1 Inverse Marginal Utility is Martingale (Rogerson ’85)
1.1 Setup

e Two periods, no discounting

e Actions a; € A

e Output ¢

e Time-separable and stationary

— Production ¢; ~ f (¢¢|at) - no technological link

— Agent utilty Zt (u (wy) — g (ar)) no preference link

— Principal payoff R = Zt (g — wy)

1.2 Principal’s Problem
e Let a = (a1,a2(q1)) be agent’s action plan

e Principal chooses a*, wi (¢1) ,w} (g1, ¢2) to maximize

E[(g1 — w1 (q1) + g2 — w2 (q1,92)) |a] subject to
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e Note: Can’t save or borrow

1.3 Result

Proposition 1 The optimal long-term contract satisfies
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(@) | (o (o)) ™

for all q1.
Idea:
e LHS is marginal cost of providing utility today
e RHS is expected marginal cost of providing utility tomorrow

e Agent is indifferent between receiving utility today or tomorrow

(IC)
(IR)



If LHS<RHS principal could profit by front-loading utility

Proof.

1.4

Let wi (q1) , w2 (q1,q2) be optimal contract
Fix q;

Shift e < 0 utility to period 1

u(wr(q1)) = u(wi(q)) +e

u(wz(q1,92)) = u(wa(q,q2)) —¢

Does not affect agent’s IC or IR constraint

By first-order Taylor approximation
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w1 (1) = wi(q)+ 7 (w1 (@)
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W2 (q1,92) = wa(q1,q2) —

_ V
u (w2 (a1, ) 2

Thus, effect on Revenue

R-R=-e <U’ (wll (@) ol (w2 (1(-”’(12)) |‘I17GD

As e can be chosen positive or negative, optimality requires that the term in parantheses vanishes

Discussion

Optimal long-term contract has memory

— Unless wy independent of g1, LHS depends on ¢
— So does RHS, in particular wy # w2 (g2)

Optimal long-term contract is complex

Agent would like to save - not borrow

— Apply Jensen’s inequality to (*)



— f(xz) =1/x is a convex function

— Thus f (E[z]) <E[f (2)]

! - 1 — U/ w
0 @) =178 | | < B0 )

— Intuition?

2 Asymptotic Efficiency

2.1 Setup

e oo periods, common discount factor §

Output ¢; € @, 6]

Actions a; € A

e First best action a* and quantity ¢* = E [¢|a*]

e Time-separable and stationary

2.2 Result

Proposition 2 If everybody is patient, first-best is almost achievable: Ve, 35,¥8 > & there is a contract
generating agent utility greater than u(q*) — g (a*) — € (and yielding at least O to the principal).

e Statement assumes that agent proposes contract and has to satisfy principal’s IR constraing
e If principal proposes, can also get first-best

Idea:

e Make agent residual claimant

e He can build up savings and then smooth his consumption

Proof.
e Agent’s wealth w;

e [f wealth is high, w; > (q* - g) /0, consume

a=q¢+1—-0)w —=¢



— Earnings ¢*
— Interest (1 —§) wy
— save a little € € (0; (1-9) (C]* - Q))

e If wealth is low, w; < (¢* — q) /0, consume
G =q+(1-5)w

— Minimal earning ¢*

— Interest (1 — ) w;
e This is pretty arbitrary. The point is that wealth grows

E [wit1] — wy > min {(¢* — ¢) /6,2} >0

e Thus, wealth is a submartingale with bounded increments and thus the probability that it exceeds

any threshold z, e.g. z = (q* — g) /0, after time ¢ approaches 1 as t — oo

lim py = 1 where
t—o0

pr = Pr(w; >z forall 7>1)

e Omitting non-negative terms gives lower bound on agent’s utility

(1=8)) 8" (ular) —g(a")) = &'pulq”) —g(a”)
7=0

v

u(q*) —g(a*)—¢

when we choose § and p; close enough to 1

3 Short-term Contracts
3.1 Setup
e 2 periods, no discounting
e Time separable technology and preferences

e Agent can save, but principal can monitor this



— Funny assumption, but necessary for tractability and result

— Maybe reasonable in third world when saving is through landlord
e Outside utility © = u () — g (@)

