
1 Introduction Adverse Selection

� Agents have private information, their type �i

� Examples

� Selling stu¤: consumer knows his preference; seller knows quality of product

�Regulating natural monopolies: �rms know their production cost

�Taxing and redistributing income: worker knows productivity or disutility from labor

�Credit markets: entrepreneur knows risk of project

� Insurance: Insuree knows idiosyncratic risk

� Asymmetric information can cause ine¢ ciencies

�Akerlof: market collapse

�Monopoly pricing: Deadweight loss

� Mechanism design approach

�Principal (usually uninformed) proposes mechanism = gameform & outcome function

�Agents accept/reject mechanism

�Agents play the game and outcomes are determined

� Alternative approach: Signalling

� Informed party proposes contract

� In equilibrium contract proposal signals type

� Plan of attack

� Single-agent

�Multi-agent

�Dynamics

1



2 Single Agent - Non-Linear Pricing

� Quasi-linear model

� Consumer (agent)

�Type: taste �

�Utility u = �q � t : taste*quality - price

� Firm�s pro�t: t� c (q) (c increasing, convex)

� Revelation mechanism

�Firm asks agent for type �

�Consumer reports � (IC constraint)

�Mechanism speci�es q (�) ; t (�)

� Taxation mechanism

�Firm o¤ers menu of contracts T (q)

�Consumer with type � picks most favorable contract

Lemma 1 (Revelation principle & Taxation principle) These two approaches are equivalent

Proof. Taxation principle:

� Revelation mechanism q (�) ; t (�) incentive compatible

� Let

T (q) =

(
t (�) if q = q (�)

1 if not

� If q (�) ; t (�) incentive compatible, then type � buys q (�)

Revelation principle:

� Ask agent for � and play taxation mechanism for him

� I.e.: q (�) = maxq f�q � T (q)g and t (�) = T (q (�))
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� Can incorporate (IR) constraint by setting T (0) = 0 (or �u)

� Utility of type � who reports b�
u
�
�;b�� = �q

�b��� t�b��
u (�) = u (�; �)

� Principal�s problem: Choose q (�) ; t (�) to maximize

E� [t (�)� c (q (�))]

such that

u (�; �) � 0 (IR)

u (�; �) � u
�
�;b�� (IC)

� First best

� Substitute (IR) into objective
max
q(�)

E� [q (�) � � c (q (�))]

�Consumers get 0-utility

�Pointwise Maximization: � = c0 (q (�))

�Violates (IC):

u (�H ; �L) = �Hq
�
L � t�L

= (�H � �L) q�L + �Lq�L � t�L
> 0 = u (�H ; �H)

�Draw picture

2.1 Two types �H > �L

� 1� � = Pr (�H)

� Principal maximizes
max

qH ;tH ;qL;tL
f(1� �) (tH � c (qH)) + � (tL � c (qL))g
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such that

�HqH � tH � 0 (IR H)

�LqL � tL � 0 (IR L)

�HqH � tH � �HqL � tL (IC H)

�LqL � tL � �LqH � tH (IC L)

� Will now see that (IR L) and (IC H) are binding and that the other constraint can be replaced with
a monotonicity constraint

�Assume qL > 0 (Otherwise just serve �H e¢ ciently and extract all rents)

� (IR H) is slack:

�HqH � tH � �HqL � tL (by IC H)

> �LqL � tL
� 0 (by IR L)

because of (IR L), (IC H), and �HqL � tL > �LqL � tL
� (IR L) binds: If not can increase tL; tH by "

�Monotonicity: Adding (IC H) and (IC L) yields

�HqH � �LqH � �HqL � �LqL
(�H � �L) qH � (�H � �L) qL

qH � qL (Mon)

� (IC H) binds: If not, increase tH by " because (IR H) is slack

� (IC L) is redundant:

tH � tL = �H (qH � qL) (by IC H)

� �L (qH � qL) (by Mon)

because (IC H) binds and qH > qL

� Program becomes

max
qH ;tH ;qL;tL

f(1� �) (tH � c (qH)) + � (tL � c (qL))g
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such that

u (�L) = �LqL � tL = 0 (IR L)

u (�H) = �HqH � tH = �HqL � tL = (�H � �L) qL (IC H)

qH � qL (Mon)

� Relax program by ignoring (Mon)

(1� �) (�HqH � (�H � �L) qL � c (qH)) + � (�LqL � c (qL))

= (1� �)

0@�HqH � c (qH)| {z }
Welfare

1A+ �
0BB@�LqL � c (qL)| {z }

Welfare

� 1� �
�| {z }

likelihood ratio

(�H � �L) qL| {z }
Rents

1CCA
� Solution

c0 (qH) = �H

c0 (qL) = �L �
1� �
�

(�H � �L)

� Check Monotonicity

c0 (qH) = �H

> �L �
1� �
�

(�H � �L) = c0 (qL)

qH > qL

� Properties

� Low type is ine¢ ciently underserved

� Lowers rents of high type (picture)
� Squeeze passengers in economy class

� Lowest type gets no rents (that would be a waste)

�E¢ ciency at the top

� Nobody can a¤ord to mimic high type
� Serve him optimally (and tax him)

�High type indi¤erent between contracts

� ensured by making economy class uncomfortable
�Quality increases in type (picture)
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2.2 Continuum of types
�
�; �
�

� � 2
�
�; �
�
with pdf f

� Principal�s problem:
max
q(�);t(�)

E [t (�)� c (q (�))]

such that

u (�; �) � 0 (IR)

u (�; �) � u
�
�;b�� (IC)

Theorem 2 q (�) ; t (�) is incentive compatible i¤

u (�) = u (�) +

Z �

�
q (s) ds (Payo¤ Equivalence)

q (�) increasing (Monotonicity)

Proof.

