
1 Inverse Marginal Utility is Martingale (Rogerson �85)

1.1 Setup

� Two periods, no discounting

� Actions at 2 A

� Output qt

� Time-separable and stationary

�Production qt � f (qtjat) - no technological link

�Agent utilty
X

t
(u (wt)� g (at)) no preference link

�Principal payo¤ R =
X

t
(qt � wt)

1.2 Principal�s Problem

� Let a = (a1; a2 (q1)) be agent�s action plan

� Principal chooses a�; w�1 (q1) ; w�2 (q1; q2) to maximize

E [(q1 � w1 (q1) + q2 � w2 (q1; q2)) ja] subject to :

E [u (w�1 (q1))� g (a�1) + u (w�2 (q1; q2))� g (a�2) ja�] � E [:::jea] (IC)

E [u (w�1 (q1))� g (a�1) + u (w�2 (q1; q2))� g (a�2) ja�] � 2u (IR)

� Note: Can�t save or borrow

1.3 Result

Proposition 1 The optimal long-term contract satis�es

1

u0 (w1 (q1))
= E

�
1

u0 (w2 (q1; q2))
jq1; a

�
(*)

for all q1.

Idea:

� LHS is marginal cost of providing utility today

� RHS is expected marginal cost of providing utility tomorrow

� Agent is indi¤erent between receiving utility today or tomorrow
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� If LHS<RHS principal could pro�t by front-loading utility

Proof.

� Let w1 (q1) ; w2 (q1; q2) be optimal contract

� Fix q1

� Shift " 7 0 utility to period 1

u ( bw1 (q1)) = u (w1 (q1)) + "

u ( bw2 (q1; q2)) = u (w2 (q1; q2))� "

� Does not a¤ect agent�s IC or IR constraint

� By �rst-order Taylor approximation

bw1 (q1) = w1 (q1) +
"

u0 (w1 (q1))bw2 (q1; q2) = w2 (q1; q2)�
"

u0 (w2 (q1; q2))
, 8q2

� Thus, e¤ect on Revenue

bR�R = �"� 1

u0 (w1 (q1))
� E

�
1

u0 (w2 (q1; q2))
jq1; a

��

� As " can be chosen positive or negative, optimality requires that the term in parantheses vanishes

1.4 Discussion

� Optimal long-term contract has memory

�Unless w1 independent of q1, LHS depends on q1

� So does RHS, in particular w2 6= w2 (q2)

� Optimal long-term contract is complex

� Agent would like to save - not borrow

�Apply Jensen�s inequality to (*)
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� f (x) = 1=x is a convex function

�Thus f (E [x]) � E [f (x)]

u0 (w1 (q1)) = 1=E
�

1

u0 (w2 (q1; q2))

�
� E

�
u0 (w2 (q1; q2))

�
� Intuition?

2 Asymptotic E¢ ciency

2.1 Setup

� 1 periods, common discount factor �

� Output qt 2
�
q; q
�

� Actions at 2 A

� First best action a� and quantity q� = E [qja�]

� Time-separable and stationary

2.2 Result

Proposition 2 If everybody is patient, �rst-best is almost achievable: 8"; 9�;8� � � there is a contract

generating agent utility greater than u (q�)� g (a�)� " (and yielding at least 0 to the principal).

� Statement assumes that agent proposes contract and has to satisfy principal�s IR constraing

� If principal proposes, can also get �rst-best

Idea:

� Make agent residual claimant

� He can build up savings and then smooth his consumption

Proof.

� Agent�s wealth wt

� If wealth is high, wt �
�
q� � q

�
=�, consume

qt = q
� + (1� �)wt � e"
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�Earnings q�

� Interest (1� �)wt
� save a little e" 2 �0; (1� �) �q� � q��

� If wealth is low, wt � (q� � q) =�, consume

qt = q + (1� �)wt

�Minimal earning q�

� Interest (1� �)wt

� This is pretty arbitrary. The point is that wealth grows

E [wt+1]� wt � min
��
q� � q

�
=�;e"	 > 0

� Thus, wealth is a submartingale with bounded increments and thus the probability that it exceeds
any threshold x, e.g. x =

