching services from one of N potential
assistant professors. Candidate i has an outside option of wage 6; € [0,1] with distribution
function F. This wage is private information and can be thought of as the candidate’s type.

The department gets value v(6;) from type 6;.

Consider a direct revelation mechanism consisting of an allocation function P(él, ey 0~N) and
a transfer function t(fy,...,0y). Suppose candidate ’s utility is u(6;,6;) = E_;[t(9) — P(6)8;]

and the department’s profit is 7 = E[P(0)v(8;) — t(6)].

(a)[7 points] Characterise the agent’s utility under incentive compatibility in terms of an integral

equation and a monotonicity constraint.
b)[8 points] Using (a), what is the department’s profit?
b g ) P b

For the rest of the question assume that

F(6;
(0:)

(¢)[5 points] If v/(6;) < 1 what is the department’s optimal hiring policy (i.e. allocation func-
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tion)? How can this be implemented?

(d)[5 points] Suppose v'(6;) > 2 and E[v(6;)] > 1. What is the department’s optimal hiring

policy (i.e. allocation function)? How can this be implemented?
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4. Double Auction

A seller and buyer participate in a double auction. The seller’s cost, ¢ € [0,1], is distributed
according to Fs. The buyer’s value, v € [0, 1], is distributed according to Fp. The seller names
a price s and the buyer a price b. If b > s the agents trade at price p = (s + b)/2, the seller
gains p — ¢ and the buyer gains v — p. If s < b there is no trade and both gain 0.

(a)[15 points] Write down the utilities of buyer and seller. Derive the FOCs for the optimal
bidding strategies.

For the rest of the question assume ¢ ~ UJ0, 1] and v ~ U|0, 1].
(b)[10 points] Show that S(c) = Zc+ 1 and B(v) = Zv + 75 satisfy the FOCs.

(¢)[5 points] Under which conditions on (v, ¢) does trade occur?