� Only if

�Take �0 > �. Then

�0
�
q
�
�0
�
� q (�)

�
� t
�
�0
�
� t (�) � �

�
q
�
�0
�
� q (�)

�
and hence q

�
�0
�
� q (�) � 0

�Payo¤ Equivalence follows by Envelop Theorem

du

d�
(�) =

@u

@�
(�; �) +

@u

@b� (�; �) = q (�)

(real proof in Milgrom, Segal Ectra. 2002)

� If

u
�
�0
�
= u (�) +

Z �0

�
q (s) ds (by Payo¤ Equivalence)

� u (�) +

Z �0

�
q (�) ds (by Monotonicity)

= u (�) +
�
�0 � �

�
q (�)

= u
�
�0; �

�
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� Principal�s problem:
max
q(�);t(�)

E [t (�)� c (q (�))]

such that

u (�) = u (�) +

Z �

�
q (s) ds (IC FOC)

u (�) = 0 (IR low)

q (�) increasing (Monotonicity)

� Relax Montonicity

E [t (�)� c (q (�))] = E [�q (�)� u (�)� c (q (�))]

= E
�
�q (�)�

Z �

�
q (s) ds� c (q (�))

�
=

Z �

�

�
�q (�)�

Z �

�
q (s) ds� c (q (�))

�
f (�) d�

= �
Z �

�

Z �

s
q (s) f (�) d�ds+

Z �

�
(�q (�)� c (q (�))) f (�) d�

= �
Z �

�
q (s) (1� F (s)) ds+

Z �

�
(�q (�)� c (q (�))) f (�) d�

=

Z �

�

�
�q (�)� 1� F (�)

f (�)
q (�)� c (q (�))

�
f (�) d�

=

Z �

�

��
� � 1� F (�)

f (�)

�
q (�)� c (q (�))

�
f (�) d�

� Marginal Revenue: MR (�) = � � 1�F (�)
f(�)

� Selling q (�) generates

� Surplus �q (�)

�Costs c (q (�))

�Consumer rents 1�F (�)f(�) q (�)

� First order condition
MR (�) = c0 (q (�))

� If MR (�) increasing (e.g. uniform, exponential) then q increasing
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2.2.1 Quadratic Example

� Set-up: � � U [0; 1] ; c (q) = q2=2

� Marginal Revenue: MR (�) = 2� � 1

� Marginal Cost: c0 (q) = q

� Optimal contract q (�) = (2� � 1)+

2.2.2 Linear Cost

� c (q) = cq with q 2 [0; 1]

� No haggling theorem:

q (�) = 1 if MR (�) > c

q (�) = 0 if MR (�) < c

� Same as classic monopoly problem (draw picture)

�Pro�t: p (x)x� cx

�Marginal revenue: m (x) = p (x) + p0 (x)x

�But x = 1� F (�) and dx=d� = �f (�)

�Hence m (x) = � � 1�F (�)
f(�) =MR (�)

2.2.3 Further Remarks

� Generalizes to N agents with independent information: Optimal Auctions

� Quantity

�With one customer, q could be quantity

�With many consumers,

� non-linear price schemes subject to resale constraints
� non-linear costs links problem across consumers (Segal AER 03)

� Non-increasing marginal revenue MR (�)

�Need to iron it

�Replace
R �
MR (s) ds with smallest convex envelop (draw picture)
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3 Multi-Agent

� Examples

�Auctions

�Bilateral Trade

�Production and Distribution in Society

3.1 Setup

� N agents i

� Private information �i; � =
�
�i
�
i21:::N

� Outcomes y 2 Y ; often allocation plus transfers y =
�
k;
�
ti
�
i21:::N

�
� Utility ui = ui (y; �)

� ui = ui
�
y; �i

�
: private valuations

� ui = vik (�)� ti: quasi-linear utility

� Mechanism designer�s objective: �Implement�a choice rule  : �! Y to maximize, e.g.

�E¢ ciency:  (�) not Pareto-dominated given �

�Quasi-linear  = (q; t)

� E¢ ciency: q (�) maximizes
X

i
vik (�)

� Revenue: Maximize E
hX

i
ti (�)

i
� Mechanism m

�Game form with strategy sets Si

�Outcome function mapping terminal nodes of game form to Y

� Mechanism m (partially) �x�-implements of choice rule  if there exists a strategy pro�le s� =�
s1�; :::; s

n
�
�
such that

�Terminal node of s1�
�
�1
�
; :::; sn� (�

n) is mapped to  (�)

� s� is an �x�-equilibrium

� Full implementation: If this is true for every equilibrium s�
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3.2 Revelation Principle

� Set of all mechanisms has little structure

� Particular class of mechanisms: Revelation mechanisms: Si = �i, i.e. strategy is to state a type b�i
De�nition 3 Choice rule  : � ! Y is incentive compatible wrt. equilibrium concept �x�, if stating the

truth b�i = �i is an �x�-equilibrium.

Theorem 4 (Revelation Priniciple) A choice rule  is (partially) implementable by any mechanism,

if and only if it is incentive compatible.

Proof. If:

�  incentive compatible ->  is implemented by the revelation mechanism

Only if:

� Let  be implemented by mechanism m with strategies si�
�
�i
�

� Strategy si�
�
�i
�
is better than any other strategy si0, in particular better than the equilibrium strategy

of any other type si�
�b�i�

� Revelation mechanism: Agents report b�, mechanism implements  
�b��

� Need to verify: i optimally reports b�i = �i

� If agent reports b�i 6= �i, achieves same result as when playing si�
�b�i� in mechanism m

� If agent reports b�i = �i, achieves same result as when playing si�
�
�i
�
in mechanism m

�This is by assumption better

� Very robust insight

�Holds for all standard implementation concepts

� If agents control actions ai on top of common decision  (Myerson 1982, Ectra.) can replace
any mechanism with centralized mechanism where

� Agents report types b�i
� Mechanism designer recommends actions bai
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� In equilibrium agents are truthful b�i = �i and obedient ai = bai
� If agents can act sequentially and acquire further information (Myerson 1986 Ectra) can replace
any mechanism with centralized mechanism where

� Agents report everything they have learned so far
� Mechanism designer recommends actions bai (but nothing more)
� In equilibrium agents are truthful and obedient

� Limitations

�Full implementation: Revelation mechanism may have additional equilibria

�Multiple Principals: Mechanism of one principal may reference mechanism of other principal...