�
q� � q

�
=�, after time t approaches 1 as t!1

lim
t!1

pt = 1 where

pt = Pr (w� � x for all � � t)

� Omitting non-negative terms gives lower bound on agent�s utility

(1� �)
1X
�=0

�� (u (qt)� g (a�)) � �tptu (q
�)� g (a�)

� u (q�)� g (a�)� "

when we choose � and pt close enough to 1

3 Short-term Contracts

3.1 Setup

� 2 periods, no discounting

� Time separable technology and preferences

� Agent can save, but principal can monitor this
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�Funny assumption, but necessary for tractability and result

�Maybe reasonable in third world when saving is through landlord

� Outside utility u = u (q)� g (a)

3.2 Principal�s Problem

� Principal chooses a�; s� (q1) ; w�1 (q1) ; w�2 (q1; q2) to maximize

E [(q1 � w1 (q1) + q2 � w2 (q1; q2)) ja] subject to :

E [u (w�1 (q1)� s� (q1))� g (a�1) + u (w�2 (q1; q2) + s� (q1))� g (a�2) ja�] � E [::: (ea; es)] (IC)

E [u (w�1 (q1)� s� (q1))� g (a�1) + u (w�2 (q1; q2) + s� (q1))� g (a�2) ja�] � 2u (IR)

� Can choose s� (q1) = 0 because principal can save for the agent by adjusting w

3.3 Renegotiation and Spot Contracts

� After period 1, the principal could o¤er the agent to change the contract

� Optimally, he o¤ers contract ba2; bw2 (q2) to maximize
E [q2 � w2 (q2) ja2] subject to : (Seq-E¤)

E [u ( bw2 (q2))� g (ba2) jba2] � E [::: (ea)] (IC�)

E [u ( bw2 (q2))� g (ba2) jba2] � E [u (w�2 (q1; q2))� g (a�2) ja�2] (IR�)

where the last line captures the idea that the agent can insist on the original long-term contract

� Of course, ba2; bw2 (q2) implicitly depend on q1 through (IR�)
� Call contract sequentially e¢ cient, or renegotiation-proof if there is no such mutually bene�cial
deviation after any realization of q1, and thus ba2 = a�2 and bw2 (q2) = w�2 (q1; q2) :

� The long-term contract a�; w� can be implemented via spot contracts if there is a saving strategy

s (q1) for the agent such that the second period spot contract a2; w2 (q2) that maximizes

E [q2 � w2 (q2) ja2] subject to : (Spot)

E [u (w2 (q2) + s (q1))� g (a2) ja2] � E [::: (ea)] (IC-spot)

E [u (w2 (q2) + s (q1))� g (a2) ja2] � u (q + s (q1))� g (a2) (IR-spot)

yields the same actions a2 = a�2 and wages w2 (q2) + s (q1) = w
�
2 (q1; q2) as the original contract.
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3.4 Result

Proposition 3 1. The optimal long-term contract is renegotiation-proof.

2. A renegotiation-proof contract can be implemented by spot contracts.

� If there was a pro�table deviation after q1, there is a weakly more pro�table deviation where IR�is
binding

� The original contract could then be improved by substituting the deviation into the original contract.
This proves 1.

� For 2, set s (q1) so that u (q + s (q1)) = E [u (w2 (q1; q2)) ja2]

� Then if ba2; bw2 (q2) solves (Seq-E¤), a2 = ba2; w2 (q2) = bw2 (q2)� s (q1) solves (Spot)
3.5 Discussion

� Rationale for Short-Term Contracting

� Separates incentive-provision from consumption smoothing

� Yields recursive structure of optimal long-term contract - Memory of contract can be captured by

one state variable: savings

� Generalizes to

� T periods

�Preferences where a1 does not a¤ect trade-o¤ between a2 and c2

4 Optimal Linear Contracts (Holmstrom, Milgrom �87)

4.1 Setup

� 2 periods, no discounting

� Time separable technology and preferences

� Funny utility function

u (w1; w2; a1; a2) = � exp (� (w1 + w2 � g (a1)� g (a2)))

�Consumption at the end (-> no role for savings)

�Monetary costs of e¤ort
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�CARA - no wealth e¤ects

� Outside wage w per period

� Optimal static contract as; ws

4.2 Result

Proposition 4 1. The optimal long-term contract repeats the optimal static contract:

w�1 (q1) = w
s (q1) and w�2 (q1; q2) = w

s (q2)

2. If q is binary, or Brownian, the optimal contract is linear in output: w� (q1; q2) = �+ � (q1 + q2)

Idea: CARA makes everything separable
Proof.

