Homework 2: Topics in Moral Hazard

Question 1 (Teams and Collusion)

Consider Holstrom's model of moral hazard in teams. N agents work in a team with joint output $x(a_i, \ldots, a_N)$, where a_i is the effort of agent i and $g(a_i)$ is is the increasing, convex cost function.

- (a) Show that by introducing a principal (agent N+1) who does not participate in the production process, we can sustain an efficient effort profile as a Nash equilibrium using a differentiable balanced-budget output-sharing rule, i.e. $\sum_i t_i(x) = x \ (\forall x)$.
- (b) Suppose the principal can collude with one agent (call her agent k). That is, the colluders secretly write a side contract based on x to increase their joint payoff (other agents are unaware of the side contract). Show the scheme in (a) is susceptible to collusion.
- (c) Suppose we restricted ourselves to differentiable output—sharing schemes that are invulnerable to collusion. Show that it is impossible to sustain the efficient effort profile.

Question 2 (Hidden Savings I)

There are two periods. In period 1 the agent (privately) chooses to consume c. In period 2 they choose effort $a \in \{L, H\}$ at cost g(a), where g(H) > g(L). Output is binomial, $q \in \{0, 1\}$, where the probability that q = 1 given action $a \in \{L, H\}$ is p_a and $p_H > p_L$. The principal commits to the wage schedule at the start of the game. Wages are paid in period 2: denote the wage paid in state $q \in \{0, 1\}$ by (w_1, w_0) .

Suppose the agent's utility is given by

$$u(c_a) + p_a u(w_1 - c_a) + (1 - p_a)u(w_0 - c_a) - g(a)$$

where $u(\cdot)$ is increasing and strictly concave, and c_a is the consumption of the agent in period 1 if they plan to take action a in period 2.

Suppose the principal wishes to implement high effort. The two-period (IC) constraint says

that

$$u(c_H) + p_H u(w_1 - c_H) + (1 - p_H)u(w_0 - c_H) - g(H)$$

$$\geq u(c_L) + p_L u(w_1 - c_L) + (1 - p_L)u(w_0 - c_L) - g(L)$$
(1)

- (a) Show that $w_1 > w_0$ and $c_H > c_L$.
- (b) Use (1) to show that the second–period (IC) constraint (after c_H has been chosen) is slack.
- (c) Why does this matter?

Question 3 (Hidden savings II)

There are two periods. In period 1 the agent (privately) chooses to consume c. In period 2 he chooses effort $a \in \{L, H\}$ at monetary cost g(a), where g(H) > g(L). Output is binomial, $q \in \{0, 1\}$, where the probability that q = 1 given action $a \in \{L, H\}$ is p_a and $p_H \ge p_L$. The principal chooses wages (w_1, w_0) .

The two-period (IC) constraint says that

$$u(c_H) + p_H u(w_1 - c_H - g(H)) + (1 - p_H)u(w_0 - c_H - g(H))$$

$$\geq u(c_L) + p_L u(w_1 - c_L - g(L)) + (1 - p_L)u(w_0 - c_L - g(L))$$
(2)

where c_a is the optimal consumption when the agent plans to choose a.

Show that under CARA utility, $u(c) = -\exp(-rc)$, we have $c_H = c_L$ when the (IC) constraint binds. Why is this important?

Question 4 (Short–term and long–term contracts)

Suppose there are three periods, $t \in \{1, 2, 3\}$. Each period a principal and an agent must share a good; let $x_t \in \mathbb{R}$ be the share obtained by the agent. The principal gets $\sum_t \pi_t(x_t)$ and the agent gets $\sum_t u_t(x_t)$, where $\pi_t(x_t)$ is decreasing in x_t and $u_t(x_t)$ is increasing in x_t . The agent's outside option is a share of the assets $(\underline{x}_1, \underline{x}_2, \underline{x}_3)$.

- (a) Suppose the principal can write a long term contract. Write down the program of maximising profit subject to individual rationality.
- (b) Now suppose the principal offered a spot contract each period. Using backwards induction derive the optimal sequence of spot contracts. Explain why this may differ from the long–term contract.
- (c) Suppose the principal offers two-period contracts. In the first period they offer $(_1x_1, _1x_2)$. If it is rejected the agent gets \underline{x}_1 . At the start of the second period a new contract $(_2x_2, _2x_3)$ may be proposed by the principal. If this is rejected the agent gets $_1x_2$ if they accepted the first contract or \underline{x}_2 otherwise. In the third period a spot contract is offered to the agent. If this is rejected, the agent gets $_2x_3$ if they accepted the second contract, or \underline{x}_3 otherwise. Show that if $\lim_{x\to-\infty}u_t(x)=-\infty$ and $\lim_{x\to\infty}u_t(x)=\infty$ then this can implement the optimal long term contract.
- (d) Provide an example (outside options, utility functions, profit function) where the two–period contracts cannot implement the long–term contract.

Question 5 (Credible Wage Paths)

There are two periods, with no discounting. The firm proposes a contract (w_0, w_s) which the agent accepts if the sum of period 1 and period 2 utilities exceeds \overline{u} in expectation. Their utility function is given by the increasing, strictly concave function $u(\cdot)$.

In the first period the worker gets paid w_0 (if they accept the contract). They then produce q for the firm.

In the second period, the state of the world $s \in S$ is the realised with probability f_s . The firm offers w_s , while there is an outside offer, \overline{w}_s . The worker accepts the larger. If they work for the firm, the worker produces $q > \max_s \overline{w}_s$.

- (a) The firms problem is to maximise two–period profits subject to the first–period and second–period (IR) constraints. Write down this problem.
- (b) Characterise the optimal wage path. If s is the state of the economy, how are wage affected by slumps and booms?

(c) Suppose the agent can commit to his period 2 behaviour in period 1. Describe the optimal contract.

Question 6 (Relational Contracting)

Suppose a firm employs two workers. It signs a stationary relational contract (w^i, b^i, e^i) with each worker i. The firm gets profit $y(e^i) - W^i$ from each worker, while the agents get $W^i - c^i(e^i)$, where $W^i = w^i + b^i$. Outside utility/profits equal 0.

First, consider a bilateral contract, where deviation by the firm or agent in relationship i leads to Nash reversion in this relationship only.

- (a) Characterise the self–enforcing contracts by no deviation constraints on both agents and the principal.
- (b) Sum across the constraints to derive conditions on surplus needed to sustain a relationship. [Note: This surplus condition is also sufficient for a contract to be self-enforcing.]

Second, consider a joint contract where deviation by the firm or any worker leads all workers to revert to noncooperation.

- (c) Characterise the self–enforcing contracts by no deviation constraints on both agents and the principal.
- (d) Sum across the constraints to derive a condition of surplus needed to sustain a relationship. [Note: This surplus condition is also sufficient for a contract to be self–enforcing.]
- (e) Show that the total surplus is higher under the joint contract than under bilateral contracts. Intuitively, when is the joint contract strictly better? In this case, why is it better?