Practice Problems 1: Moral Hazard

October 12, 2009

Question 1 (Comparative Performance Evaluation)

Consider the same normal-linear model as in Question 1 of Homework 1. This time the principal employs N agents. The performance of agent i is given by

$$
q_{i}=e_{i}+x_{i}+x_{c}
$$

where $\left(x_{1}, \ldots, x_{N}, x_{c}\right)$ are independent and normally distributed with variances $\left(\sigma_{1}^{2}, \ldots, \sigma_{N}^{2}, \sigma_{c}^{2}\right)$. Assume the principal offers a linear contract

$$
w_{i}=\alpha_{i}+\beta_{i}\left(q_{i}-\sum_{j \neq i} \gamma_{j}^{i} z_{j}\right)
$$

The principal's profit is given by $E\left[\sum_{i}\left(q_{i}-w_{i}\right)\right]$.
Solve for the optimal $\left\{\gamma_{j}^{i}\right\}_{j, i}$. Interpret these coefficients. What implications does this have for the incentives in teams?

Question 2 (Moral Hazard and Option Contracts)

A principal (P) and an agent (A) play the following game.

1. P announces an option contract (T, B).
2. A accepts or rejects the contract. Rejection yields utility \bar{U}
3. A chooses effort e^{A}. This action is observable but not verifiable. Effort costs the agent e^{A} and yields revenue $R\left(e^{A}\right)$, where $R(\cdot)$ is increasing and concave.
4. P chooses whether to keep the project or sell it to the agent. If he keeps the project, he pays the agent T and payoffs are

$$
U_{P}=R\left(e_{A}\right)-T \quad U_{A}=T-e_{A}
$$

If P sells the project to the agent, he receives B and payoffs are

$$
U_{P}=B \quad U_{A}=R\left(e_{A}\right)-B-e_{A}
$$

Let e_{A}^{*} maximise $R\left(e_{A}\right)-e_{A}$. A contract is first-best if it implements e_{A}^{*} and yields the agent utility $U_{A}=\bar{U}$.

Let $B=R\left(e_{A}^{*}\right)-T$ and $T-e_{A}^{*}=\bar{U}$. Show this contract implements the first-best. Provide an intuition

Question 3 (Debt Contracts)

An entrepreneur has access to a project requiring one unit of capital. If taken, the project succeeds with probability p and produces output $R(p)$, or fails with probability $1-p$ and produces 0 . The entrepreneur can costlessly choose $p \in[0,1]$. This choice is unobservable to investors.

The entrepreneur is risk neutral and has initial wealth $w \in[0,1]$. The entrepreneur must raise the additional capital by issuing debt to perfectly competitive risk neutral investors. ${ }^{1}$ This debt is secured only by the assets of the project. Both the investors and the entrepreneur have available a safe investment paying an interest rate 0 if they do not invest.
(a) For $w \in[0,1]$, determine the equation that defines the equilibrium relationship between w and p. (Assume an interior solution for p).
(b) Let $R(p)=5-4 p$. If $w=1$, what value of p would the entrepreneur choose? If instead, $w \in\left(\frac{7}{32}, 1\right)$, show there are 2 possible equilibrium choices for p. Which of these solutions is more reasonable? What happens if $w<\frac{7}{32}$?
(c) Let $R(p)=5-4 p$. Plot the entrepreneur's expected final wealth as a function of initial wealth $w \in[0,1]$. Discuss the effect of agency costs on the return to wealth.

[^0]
[^0]: ${ }^{1}$ A debt contract states that the first D dollars from the project goes to the investors.