� Informed Principal: Proposing a mechanism serves as signal about own information

� Revelation mechanism not example of real-life mechanisms but limit on what is achievable; not robust
to

�Communication costs

�Bounded rationality

3.3 Equilibrium concepts

� Dominant-strategy (strategy-proof) implementation: For all i; �i;b�i; ��i;b��i
ui
�
 
�
�i;b��i� ; �� � ui

�
 
�b�i;b��i� ; ��

�Strategy is optimal no matter what�

� Ex-post implementation: For all i; �i;b�i; ��i
ui
�
 
�
�i; ��i

�
; �
�
� ui

�
 
�b�i; ��i� ; ��

�Strategy is optimal against any opponent types who play equilibrium�

� Bayesian Nash implementation:

�There is a common prior � over �

�Agents beliefs �i
�
�j�i
�
over ��i are given by Bayesian updating
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�For all i; �i;b�i
E�i(�j�i)

�
ui
�
 
�
�i; ��i

�
; �
��
� E�i(�j�i)

h
ui
�
 
�b�i; ��i� ; ��i

�Strategy is optimal in expectation, given beliefs �i
�
�j�i
�
�

� Interim (robust) implementation (Bergemann, Morris 2005, Ectra)

�Agents�types � i =
�
�i; �i

�
have two components

� Payo¤ relevant information �i

� Beliefs �i over ��i

�For all i; � i =
�
�i; �i

�
; si0

E�i
�
ui
�
 
�
�i; ��i

�
; �
��
� E�i

h
ui
�
 
�b�i; ��i� ; ��i

�Strategy is optimal in expectation, given beliefs �i�

� If all beliefs are possible, i.e. �i = �
�
��i

�
, interim implementation coincides with ex-post

implementation

� Complete information implementation

�Every agent knows �, i.e. �i = �

�For all i; �;b�
ui ( (�; �; :::; �) ; �) � ui

�
 
�b�; �; :::; �� ; ��

�Truth telling is Nash equilibrium�

3.4 The Dictator Theorem

� Gibbard 1973 Ectra, Satterthwaite 1975 JET

� N � 2 agents

� Y � 3 outcomes

� Types �i = ui strict preference order over Y

� Choice rule  

�Exhaustive if  (�) = Y
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�Dictatorial with dictator i if for all types � the rule picks i�s favorite outcome, i.e.  (�) = a

such that ui (a) > ui (b) for all b 2 Y

Theorem 5 Every exhaustive, strategy-proof choice rule is dictatorial

� Not true for Y = 2: Voting with any majority rule is strategy proof.

� Bayesian implementation unclear: Prior over ordinal preferences messy

Lemma 6 (Monotonicity) Every strategy-proof choice rule is monotone: If  (u) = a and a is at least

as preferable under v than it is under u, i.e. for all i and b

ui (a) � ui (b)) vi (a) � vi (b)

then  (v) = a.

Proof.

� Suppose �rst that v =
�
v1; u�1

�
and  (v) = a0.

� By strategy-proofness of agent 1

u1 (a) � u1
�
a0
�

v1 (a) � v1
�
a0
�

v1
�
a0
�
� v1 (a)

and therefore a = a0

� This argument can be repeated for every agent

Lemma 7 (Pareto) If vi (a) > vi (b) for all i, then  (v) 6= b.

Proof.

� Suppose to the contrary that  (v) = b

� Let w be such that

wi (a) > wi (b) > wi (c) and wi (c) = vi (c) for all c 6= a; b

� As  (v) = b and b is as least as preferable under w than it is under v we have  (w) = b
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� As  is exhaustive, there exists u with  (u) = a

� As a is at least as preferable under w as under u we have  (w) = a

Lemma 8 (2 agents) The Theorem holds for N = 2.

Proof.

� Consider the preference pro�le

u =
�
u1; u2

�
=

0B@ a b

b a

c c

1CA
� By Lemma Pareto we have  (u) 6= c

� Assume  (u) = a

� Then for

v =

0B@ a b

b c

c a

1CA
we have  (v) 6= c by Lemma Pareto, and  (v) 6= b by strategy proofness of agent 2 with preference

u2

� Thus,  (v) = a

� By Lemma Monotonicity, we have  (w) = a whenever agent 1 ranks a highest

� Thus, agent 1 is a dictator for a

� Let Y 1 � Y be the set of outcomes for which 1 is the dictator, and similarly Y 2

� Let Y 0 be the set of outcomes for which no agent is a dictator

� #Y 0 � 1 by the above

� Thus as #Y = 3, if Y 1 6= ; then Y 2 = ;

� If a 2 Y 1 and b 2 Y 0, consider again u

� We know that either b 2 Y 2 or a 2 Y 1, but Y 2 = ;
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Proof of Theorem.

� By induction, assume the Theorem holds for p < N agents

� Let ' be voting rule for two agents de�ned by

'
�
u1; v

�
=  

�
u1; v; � � � ; v

�
�' is exhaustive because  is, and by Lemma Pareto

�' is strategy proof

� Consider deviation to w by agent 2

� Let ak :=  

0@u1; w; � � � ; w| {z }
k times

; v; � � � ; v

1A
� v (ak�1) � v (ak), because  is strategy-proof

� Thus, v
�
'
�
u1; v

��
= v (a0) � v (aN�1) = v

�
'
�
u1; w

��
�Thus ' is dictatorial

� If agent 1 is the dictator, we are done

� If agent 2 is the dictator for ', �x u1� and consider

�
�
u2; � � � ; uN

�
=  

�
u1�; u

2; � � � ; uN
�

� � is strategy-proof

� � is exhaustive (because 2 is dictator for ')

�By induction, � is dictatorial with dictator 2, say

� Consider, �nally,
%
�
u1; u2

�
=  

�
u1; u2; u3�; � � � ; uN�

�
for arbitrarily �xed u3�; � � � ; uN�

� � is exhaustive (because 2 is dictator for �)

� � is strategy proof (because  is)

�Thus � is dictatorial

�But 1 cannot be the dictator because type u1� does not get his most prefered outcome as 2 is
the dictator of �

�Thus, 2 is the dictator of � for any u3�; � � � ; uN�
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� Thus, 2 is the dictator ofo  

3.4.1 Restricted preference domains

� Single-peaked preferences:

�Exists uniform order on Y and for all ui there is y such that ui increasing below y and decreasing
above y

�Median voter rule, e.g., is strategy proof

� Quasi-linear, private value utility:

� Surplus-maximizing choice rule q (�) = argmaxk
nX

i
vik
�
�i
�o

� can be made strategy-proof by VCG transfers ti (�) =
X

j 6=i
vj
q(��i)

�
�j
�
, where q

�
��i
�
maxi-

mizes
X

j 6=i
vjk
�
�j
�
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4 Quasi-linear, private values

� ui = vi
�
k; �i

�
� ti

� Direct mechanism (q; t) : �! K � RN

4.1 VCG: E¢ ciency

� Mechanism ex-post e¢ cient: q� (�) maximizes
X

i
vi
�
k; �i

�
for all �

Theorem 9 (Vickrey, Clarke, Groves) For quasi-linear utilities, the e¢ cient allocation rule q is dominant-
strategy implementable.