3.2 Principal’s Problem
e Principal chooses a*, s* (q1) , w7} (¢1) , w3 (q1, ¢2) to maximize
E[(q1 — w1 (q1) + g2 — w2 (q1,q2)) |a] subject to

—g(a7) +u(wz(q1,q2) + 5" (q1)) —g(a3)|a’] = E[..(a,5)] (IC)

q))—g
—g(af) +u(w;(q1,q2) + 5" (q1)) —g(a3) [a*] > 2u (IR)

e Can choose s* (q1) = 0 because principal can save for the agent by adjusting w

3.3 Renegotiation and Spot Contracts

e After period 1, the principal could offer the agent to change the contract

e Optimally, he offers contract ag, Wz (g2) to maximize

E [g2 — w2 (g2) |az] subject to : (Seq-Eff)
B lu(wy (g2)) — g (a2) [az] = E[...(a)] (IC’)
Elu (@2 (g2)) — g (@2) [az] > BEfu(w}(q1,92)) — g(a3)|a3] (IR’)

where the last line captures the idea that the agent can insist on the original long-term contract
e Of course, ay, W (g2) implicitly depend on ¢; through (IR’)

e Call contract sequentially efficient, or renegotiation-proof if there is no such mutually beneficial

deviation after any realization of ¢, and thus as = a} and wa (¢2) = w3 (¢1,92) -

e The long-term contract a*,w* can be implemented via spot contracts if there is a saving strategy

s(q1) for the agent such that the second period spot contract @z, w2 (¢2) that maximizes

B gz — w (g2) [a] subject to (Spot)
Efu (w2 (¢2) + 5 (@) — 9 (@2) [@2] > El[..(a)] (IC-spot)
B u (@2 (¢2) + 5 (@) — 9 @) [@2] > u(@+s(@) - g(@) (IR-spot)

yields the same actions a2 = a3 and wages w2 (q2) + s (¢1) = w3 (q1, ¢2) as the original contract.



3.4 Result

Proposition 3 1. The optimal long-term contract is renegotiation-proof.

2. A renegotiation-proof contract can be implemented by spot contracts.

e If there was a profitable deviation after ¢;, there is a weakly more profitable deviation where IR’ is

binding

e The original contract could then be improved by substituting the deviation into the original contract.

This proves 1.
e For 2, set s(q1) so that u(q+s(q1)) = E[u (w2 (q1,92)) |as]

e Then if ag, Wa (q2) solves (Seq-Eff), ay = a2, w2 (g2) = w2 (¢2) — s (q1) solves (Spot)

3.5 Discussion

e Rationale for Short-Term Contracting
e Separates incentive-provision from consumption smoothing

e Yields recursive structure of optimal long-term contract - Memory of contract can be captured by

one state variable: savings

e Generalizes to
— T periods
— Preferences where a1 does not affect trade-off between a9 and co
4 Optimal Linear Contracts (Holmstrom, Milgrom ’87)

4.1 Setup
e 2 periods, no discounting
e Time separable technology and preferences

e Funny utility function

u (Wi, w,a1,a2) = —exp (— (w1 + w2 — g (a1) — g (a2)))

— Consumption at the end (-> no role for savings)

— Monetary costs of effort



— CARA - no wealth effects
e Outside wage w per period

e Optimal static contract a®, w®

4.2 Result

Proposition 4 1. The optimal long-term contract repeats the optimal static contract:
wi (q1) = w* (q1) and w3 (q1,92) = w* (q2)

2. If q is binary, or Brownian, the optimal contract is linear in output: w* (q1,q2) = a+ B(q1 + ¢2)

Idea: CARA makes everything separable
Proof.