� Principal chooses a�; w� to maximize

E [q1 � w1 (q1) + q2 � w2 (q1; q2) ja] subject to :

E [� exp (� (w�1 (q1) + w�2 (q1; q2)� g (a�1)� g (a�2))) ja�] � E [� exp (:::) jea] (IC)

E [� exp (� (w�1 (q1) + w�2 (q1; q2)� g (a�1)� g (a�2))) ja�] � u (2w) (IR)

� Can choose w�2 (q1; q2) so that E [� exp (� (w�2 (q1; q2)� g (a�2))) ja�2] = u (w) for all q1

�Add �(q1) to all w�2 (q1; q2)

� Subtract �(q1) from w�1 (q1)

�Does not a¤ect w�1 (q1) + w
�
2 (q1; q2) for any realization (q1; q2)

�Principal and agent only care about this sum

� Sequential e¢ ciency implies that in the second period after realization of q1, principal chooses ba2; bw2
to maximize

E [q2 � bw2 (q2) ja2] subject to :

� exp (� (w�1 (q1)� g (a�1)))E [exp (� ( bw2 (q2)� g (ba2))) jba2] � � exp (:::)E [exp (:::) jea2](IC 2)
� exp (:::)E [exp (� ( bw2 (q2)� g (ba2))) jba2] � � exp (:::)u (w) (IR 2)

� As period one factors out (this is because there are no wealth e¤ects), the optimal second period
contract ba2; bw2 is the optimal short-term contract bw2 (q2) = ws (q2) - independent of q1
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� Taken ba2; bw2 as given, the principal chooses ba1; bw1 to maximize
maximize E [q1 � w1 (q1) ja1] subject to :

�E [exp (� ( bw1 (q1)� g (ba1))) jba1]E [exp (� ( bw2 (q2)� g (ba2))) jba2] � �E [:::jea1]E [:::jba2](IC 1)
�E [exp (� ( bw1 (q1)� g (ba1))) jba1]E [exp (� ( bw2 (q2)� g (ba2))) jba2] � u (2w) (IR 1)

� This is again the static problem, proving (1)

� (2) follows because every function of q binary is linear, and a Brownian motion is approximated by
a binary process

4.3 Discussion

� Not very general, but extends to any number of periods

� Stationarity not so suprising:

� technology independent

� no consumption-smoothing

� no wealth-e¤ects

� no bene�ts from long-term contracting

� Agent bene�ts ability to adjust his actions according to realized output

�Consider generalization with t 2 [0;T ] and dqt = adt+ �dWt, so that qT � N
�
a; �2T

�
� If agent cannot adjust his action, principal can implement �rst-best via tail-test and appropriate
surplus

�Tail-test does not work if agent can adjust e¤ort

� Can slack at �rst...
� ... and only start working if qt drifts down to far

�More generally with any concave, say, reward function w (qT ), agent will

� work in steep region, after bad realization
� shirk in �at region, after good realization

�Providing stationary incentives to always induce the static optimal a� is better
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5 Continuous Time (Sannikov 2008)

5.1 Setup

� Continuous time t 2 [0;1), discount rate r

� Think about time as tiny discrete increments dt and remember rdt � 1� e�rdt

� Time separable technology
dXt = atdt+ dZt

� Brownian Motion Zt (also called Wiener process) characterized by

� Sample paths Zt continuous almost surely

� Increments independent and stationary with distribution Zt+� � Zt � N (0;�)

� Wealth of agent
w = r

Z 1

t=0
e�rt (u (ct)� g (at)) dt

(the �r�annuitizes the value of the agent and renders it comparable to u and g)

� Cost function g with g(0) = 0, g0 > 0, g00 > 0

� Consumption utility with u (0) = 0; u0 > 0; limx!1 u0 (x) = 0

� Consumption = wage; no hidden savings

� Revenue of �rm

� = rE
�Z

e�rtdXt

�
� r

Z
e�rtctdt

= r

Z
e�rt (at � ct) dt

5.2 Firm�s problem

� Choose at; ct as function of Xs�t to maximize � subject to (IC) and (IR)