Proof.

� Let ti
�b�� = �X

j 6=i
vj
�
q�
�b�� ;b�j�: Value of other agents

� Thus, for any ��i;b��i, the utility from reporting b�i is total social surplus
ui
�
�i;b�i� = vi

�
q�
�b�� ; �i�� ti �b��

= vi
�
q�
�b�� ; �i�+X

j 6=i
vj
�
q�
�b�� ;b�j�

=
X

vj
�
q�
�b�i;b��i� ; �i;b�j�

� To maximize this over b�i, type �i should report truthfully.

4.1.1 Externality mechanism (Clarke 71)

q�;�i
�b�� : = argmax

k

X
j 6=i

vj
�
k; �j

�
ti
�b�� = �

X
j 6=i

vj
�
q�
�b�� ;b�j�| {z }

Value of j 6=i with i

+
X
j 6=i

vj
�
q�;�i

�b�� ;b�j�| {z }
Value of j 6=i without i

� Agent i pays the externality of his report on others

� This is still strategy-proof, because
X

j 6=i
vj
�
q�;�i

�b�� ;b�j� does not depend on b�i
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4.1.2 Extensions

� Insight �E¢ cienct Allocations are Strategy-proof when externalities are internalized�is very robust

� No topological assumptions on type space (connectedness, dimensionality, etc.)

� Extends to Dynamic Mechanisms: (Bergemann, Valimaki Ectra 2002)

1. Agent acquires information �i at cost ci

2. Agent reports information b�i to principal
3. Principal decides on outcome and transfers

) VCG transfers gives full informational externality to agent

4.1.3 Limitations

� Private values:

� If vi (k) = vi
�
k; �i; ��i

�
, then agent j�s perceived value vj depends directly on i�s report b�i

�This distorts i�s incentive to report truthfully

� Budget-balance constraint:
X

i
ti (�) = 0 for all �

Theorem 10 (Green, La¤ont) If �i is su¢ ciently rich, no e¢ cient, strategy-proof mechanism is budget-
balanced.

4.2 Payo¤ Equivalence

� �i independently distributed with pdf f i
�
�i
�

� Interim expected utility

U i
�
�i;b�i� = Z

��i

�
vi
�
q
�b�i; ��i� ; �i�� ti �b�i; ��i�� f�i ���i� d��i

� In BNE: U
�
�i
�
= U

�
�i; �i

�
� U i

�
�i;b�i�

Theorem 11 (Milgrom, Segal (2002)) If �i connected (and other regularity assumptions are satis�ed),
and (q; t) is BNE, then

U i
�
�i0
�
= U

�
�i
�
+

Z �i0

�i
@1U (� ; �) d� :
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� @1 is partial derivative wrt. true type

@1U (� ; �) =

Z
��i

@�iv
i
�
q (�) ; �i

�
f�i

�
��i
�
d��i

� Without independence would get additional term ui (�) @�if
�i ��i; ��i�

� Integral is path-integral from �i to �i0

4.2.1 Object allocation with one-dimensional types

� �i 2
�
�i; �i

�
with cdf F i, often symmetric

� vi
�
q (�) ; �i

�
= q (�) �i

� q (�) =
�
qi (�)

�
i2N;i=0 2 �(N + 1) stochastic allocation among N agents and principal 0

� Risk-neutrality: ui = qi�i � ti

� Expected allocation: Q
�
�i
�
=
R
��i q

�
�i; ��i

�
dF�i

�
��i
�

Proposition 12 Mechanism (q; t) is Bayesian incentive compatible i¤

U i
�
�i0
�
= U

�
�i
�
+

Z �i0

�i
Q (�) d� (IC-FOC)

Q (�) non-decreasing (MON)

Proof. Just as in single-agent case.

4.2.2 Calculating bidding functions

� First-price auction: ui =
�
�i � �

�
�i
��
qi (�)

� Ex-ante symmetric bidders �i � f
�
�i
�

� In e¢ cient equilibrium:

�U i (�) = 0

�Qi
�
�i
�
= F (�)N�1

�U i
�
�i
�
=
R �i
� F (�)N�1 d�

� On the other hand U i
�
�i
�
=
�
�i � �

�
�i
��
Qi
�
�i
�
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� Thus

�
�
�i
�
= �i �

R �i
� F (�)N�1

F
�
�i
�N�1

� Uniform case with
�
�; �
�
= [0; 1]: �

�
�i
�
= �i � (�

i)
N�1

=N

(�i)
N�1 = N�1

N �i

4.3 Optimal Auctions

� Seller chooses q; t to maximize

R = E

"X
i

ti (�)

#

= E

"X
i

qi (�) vi
�
�i
�
� U i

�
�i
�#

subject to

�Resource constraint:
X

i
qi (�) � 1

� IC-FOC

�MON

� IR: U i (�i) � 0

� Bidders�rents

E
�
U i
�
�i
��

= E

24U i (�i)| {z }
=0

+

Z �i

�
Qi (�) d�

35
=

Z �
i

�i

Qi
�
�i
� �
1� F i

�
�i
��
d�i

by the same argument as in the single-agent case

� Back to the principal

R =
X
i

Z
�i

 
Qi
�
�i
�
�i �Qi

�
�i
� 1� F i ��i�

f i
�
�i
� !

dF i
�
�i
�

=

Z
�

X
i

qi (�)

 
�i �

1� F i
�
�i
�

f i
�
�i
� !

dF (�)

=

Z
�

X
i

qi (�)MRi
�
�i
�
dF (�)
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� Optimal mechanism:

�Allocate object to bidder i with highest marginal revenue MRi
�
�i
�
if � 0

�Otherwise, keep it

4.3.1 Optimal �real�mechanisms

� De�ne ri by MRi
�
ri
�
= 0

� Optimal mechanism does not sell to types �i < ri

� In symmetric setting, any standard auction with reserve price r and symmetric monotone equilibrium
is optimal