e Principal chooses a*, w* to maximize
E g — w1 (q1) + g2 — w2 (g1, g2) |a] subject to

B[—exp (= (wi (@) + w3 (q1,42) — g (a1) — g (a3))) [a”] = Bl[-exp(...)[a] (IC)
E[—exp (= (wi (@) + w3 (q1,2) — g (a7) — g (a3))) "] u (2w) (IR)

v

e Can choose wj (q1,q2) so that E[—exp (— (w5 (q1,92) — g (a}))) |ad] = u (w) for all ¢

Add A (q1) to all w3 (g1, g2)
Subtract A (¢1) from wj (q1)

— Does not affect wi (¢1) + w3 (¢1, ¢2) for any realization (q1,q2)

Principal and agent only care about this sum

e Sequential efficiency implies that in the second period after realization of ¢y, principal chooses as, Ws

to maximize

E g2 — w2 (g2) |az] subject to
—exp (— (wi (q1) — g (a7))) Efexp (= (@2 (q2) — g (a2))) [az] > —exp(...)Elexp(...) [a2](IC 2)
—exp (...) B exp (= (@2 (q2) — g (a2))) [a2] > —exp(...)u(w) (IR 2)

e As period one factors out (this is because there are no wealth effects), the optimal second period

contract az, Wy is the optimal short-term contract ws (¢2) = w® (g2) - independent of ¢;



4.3

Taken ao, w9 as given, the principal chooses a1, w; to maximize

maximize E [¢g; — w; (q1) |a1] subject to
—E[exp (= (01 (q1) = g (@1))) [a1] B [exp (= (w2 (¢2) — g (a2))) [az] —E[...[a1] B [..[az)(IC 1)
—E[exp (= (w1 (1) — 9 (1)) [a1] B [exp (= (w2 (q2) — g (a2))) [a2] = u(2w) (IR 1)

v

This is again the static problem, proving (1)

(2) follows because every function of ¢ binary is linear, and a Brownian motion is approximated by

a binary process

Discussion

Not very general, but extends to any number of periods

Stationarity not so suprising;:

— technology independent

no consumption-smoothing

no wealth-effects

— no benefits from long-term contracting
e Agent benefits ability to adjust his actions according to realized output

— Consider generalization with t € [0;T] and dg; = adt + odW, so that g ~ N (a, O'2T)

— If agent cannot adjust his action, principal can implement first-best via tail-test and appropriate

surplus

Tail-test does not work if agent can adjust effort

* Can slack at first...

* ... and only start working if ¢; drifts down to far

More generally with any concave, say, reward function w (¢r), agent will

* work in steep region, after bad realization

x shirk in flat region, after good realization

Providing stationary incentives to always induce the static optimal a* is better



5 Continuous Time (Sannikov 2008)

5.1 Setup

e Continuous time ¢ € [0;00), discount rate r

e Think about time as tiny discrete increments dt and remember rdt ~ 1 — e~ "%

e Time separable technology
dXt = atdt + dZt

Brownian Motion Z; (also called Wiener process) characterized by

— Sample paths Z; continuous almost surely

— Increments independent and stationary with distribution Z; a — Z; ~ N (0, A)

Wealth of agent
w= r/ e " (u(cr) — g (ap))dt
t

=0

(the “r” annuitizes the value of the agent and renders it comparable to u and g)

Cost function g with g(0) =0, ¢ >0, ¢" >0
e Consumption utility with « (0) = 0, > 0,limg_,oo v’ (z) =0

e Consumption = wage; no hidden savings

I = rE [/ e_rtht] —T/B_thtdt

= r[e " (a—c)dt

Revenue of firm

5.2 Firm’s problem
e Choose at, ¢; as function of Xs<; to maximize II subject to (IC) and (IR)

e Recursive approach: Let w; be the continuation wealth of the agent (in utils)

wy = r/oo e (s (u(cs) — g (as))ds

=t

e Principal chooses ¢, at, wii g to maximize II; subject to (IC), (IR) and

we =rdt (u(ct) — g (ar)) + (1 — rdt) E [weyqe|ad]



e The “Promise Keeping” constraint is not a proper constraint, but just an accounting identity that

ensures that w; is actually the continuation value of the agent

— Current payoff u (¢;) — g (ay)