� Recursive approach: Let wt be the continuation wealth of the agent (in utils)

wt = r

Z 1

s=t
e�r(s�t) (u (cs)� g (as)) ds

� Principal chooses ct; at; wt+dt to maximize �t subject to (IC), (IR) and

wt = rdt (u (ct)� g (at)) + (1� rdt)E [wt+dtjat] (PK)
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� The �Promise Keeping�constraint is not a proper constraint, but just an accounting identity that
ensures that wt is actually the continuation value of the agent

�Current payo¤ u (ct)� g (at)

�Continuation wealth E [wt+dt]

� Example: Retiring agent with wealth wt

� Instruct agent not to take any e¤ort at = 0

�Pay out wealth as annuity u (ct) = wt

�Firm pro�t from this contract �0 (u (c)) = �c

� Draw picture of �0 and �

� Decompose principal�s NPV into current pro�ts and continuation value

�t = r (at � ct) dt+ (1� rdt)E [�t+dt]

r�tdt = r (at � ct) dt+ E [d�t]

� Principal�s expected pro�t �t is function of state variable, i.e. of agent�s wealth �(wt)

� The expected value of the increment E [d�t] can be calculated with Ito�s Lemma

Lemma 5 (Ito) Consider the stochastic process wt governed by

dwt =  (wt) dt+ �dZt

and a process �t = �(wt) that is a function of this original process. Then the expected increment of �t is

given by

E [d�(w)] =
�
 (w)�0 (w) +

1

2
�2�00 (w)

�
dt

Proof. By Taylor expansion

�(wt+dt)��(wt) = � (wt +  (wt) dt+ �dZt)��(wt)

= ( (wt) dt+ �dZt)�
0 (wt) +

1

2
( (wt) dt+ �dZt)

2�00 (wt) + o (dt)

= ( (wt) dt+ �dZt)�
0 (wt) +

1

2
�2dZ2t�

00 (wt) + o (dt)

E [� (wt+dt)��(wt)] =  (wt) dt�
0 (wt) +

1

2
�2dt�00 (wt) + o (dt)
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� The reason, the Ito term 1
2�

2�00 (wt) comes in is that wt is oscillating so strongly, with stdv.
p
dt in

every dt.

5.3 Solving the agent�s problem

5.3.1 Evolution of Wealth

� Subtracting (1� rdt)wt from (PK)

rdtwt = rdt (u (ct)� g (at)) + (1� rdt) (E [wt+dt]� wt)

= rdt (u (ct)� g (at)) + E [dwt]

the agent�s value is a function of

� his current consumption u (ct)

� his current e¤ort �g (at)

� the expected drift of his value

� Reversely
E [dwt] = r (wt � (u (ct)� g (at))) dt

� To get at the actual dynamics of wt, assume that value increments dwt are linear in output increments
dXt with wealth dependent sensitivity rb (wt)

dwt = rb (wt) dXt

E [dwt] = rb (wt)E [dXt]

= rb (wt)E [atdt+ dZt]

= rb (wt) atdt

� Therefore, the actual increment of wealth is governed by

dwt = E [dwt] + (dwt � E [dwt])

= r (wt � (u (ct)� g (at))) dt+ rb (wt) (dXt � atdt)

= r (wt � (u (ct)� g (at))) dt+ rb (wt) dZt

�Drifting
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� up when wealth and interest rwt are high
� down when consumption ct is high
� up when e¤ort at is high

�Wiggling

� up, when production exceeds expectations dXt > atdt
� down, when production falls short of expectations dXt < atdt

5.3.2 Agent IC

� Agent�s e¤ort at a¤ects value rwt through

� current marginal cost rg0 (a)

�marginal continuation value b (wt)

� Then, if agent with wealth w is instructed to exert e¤ort a (w) his FOC becomes

rg0 (a (w)) = rb (w) (IC)

� So, if the principal wants to incentivize e¤ort a = a (w) he needs to link the evolution of wealth wt
to output dXt via b (w)

� By (IC) we can write b as a function of a, � (a) = g0 (a)

