Economics 2102: Final

17 December, 2004

1. Random Pricing

Consider the pricing problem of a monopolist who has 300 units to sell and is only allowed to choose a price p per unit (i.e. no first degree price discrimination). There are 100 agents who are identical and have the following demand:

$$D(p) = 0 \text{ if } p > 2$$

= 1 if $p \in (1, 2]$
= 5 if $p \in [0, 1]$

(a) [5 points] Suppose the firm can charge a single price, p, per unit. What is the best they can do?

(b) [10 points] Suppose the firm can separate the agents into two groups. The first group of N are charged price p_1 per unit. The second are charged p_2 per unit. What is the best they can do?

(c) [5 points] Agents are identical so, intuitively, how can splitting them into two groups help? Does this relate to anything we covered in class? [100 words max.]

2. Nonlinear Pricing with Outside Options

Consider a second degree price discriminating firm facing customers with two possible types $\theta \in \{3, 4\}$ with equal probability. An agent with type θ gains utility $u(\theta) = \theta q - p$ from quality q supplied at price p. If the agent does not purchase they gain utility 0. The cost of quality q is $c(q) = q^2/2$.

(a)[5 points]. Suppose the firm could observe each agents type θ . What quantity would she choose for each type?

For the next two parts assume the firm cannot observe agents' types. She can choose two quantity-price bundles $\{q(\theta), p(\theta)\}$ for $\theta \in \{3, 4\}$.

(b)[10 points]. Suppose there is a single outside good of quality $q^* = 1$ and price $p^* = 1$. What quantity would the firm choose for each type?

(c)[10 points]. Now suppose the outside good has quality $q^* = 6$ and price $p^* = 18$. What quantity would the firm choose for each type?

3. Auctions with Hidden Quality

The economics department is trying to procure teaching services from one of N potential assistant professors. Candidate i has an outside option of wage $\theta_i \in [0, 1]$ with distribution function F. This wage is private information and can be thought of as the candidate's type. The department gets value $v(\theta_i)$ from type θ_i .

Consider a direct revelation mechanism consisting of an allocation function $P(\tilde{\theta}_1, \ldots, \tilde{\theta}_N)$ and a transfer function $t(\tilde{\theta}_1, \ldots, \tilde{\theta}_N)$. Suppose candidate *i*'s utility is $u(\theta_i, \tilde{\theta}_i) = E_{-i}[t(\tilde{\theta}) - P(\tilde{\theta})\theta_i]$ and the department's profit is $\pi = E[P(\tilde{\theta})v(\theta_i) - t(\tilde{\theta})]$.

(a)[7 points] Characterise the agent's utility under incentive compatibility in terms of an integral equation and a monotonicity constraint.

(b)[8 points] Using (a), what is the department's profit?

For the rest of the question assume that

$$1 \ge \frac{d}{d\theta_i} \frac{F(\theta_i)}{f(\theta_i)} \ge 0$$

(c)[5 points] If $v'(\theta_i) \leq 1$ what is the department's optimal hiring policy (i.e. allocation function)? How can this be implemented?

(d)[5 points] Suppose $v'(\theta_i) \ge 2$ and $E[v(\theta_i)] \ge 1$. What is the department's optimal hiring policy (i.e. allocation function)? How can this be implemented?

4. Double Auction

A seller and buyer participate in a double auction. The seller's cost, $c \in [0, 1]$, is distributed according to F_S . The buyer's value, $v \in [0, 1]$, is distributed according to F_B . The seller names a price s and the buyer a price b. If $b \ge s$ the agents trade at price p = (s + b)/2, the seller gains p - c and the buyer gains v - p. If s < b there is no trade and both gain 0.

(a)[15 points] Write down the utilities of buyer and seller. Derive the FOCs for the optimal bidding strategies.

For the rest of the question assume $c \sim U[0, 1]$ and $v \sim U[0, 1]$.

(b)[10 points] Show that $S(c) = \frac{2}{3}c + \frac{1}{4}$ and $B(v) = \frac{2}{3}v + \frac{1}{12}$ satisfy the FOCs.

(c)[5 points] Under which conditions on (v, c) does trade occur?