� Second price

�First price

�All pay

� Example:

�
�
�; �
�
= [0; 1], uniform distribution

�MR
�
�i
�
= �i � 1�F(�i)

f(�i)
= 2�i � 1

� r = 1=2

� Reserve price serves same function as monopoly price:

� Sacri�ce surplus from low types to extract rents from high types

� Interesting: Optimal reserve price does not depend on N

� Entry fees e:

�Alternative feature to extract rents from low types

�Optimal mechanism sets e to make type �i = r indi¤erent about entry

� Asymmetries:

�Bidder j has ex-ante higher types than bidder i, say fj(�)
1�F j(�) <

f i(�)
1�F i(�)

�Then MRi (�) = � � 1�F i(�)
f i(�)

> � � 1�F j(�)
fj(�)

=MRj (�)

�Thus, if �i = �j � ", still allocate to i

�Favor weak bidders, and extract more from high types of strong bidders
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4.4 Ine¢ ciency of Bilateral Trade

� Buyer with value v � F [v; v]

� Seller with cost c � G [c; c]

� Mechanism:
�
q; tB; tS

�
�Probability of trade q (v; c) 2 [0; 1]

�Payment by buyer tB (v; c)

�Payment to seller tS (v; c)

� E¢ ciency requires
q (v; c) = 1 i¤ v > c (E¤)

� Individual rationality constraints:

UB (v) =

Z �
q (v; c) v � tB (v; c)

�
dG (c) � 0 for all v (IR B)

US (c) =

Z �
tS (v; c)� q (v; c) c

�
dF (v) � 0 for all c (IR S)

� Budget-balance constraint:

tB (v; c) � tS (v; c) for all (v; c) (BB Ex-Post)

E
�
tB (v; c)

�
� E

�
tS (v; c)

�
(BB Ex-Ante)

� For mechanism m = (q; t), de�ne expected surplus and revenue

S (m) =

Z
q (v; c) (v � c) dF (v) dG (c)

R (m) =

Z �
tB (v; c)� tS (v � c)

�
dF (v) dG (c)

Theorem 13 (Myerson-Satterthwaite 1983) Assume continuous, overlapping type spaces, i.e. v �
c < v � c. The e¢ cient allocation rule q (v; c) = 1 i¤ v > c is not implementable under Bayesian-Nash

IC, IR, and BB Ex-ante.

Proof.
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� Consider mechanism V CG: If v > c

q (v; c) = 1

tB (v; c) = c (buyer pays his externality)

tS (v; c) = v (seller receives his externality)

otherwise, q = tB = tS = 0

� By VCG this is strategy-proof

� The lowest-type buyer v never trades: UBV CG (v) = 0

� The highest-cost seller c never trades: USV CG (c) = 0

� Mechanism has de�cit of R (V CG) = E
�
tB (v; c)� tS (v; c)

�
=
R
v>c (c� v) dF (v)dG(c) < 0

� Both agents capture full surplus, but there�s only one surplus to go around

� And every e¢ cient, IC, IR mechanism m = (q; t0) has at least this de�cit

�By E¢ ciency

S (V CG) = S (m) =

Z
v>c

(v � c) dF (v) dG (c)

�By Rev. Equiv.

UBm (v)� UBm (v) = UBV CG (v)� UBV CG (v) =
Z v

v
QB (�) d�

USm (c)� U sm (c) = USV CG (c)� USV CG (c) =
Z c

c
QS (�) d�

�Thus,

R (m) = S (m)�
�
E
�
UBm (v)

�
+ E

�
USm (c)

��
= S (V CG)�

�
E
�
UBV CG (v)

�
+ E

�
USV CG (c)

��
+UBV CG (v) + U

S
V CG (c)� UBm (v)� U sm (c)

� R (V CG)

< 0
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� The Theorem continues to hold if [v; v] 6= [c; c] as long as e¢ cient trade is not certain, i.e. v < c

�Need to change V CG payments to

tB (v; c) = max fc; vg

tS (v; c) = min fc; vg

to ensure UBV CG (v) = USV CG (c) = 0

�This mechanism still has a de�cit: if v > c

tB (v; c) = max fc; vg < min fc; vg = tS (v; c) if c > v

4.5 Correlated Values - Full Surplus Extraction

� Cremer, McLean (1985), (1988)

� Often types are correlated: common quality component x (unknown to seller) correlates the condi-
tionally independent signals of the agents

� Signal �i = x+ "i where "i independent

�Private values vi = �i

�Common values x

� Revenue equivalence breaks down

d

d�i
U
�
�i
�
=

d

d�i

Z
��i

�
qi
�b�i; ��i� �i � ti �b�i; ��i�� f�i ���ij�i� d��i

= Qi
�
�i
�
+

Z
��i

ui
�b�i; ��i� d

d�i
f�i

�
��ij�i

�
d��i

= ???

� Thus (IC) plus binding (IR) constraints for �lowest type�does not pin down transfers and utility

� Let �i =
�
�; � � � ; �

	
for i = 1; � � � ; N (McAfee, Reny (�92) generalizes this to continuous types)

� Assume that type distribution is �generic� in that the M beliefs �i
�
�j�i
�
=

f(�i;�)
f(�i;�) 2 �

�
��i

�
are

linearly independent 0B@ �i (�; � � � ; �j�) � � � �i
�
�; � � � ; �j�

�
� � � � � � � � �

�i
�
�; � � � ; �j�

�
� � � �i

�
�; � � � ; �j�

�
1CA

| {z }
M rows, (N�1)M columns
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has full rank M

� This is �generically�satis�ed (for parameter set with full Lebesgue measure) as long as #��i � #�i

� It is violated for statistically independent types �i ) beliefs �i
�
�j�i
�
= �i (�) are indepent of �i

Theorem 14 (Cremer, McLean) For generic information structures, and any IC, IR mechanism (q; t)

there exists an alternative (IC) mechanism (q; t+ `), where IR binds for all types.

In particular, there exists an ex-post e¢ cient mechanism that extracts all surplus.

Proof.