5.4 The Firm�s Problem - continued

� In the case at hand we have

 (wt) = r (wt � (u (ct)� g (at)))

� = r� (at)

and we get

r�(w) = r (a� c) + r (w � (u (c)� g (a)))�0 (w)+1
2
r2� (a)2�00 (w) ((*))

� So the principal chooses plans a = a (w) > 0 and c = c (w) to maximize the RHS of (*)

� The agent has to retire at some point wr

�Marginal utility of consumption u0 (c)! 0

�Marginal cost of e¤ort g0 (a) � " > 0
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� Boundary conditions

��(0) = 0: If the agent�s wealth is 0, he can achieve this by setting future e¤ort at = 0, yielding
0 to the �rm

��(wr) = �0 (wr) = �u�1 (wr): At some retirement wealth wr, the agent retires

��0 (wr) = �00 (wr): Smooth pasting: The pro�t function is smooth and equals �0 above wr

Theorem 6 There is a unique concave function � � �0, maximizing (*) under the above boundary con-
ditions. The action and consumption pro�les a (w) ; c (w) constitute an optimal contract.

5.5 Properties of Solution

5.5.1 Properties of �

� �(0) = 0

� �0 (0) = 0: terminating the contract at w = 0 is ine¢ cient, and w > 0 serves as insurance against

termination

� �(w) < 0 for large w, e.g. w = wr, because agent has been promised a lot of continuation utility

5.5.2 Properties of optimal e¤ort a�

� Optimal e¤ort maximizes
ra+ rg (a)�0 (w)+

1

2
r2� (a)2�00 (w)

� Increased output ra

�Compensating agent for e¤ort through continuation wealth rg (a)�0 (w) - yes, this is positive
for w � 0

�Compensating agent for income risk 1
2r
2� (a)2�00 (w) - how so?

� Monotonicity of a� (w) unclear

��0 (w) decreasing

��00 (w) could be increasing or decreasing

� As r ! 0, a� (w) decreasing
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5.5.3 Properties of optimal consumption c�

� Optimal consumption maximizes
�rc� ru (c)�0 (w)

and thus

� 1

u0 (c�)
= �0 (w) or c� = 0

�� 1
u0(c�) : cost of current consumption utility

��0 (w): cost of continuation utility

� Thus agent does not consume as long as w small

5.6 Extensions: Career Paths

� Performance-based compensation c (wt) serves as short-term incentive

� Now incorporate long-term incentives into model

� In baseline model principal�s outside option was retirement �0 (u (c)) = �c

� Can model, quitting, replacement or promotion by di¤erent outside options e�0
� This only changes the boundary conditions but not the di¤erential equation determining �

� If agent can quit at any time with outside utility ew, then e�0 (u (c)) = ( �c if u (c) > ew
0 if u (c) = ew

� If agent can be replaced at pro�t D to �rm, then e�0 (u (c)) = D � c
� If agent can be promoted at cost K, resulting into new value function �p, then e�0 (w) =
max f�0 (w) ; �p (w)�Kg

� Find that
quitting < benchmark < replacement, promotion
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5.7 Stu¤

� Change in agent�s value

E [dwt] = E [wt+dt]� wt
=

dwt = wt+dt � wt
= rdt (wt+dt � [u (ct)� g (at)]) + (1� rdt) (wt+dt � E [wt+dt])

= rdt (wt � [u (ct)� g (at)]) + (wt+dt � E [wt+dt])

� Drift in agent�s value

� Increasing via interest at rate r on current wealth wt

�Decreasing in current consumption �u (ct) (if agent eats today, he has less tomorrow)

� Increasing in current e¤ort g (at)

� Assume that value increments are linear in output increments

dwt = b (wt) dXt

= b (wt) atdt+ b (wt) dZt

E [dwt] = b (wt)E [dXt] = b (wt) atdt

� Then,

wt+dt � E [wt+dt] = dwt � E [dwt]

= b (wt) dXt � E [b (wt) dXt]

Random shocks

� through in annuity of accumulated wealth wt, minus

�Current utility u (ct) � g (at) (wealth will increase, dwt > 0, if agent eats less / works more

today, i.e. ct lower or at higher), plus

�Random shocks
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