— Continuation wealth E [wy ]
e Example: Retiring agent with wealth w,

— Instruct agent not to take any effort a; = 0
— Pay out wealth as annuity u (¢;) = wy

— Firm profit from this contract Il (u (¢)) = —c¢
e Draw picture of IIy and 1I

e Decompose principal’s NPV into current profits and continuation value

o, = r (at — Ct) dt + (1 — T’dt) E [Ht+dt]
ridt = r(ar — c) dt + E[dlL]

e Principal’s expected profit II; is function of state variable, i.e. of agent’s wealth IT (w;)

e The expected value of the increment E [dIl;] can be calculated with Ito’s Lemma

Lemma 5 (Ito) Consider the stochastic process wy governed by
dw; = v (w) dt + odZ,

and a process 11 = II (wy) that is a function of this original process. Then the expected increment of Il is
given by
1
E[dIT (w)] = |v (w) T’ (w) + 5021'[" (w)| dt

Proof. By Taylor expansion

1I (wt+dt) —1I (wt) = II ('lUt +y (U)t) dt + O'dZt) —1I (wt)
= (v (wy)dt + odZ) I (wy) + % (v (wy) dt 4+ 0dZ)* T (w;) + o (dt)
= (v(wy)dt + odZ) T (wy) + %ﬁdeH" (wy¢) + o (dt)

B[ (wpr) — T (wn)] = (wy) deTT (wy) + %a2dtH” (1) + 0 (dt)

10



e The reason, the Ito term %0'21_[” (wt) comes in is that w, is oscillating so strongly, with stdv. Vdt in

every dt.

5.3 Solving the agent’s problem
5.3.1 Evolution of Wealth
e Subtracting (1 — rdt) w; from (PK)

rdtw, = rdt(u(c) —g(ar)) + (1 —rdt) (BElwirq] —wy)
= rdt(u(ct) — g (ar)) + E [dw]

the agent’s value is a function of

— his current consumption u (¢;)
— his current effort —g (ay)

— the expected drift of his value

e Reversely
E[dw] = r (we — (u(ct) — g (ar))) dt

e To get at the actual dynamics of wy, assume that value increments dw; are linear in output increments

dX; with wealth dependent sensitivity rb (w;)

dw; = rb(wy)dXy
Eldw) = rb(w)E[dXy]
= rb(w) E[adt + dZy]
= rb(w) aydt

e Therefore, the actual increment of wealth is governed by

dwt = E [dwt] + (dwt —E [dth
= r(w— (uler) —g(ar)))dt +rb(we) (dXy — ardt)
= r(w— (u(c) —g(ap)))dt + rb(w) dZy

— Drifting

11



* up when wealth and interest rw; are high
* down when consumption c; is high
* up when effort a; is high
— Wiggling
* up, when production exceeds expectations dX; > a;dt

x down, when production falls short of expectations d.X; < a;dt

5.3.2 Agent IC

e Agent’s effort a; affects value rw; through

5.4

— current marginal cost r¢’ (a)

— marginal continuation value b (wy)

Then, if agent with wealth w is instructed to exert effort a (w) his FOC becomes
rg (a(w)) =rb(w) (IC)

So, if the principal wants to incentivize effort a = a (w) he needs to link the evolution of wealth w;
to output dX; via b (w)

By (IC) we can write b as a function of a, £ (a) = ¢’ (a)

The Firm’s Problem - continued
In the case at hand we have

Y(we) = r(w— (ule) —g(ar)))
o = rB(ar)

and we get

ril(w) =7 (a—c)+r(w = (u(c) - g(a))) I (w) %Tzﬁ (a)* 11" (w) ((*))