� Calculate interim utilities U i
�
�i
�
in (q; t)

� Require agent i to accept a lottery ` = `
�
��i
�
that solves0B@ E

�
`
�
��i
�
j�i = �

�
� � �

E
�
`
�
��i
�
j�i = �

�
1CA =

0B@ �i (�; � � � ; �j�) � � � �i
�
�; � � � ; �j�

�
� � � � � � � � �

�i
�
�; � � � ; �j�

�
� � � �i

�
�; � � � ; �j�

�
1CA
0B@ ` (�; � � � ; �)

� � �
` (�; � � � ; �)

1CA =

0B@ U i (�)

� � �
U i
�
�
�
1CA

(*)

if he wants to participate in (q; t)

� This lottery exists by assumption

� Now, U i(q;t+`)
�
�i; q; t+ `

�
= U i(q;t)

�
�i
�
� E

�
`
�
��i
�
j�i
�
= 0

� If rows �i
�
�j�i
�
are almost (but not quite) linearly dependent, the lottery ` satisfying (*) needs large

payments `
�
��i
�
� 0

� If (q; t) is Bayes-Nash IC, then so is (q; t+ `)

� If (q; t) is strategy-proof, then so is (q; t+ `)

� Alternative Bayesian mechanism

�Assume types perfectly correlated, i.e. Pr
�
��i = (x; � � � ; x) j�i = x

�
= 1 for any x

� Set ti
�b�� =1 unless b�1 = � � � = b�N

�This makes any allocation rule q Bayesian incentive compatible (but not ex-post IC or strategy-
proof)

� Example:
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�N = 2 and � = f0; 1g with f
�
�i; �j

�
=

 
1=3 1=6

1=6 1=3

!
, so �i

�
��i; �i

�
=

 
2=3 1=3

1=3 2=3

!
� (q; t) second-price auction without reserve

�U (0) = 0

�U (1) = �i
�
��i = 0j�i = 1

�
(1� 0) = 1=3

� So `
�
��i
�
must satisfy 

E
�
`
�
��i
�
j�i = 0

�
E
�
`
�
��i
�
j�i = 1

� ! =  2=3 1=3

1=3 2=3

! 
` (0)

` (1)

!
=

 
0

1=3

!

�Take ` (1) = 2=3 and ` (0) = �1=3, i.e. make bidder i bet on ��i = 0 at odds 1 : 2

� �i = 0 thinks ��i = 0 likely and is indi¤erent about bet
� �i = 1 thinks ��i = 0 unlikely and does not like the bet, but is indi¤erent when it is coupled
to the auction

4.5.1 Limitations

� Surplus-extraction mechanism satis�es

�Dominant-strategy, ex-post IC

�But only Interim IR!

� Ex-post IR constraint binds because of lottery `

� If prior � is almost independent, then `� 0, and ui
�b��� 0 for some b�

� Limitations of full-surplus extraction

�Risk-aversion

�Collusion

�Uncertainty about beliefs (Neeman, JET, 2004, Heifetz, Neeman, Ectra, 2006)

� Agents have beliefs and maximize subjective expected utility, BUT designer may not know beliefs

� (Finite) type space T i = �i ��i where �i � �
�
T�i

�
, with type ti =

�
�i; �i

�
�Payo¤ relevant type �i

�Belief type �i (�)
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� In classical Bayesian setting with correlated prior � 2 �(�), payo¤ types �i and belief types �i are
one-to-one

� Cremer McLean: Belief type �i is not really private, and gives payo¤ type �i away ) agent�s rents

can be extracted

� Consider larger type space T i where beliefs do not determine preferences (BDP)

� I.e. exists two types ti =
�
�i; �i

�
; ti0 =

�
�i0; �i

�
with

�Di¤erent payo¤ characterisitics �i < �i0

� Identical beliefs �i

� Interim expected utility

U i
�
ti;bti� = Z

T�i

�
qi
�bti; t�i� �i � pi �bti; t�i�� d�i �t�i�

� Now, consider mechanism (q; p) : T ! N � RN that satis�es

U
�
ti; ti

�
� U i

�
ti;bti� (Interim IC)

U
�
ti; ti

�
� 0 (Interim IR)

for all ti;bti 2 T i
� If ti =

�
�i; �i

�
gets served, i.e. Q

�
ti
�
> 0, then ti0 =

�
�i0; �i

�
will get positive rents (Neeman 2004)

U
�
ti; ti

�
� 0 (Interim IC)

U
�
ti0; ti0

�
� U

�
ti0; ti

�
(Interim IR)

=

Z
T�i

�
qi
�
ti; t�i

�
�i0 � pi

�
ti; t�i

��
d�i

�
t�i
�

= Q
�
ti
� �
�i0 � �i

�
+ U

�
ti; ti

�
> 0

� Heifetz, Neeman (2006): When beliefs �i
�
�j�i
�
are derived from common prior � on T , then for

�generic�priors � 2 �(T ) BDP is not satis�ed, and full surplus extraction is not possible
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5 Dynamic Screening

� 2-period price discrimination

� Buyer
u =

X
t=1;2

qt�t � pt

� Seller X
t=1;2

(pt � c (qt))

� Mechanism:

q1 (�1) ; p1 (�1)

q2 (�1; �2) ; p2 (t1; t2)

5.1 Commitment

� Seller can commit to mechanism

�Ratchet E¤ect: No unilateral deviation (violating IR) by principal after learning �1 in period 1

�Renegotiation-proof: No bilateral deviation (satisfying IR) by principal and agent in period 2

5.1.1 Constant Type

� �1 = �2 = �

Proposition 15 Optimal 2-period contract repeats optimal short-term contract.

Proof.

� Consider � with q1 (�) 6= q2 (�)

� Mechanism can be replicated by repetition of static randomized mechanism

� But optimal short-term mechanism is deterministic: q (�) = 1 i¤MR (�) > 0

� Consumer gets informational rent twice

� After learning �, seller has interest to change contract, even if he has to compensate buyer
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5.1.2 Independent Type

� �1; �2 independent

� Buyer initially only knows �1

Proposition 16 Optimal contract q�1 (�1) ; q
�
2 (�1; �2), satis�es

MR (�1) = c0 (q�1 (�1)) (Period 1)

�2 = c0 (q�2 (�2)) (Period 2)

Proof.

