Eco211A, Fall 2007 Simon Board

Practice Problems 1: Moral Hazard

October 12, 2009

Question 1 (Comparative Performance Evaluation)

Consider the same normal-linear model as in Question 1 of Homework 1. This time the principal employs N agents. The performance of agent i is given by

$$q_i = e_i + x_i + x_c$$

where (x_1, \ldots, x_N, x_c) are independent and normally distributed with variances $(\sigma_1^2, \ldots, \sigma_N^2, \sigma_c^2)$. Assume the principal offers a linear contract

$$w_i = \alpha_i + \beta_i (q_i - \sum_{j \neq i} \gamma_j^i z_j)$$

The principal's profit is given by $E[\sum_i (q_i - w_i)]$.

Solve for the optimal $\{\gamma_j^i\}_{j,i}$. Interpret these coefficients. What implications does this have for the incentives in teams?

Question 2 (Moral Hazard and Option Contracts)

A principal (P) and an agent (A) play the following game.

- 1. P announces an option contract (T, B).
- 2. A accepts or rejects the contract. Rejection yields utility \overline{U}
- 3. A chooses effort e^A . This action is observable but not verifiable. Effort costs the agent e^A and yields revenue $R(e^A)$, where $R(\cdot)$ is increasing and concave.
- 4. P chooses whether to keep the project or sell it to the agent. If he keeps the project, he pays the agent T and payoffs are

$$U_P = R(e_A) - T$$
 $U_A = T - e_A$

Eco211A, Fall 2007 Simon Board

If P sells the project to the agent, he receives B and payoffs are

$$U_P = B$$
 $U_A = R(e_A) - B - e_A$

Let e_A^* maximise $R(e_A) - e_A$. A contract is first-best if it implements e_A^* and yields the agent utility $U_A = \overline{U}$.

Let $B = R(e_A^*) - T$ and $T - e_A^* = \overline{U}$. Show this contract implements the first-best. Provide an intuition

Question 3 (Debt Contracts)

An entrepreneur has access to a project requiring one unit of capital. If taken, the project succeeds with probability p and produces output R(p), or fails with probability 1-p and produces 0. The entrepreneur can costlessly choose $p \in [0,1]$. This choice is unobservable to investors.

The entrepreneur is risk neutral and has initial wealth $w \in [0, 1]$. The entrepreneur must raise the additional capital by issuing debt to perfectly competitive risk neutral investors.¹ This debt is secured only by the assets of the project. Both the investors and the entrepreneur have available a safe investment paying an interest rate 0 if they do not invest.

- (a) For $w \in [0, 1]$, determine the equation that defines the equilibrium relationship between w and p. (Assume an interior solution for p).
- (b) Let R(p) = 5 4p. If w = 1, what value of p would the entrepreneur choose? If instead, $w \in (\frac{7}{32}, 1)$, show there are 2 possible equilibrium choices for p. Which of these solutions is more reasonable? What happens if $w < \frac{7}{32}$?
- (c) Let R(p) = 5 4p. Plot the entrepreneur's expected final wealth as a function of initial wealth $w \in [0, 1]$. Discuss the effect of agency costs on the return to wealth.

 $^{^{1}}$ A debt contract states that the first D dollars from the project goes to the investors.