So the principal chooses plans a = a (w) > 0 and ¢ = ¢ (w) to maximize the RHS of (*)

The agent has to retire at some point w,

— Marginal utility of consumption u’ (¢) — 0

— Marginal cost of effort ¢’ (a) > e >0

12



e Boundary conditions

— I1(0) = 0: If the agent’s wealth is 0, he can achieve this by setting future effort a; = 0, yielding
0 to the firm

— I (w,) = Il (w;) = —u~! (w,): At some retirement wealth w,., the agent retires

— II' (w,) = II{, (wy): Smooth pasting: The profit function is smooth and equals IIy above w,

Theorem 6 There is a unique concave function I1 > Iy, mazimizing (*) under the above boundary con-

ditions. The action and consumption profiles a (w),c(w) constitute an optimal contract.

5.5 Properties of Solution
5.5.1 Properties of 11
e I1(0)=0

e II'(0) = 0: terminating the contract at w = 0 is inefficient, and w > 0 serves as insurance against

termination

e Il (w) < 0 for large w, e.g. w = w,, because agent has been promised a lot of continuation utility

5.5.2 Properties of optimal effort o*

e Optimal effort maximizes

ra+rg(a) I (w) +%r2ﬁ (@) T (w)

— Increased output ra

— Compensating agent for effort through continuation wealth rg (a) I’ (w) - yes, this is positive

for w~0

— Compensating agent for income risk 1r%3 (a)*TI" (w) - how so?
e Monotonicity of a* (w) unclear

— IT' (w) decreasing

— ITI” (w) could be increasing or decreasing

e Asr — 0, a* (w) decreasing

13



5.5.3 Properties of optimal consumption c*

e Optimal consumption maximizes

and thus .
- =1I' (w) or ¢* =0
u' (c¥) (w)
- — (10*): cost of current consumption utility

— IT' (w): cost of continuation utility

e Thus agent does not consume as long as w small

5.6 Extensions: Career Paths

e Performance-based compensation ¢ (w;) serves as short-term incentive

e Now incorporate long-term incentives into model

e In baseline model principal’s outside option was retirement IIy (u (c)) = —c

e Can model, quitting, replacement or promotion by different outside options ﬁo

e This only changes the boundary conditions but not the differential equation determining IT

{ —c ifu(c) >w

— If agent can quit at any time with outside utility @, then I (u (c)) =

0 ifu(c)=w
— If agent can be replaced at profit D to firm, then IIy (u (c)) = D — ¢
— If agent can be promoted at cost K, resulting into new value function II,, then ﬁ() (w) =

max {IIp (w) ; I, (w) — K'}

e Find that

quitting < benchmark < replacement, promotion

14



5.7 Stuff

e Change in agent’s value

Eldw) = Elwprq) — we

dwy = Wypagr — Wt
= rdt (weyar — [u(cr) — g (ar)]) + (1 — rdt) (Wear — E[wiran])
= rdt(w — [u(c) — g (ar)]) + (Werar — B [wetar))

e Drift in agent’s value

— Increasing via interest at rate r on current wealth w;
— Decreasing in current consumption —u (¢;) (if agent eats today, he has less tomorrow)

— Increasing in current effort g (a;)

e Assume that value increments are linear in output increments

dwt = b(wt) dXt

= b (’UJt) atdt + b (’LUt) dZt
E [dwt] = b (’UJt) E [dXt] =b (wt) atdt
e Then,
Witqr — B [wt+dt] = dw; —E [d’wt]

= b(wy)dX; —E[b(w)dXy]
Random shocks

— through in annuity of accumulated wealth w;, minus

— Current utility w (c¢¢) — g (a¢) (wealth will increase, dw; > 0, if agent eats less / works more

today, i.e. ¢; lower or a; higher), plus

— Random shocks
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