� Buyer will receive informational rents of at least E [u (�)] =
R
q1 (�1) (1� F (�1)) d�1 from knowing

�1 before contract is signed

� Seller faces usual trade-o¤ for q�1 (�1) when maximizing R = E [S (�)� u (�)� c (q (�))]

� But seller faces no trade-o¤ for q�2 (�2)

�Allocate e¢ ciently: �2 = c0 (q�2 (�2))

�Charge expected 2nd period value p2 = E [�2q�2 (�2)] in period 1

� Buyer does not get information rent for �2 because contract is signed before �2 is learned

� Renegotiation constraints not binding: Seller sells e¢ ciently and reaps all rents

� Consumer gets informational rent only for �1

5.1.3 Correlated Types

� Courty, Li, 2000, REStud

� Types

�1 � F (�1)

�2 � G (�2j�1)

� Period 2
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� IC 2

u2

�b�1; �2j�1; �2� = q2

�b�1; �2j�1; �2� �2 � p2 �b�1; �2j�1; �2� �
� q2

�b�1;b�2j�1; �2� �2 � p2 �b�1;b�2j�1; �2� = u2

�b�1;b�2j�1; �2�
�Envelope Theorem

u2

�b�1; �2j�1; �2� = Z �2

�
q2

�b�1; s� ds
� Smart accounting

E
h
u2

�b�1; �2j�1; �2� j�b�1; �1�i = Z �

�
q2

�b�1; �2� (1�G (�2j�1)) d�2
� Period 1

�Expected utility of type �1 when stating b�1
u
�
�1;b�1� = �1q1

�b�1�� p1 �b�1�+ Z �

�
q2

�b�1; �2� (1�G (�2j�1)) d�2
�Envelope theorem

u0 (�1) = q1 (�1)�
Z �

�
q2

�b�1; �2� @

@�1
G (�2j�1) d�2

� Smart accounting

E [u (�1)] = E
�
u0 (�1)

1� F (�1)
f (�1)

�
= E�1

�
E�2j�1

�
q1 (�1)� q2

�b�1; �2� @�1G (�2j�1)
g (�2j�1)

�
1� F (�1)
f (�1)

�
� Optimal quantities

�1 �
1� F (�1)
f (�1)

= c0 (q1 (�1))

�2 +
@�1G (�2j�1)
g (�2j�1)| {z }

Informativeness

1� F (�1)
f (�1)

= c0 (q2 (�1; �2))

� Both over- and under-provision of quality in optimal contract

� Usually @�1G (�2j�1) < 0, so under-provision
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� No distortion for highest type �1

� No distortion for types �2 in ranges where @�1G (�2j�1) = 0

� Example:

�Additive FOSD structure
�2 =

1

2
�1 +

1

2
"

where " � H [�1;1]

�Then

G (�2j�1) = Pr

�
1

2
�1 +

1

2
" � �2

�
= Pr (" � 2�2 � �1)

= H (2�2 � �1)

@�1G (�2j�1) = �h (2�2 � �1)

5.2 No Commitment

� La¤ont, Tirole (1990)

� Short-term contracts

� Fixed types (no problems if types are independent)

� Continuum of types
�
�; �
�

Proposition 17 In the optimal contract there is no non-trivial interval of types (�0; �1) that separates in
the �rst round.

� Once � is revealed, rents in period 2 are zero

� Lying b� = � � ", has �rst order gain in period 2 and only second order loss in period 1

Proof.

� For �;b� = � � " 2 (�0; �1)

u2

�b�; �� =
�
� � b�� q2 �b��

u2 (�; �) = 0
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� Incentive constraints

�q1 (�)� p1 (�) � �q1

�b��� p1 �b��+ �� � b�� q2 �b�� (IC)

b�q1 �b��� p1 �b�� � b�q1 (�)� p1 (�) (IC�)

� Then

0 � �q01 (�)� p01 (�) by (IC�)

�
�
� � b�� q2 �b�� by (IC)

� This cannot be if q2
�b�� > 0

� Thus, optimal contract must feature pooling intervals

� Analogy Crawford, Sobel (1982)

5.3 Durable Goods

5.3.1 Commitment

Fixed Demand

� Distribution F (�) of buyers, available in period 1; 2; � � � ;1

� Consumer utility, when reporting b�
ui = �t(

b�)q �b�� � � p�b��
and receiving object in t

�b��
� Firm maximizes

max
t(�)

E
h
MR (�) �t(�)

i
=

Z
m (�) �t(�)d�

where

m (�) =MR (�) f (�) = �f (�)� (1� F (�))

� Solution (Stokey 1979)

� (�) =

(
1 if m (�) � 0
1 if m (�) � 0
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� No-haggling

� Result remains if new cohort of F (�) buyers enters every round

Varying Demand

� Ft (�) in t = 1; 2

� Firm maximizes

max
�(t;�)�t

X
t=1;2

Z
mt (�) �

�(t;�)d�

� Solution (Board 2008)

� Period 1: Sell to all types
�
��1; �1

�
where

m1 (�
�
1) = 0

� Period 2:

�Face F2 (�) and F1 (�j� � ��1)

�Marginal revenue
M2 (�) = m2 (�) + min f0;m1 (�)g

�When � < ��1, i.e. when selling to types left-over from period 1 with m1 (�) < 0, damage revenue

in period 1 (never happens if Ft independent of t)

�Optimally, sell to [��2;1] where
M2 (�

�
2) = 0

5.3.2 No Commitment - Coase

� Coase conjecture: Durable-goods monopolist always faces competition: Himself in the future

� When buyers are patient, seller cannot extract any pro�ts

� Solution: Renting

2 periods

� Bulow 1982

� � � U [0; 1]

� Serve [��; 1] in period 1
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� In period 2, p2 = ��=2

� Consumer indi¤erence

�� (p1)� p1 = � (�� (p1)� p2)

p1 = (1� �=2) �� (p1)

�� (p1) = kp1 where k = (1� �=2)�1

� Period 1: Choose p1 (or equivalently choose �� (p1)) to maximize

� = (1� �� (p1)) p1 + � (�� (p1) =2)2

= (1� kp1) p1 + �k2p21=4

� First order condition

0 = 1� 2kp�1 + �k2p�1=2

p�1 =
�
2k � �k2=2

��1
= k�1

1

2� �k=2

=
1� �=2
2� �

2��

=
(2� �) (2� �)

8� 6�

� Example: � = 0

� p�1 = 4=8 = 1=2

� ��1 = 1=2 - like in static model

� p�2 = 1=4

�Pro�t � = 1
2
1
2 + 0

1
4
1
4 = 1=4, like in static model

� Example: � = 1

� p�1 = 1=2

� ��1 (1=2) = (1� 1=2)
�1 1=2 = 1 - everybody waits

� p�2 = 1=2

�Pro�t � = 0 + 112
1
2 = 1=4 - like in static model

�Got lucky that there game ends after period 2
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� Example: � = 1=2

� p�1 = 9=20

� ��1 = (1� 1=4)
�1 9=20 = 3=5

� p�2 = 3=10

�Pro�t: � = 9=20 � 2=5 + 1=2 � 9=100 = 22:5=100 < 1=4

� Indi¤erence types ��t (�) increasing in �

Continuous Time

� Fuchs, Skrzypacz, AER 2009

� Period length � � 0

� Interest rate r

� Strategies

� Seller quotes price p = p (�) as a function of history; Skimming property: History can be

summarized by set of remaining types [�; �]

�Buyer chooses cuto¤ �+ = �+ (p): Types [�; �+] wait, [�+; �] buy

� Draw graph of � (t) ; p (t)

� Problem

� In discrete time, this becomes very messy (Gul, Sonnenschein, Wilson 1986)

� In continuous time, there is no equilibrium because the seller will try to cut the price ever faster
(in the limit the price drops to zer instantly, which is not an equilibrium)

� Trick:

�Arrival of clone with probability �� � 1� e�� -> object is sold at auction for �

�This puts a lower bound on the seller�s opportunity value of selling

� If seller just waits and only sells at arrival, i.e. �+ (p) = �; p (�) = �, payo¤ is

V =

Z
e�rt�e��tE [�] dt =

�

r + �
E [�]

�This is not an equilbirium, but we�ll see that this is actually the pro�t he�ll make in equilibrium
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� Indi¤erence condition of buyer �+ = �+ (p) as function of price today p (�) and price tomorrow p (�+)

�+ � p (�) = e�r�e��� (�+ � p (�+)) (Buyer)

� (Buyer) allows us to write p = p (�; �+): Price that makes �+ indi¤erent, given p (�+)

� Seller�s payo¤ in period t when [�; �] types remain and types (�+; �) buy in next period

V (�) = ��E
he�je� � �

i
| {z }
Clone arrives

+e���

26664
�
F (�)� F (�+)

F (�)

�
p (�; �+)| {z }

Buyer buys

+
F (�+)

F (�)
e�r�V (�+)| {z }

Buyer waits

37775
� Seller maximizes RHS through choice of �+ (note that �+ determines p (�; �+))

� Subtracting e�r�V (�) on both sides, we can rewrite

r�V (�) = max
�+

8>>><>>>:
��E

he�je� � �
i
+ e���| {z }

�1

�
F (�)�F (�+)

F (�)

�
p (�; �+)+�

e��� F (�+)F (�) � 1
�
e�r�V (�+)| {z }

�V (�)

+ e�r�| {z }
�1

(V (�+)� V (�))

9>>>=>>>;
= max

�+

8><>:
��
�
E
he�je� � �

i
� V (�)

�
+
�
F (�)�F (�+)

F (�)

�
p (�; �+)

+ e���| {z }
�1

�
F (�+)
F (�) � 1

�
V (�) + (V (�+)� V (�))

9>=>;
= ��|{z}

Pr(Arrival)

�
E
he�je� � �

i
� V (�)

�
| {z }

Gain at arrival

+max
�+

8>>><>>>:
f (�)

F (�)
(� � �+)| {z }

Pr(Sale)

(p (�; �+)� V (�))| {z }
Gain at sale

� (V (�)� V (�+))| {z }
Depreciation

9>>>=>>>;
� In the continuous-time limit seller chooses �sales rate�d�=dt to maximize rV (�)

rV (�) = �
�
E
he�je� � �

i
� V (�)

�
+ max
d�=dt2[�1;0]

�
�d�
dt

f (�)

F (�)
(p (�)� V (�)) + V 0 (�) d�

dt

�

= �
�
E
he�je� � �

i
� V (�)

�
+

0BB@ f (�)

F (�)
(p (�)� V (�))� V 0 (�)| {z }

x

1CCA max
d�=dt2[�1;0]

�
�d�
dt

�
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� Indi¤erence condition (Buyer) becomes

� (p (�)� p (�+)) =� = (r + �) (� � p (�))

�p0 (�) d�
dt| {z }

Gains from waiting

= (r + �) (� � p (�))| {z }
Cost of waiting

(Buyer C)

� Now show that gain from selling fast x = 0

f (�)

F (�)
(p (�)� V (�)) = V 0 (�) (Seller)

� If x > 0

� Seller should screen in�nitely fast: d�dt = �1

�This is not compatible with (Buyer C): The gains from waiting are in�nite if the price is falling

instantly

� If x < 0

� Seller should stop screening: d�dt = 0

�By (Buyer C) all buyers with � > p (�) will buy

�No sales afterwards

� Seller can then increase revenue by lowering the price after all

� Thus x = f(�)
F (�) (p (�)� V (�))� V

0 (�) = 0

� This implies

� Seller is indi¤erent between all prices, could get her payo¤ by setting p =1 and waiting rather

than lowering the price

V (�) =
�

r + �
E
he�je� � �

i
(Payo¤ Seller)

�As for the derivative

V 0 (�) =
�

r + �

d

d�
E
he�je� � �

i
=

�

r + �

f (�)

F (�)

�
� � E

he�je� � �
i�
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�Plugging this into V 0 (�) = f(�)
F (�) (p (�)� V (�)) yields

�

r + �

�
� � E

he�je� � �
i�

= p (�)� �

r + �
E
he�je� � �

i
p (�) =

�

r + �
�

price that makes seller indi¤erent between selling and waiting

� Screening rate �d�
dt can be chosen to satisfy (Buyer C)

�dp
dt

= �p0 (�) d�
dt

= (r + �) (� � p (�))

=
r + �

�
rp (�) (Screening Rate)

� Coase Conjecture: As �! 0

� (Payo¤ Seller) implies that V (�)! 0

� (Screening Rate) implies that �dp
dt !1
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