
Practice Problems 2: Asymmetric Information

November 15, 2010

1 Single-Agent Problems

1. Sequential Screening with Different Priors

At time I, a principal signs a contract 〈q1, t1, q2, t2〉 with an agent for trade conducted at time
II. At the time of contracting, the principal and agent are both uninformed of the agent’s
period II utility.

At time II, the state s ∈ {1, 2} is revealed. The agent’s utility in state s is us(q) − t. The
cost to the principal of providing quantity q is c(q) in both states. A contract 〈q1, t1, q2, t2〉
then specifies the quantity q ∈ <+ and transfer t ∈ < in both states of the world. Assume that
u′1(q) > u′2(q) (∀q). For technical simplicity, also assume that utility functions are increasing
and concave, while the cost function is increasing and convex.

The agent and principal have different priors over the state. The principal is experienced and
knows that state 1 will occur with probability p. The agent is mistaken, and believes that state
1 will occur with probability θ. Assume that θ > p, so the agent is more confident than the
principal.

(a) Suppose that the state s is publicly observable. The principal thus maximises her profit

Π = p[t1 − c(q1)] + (1− p)[t2 − c(q2)]

subject to the individual rationality constraint of the agent,

θ[u1(q1)− t1] + (1− θ)[u2(q2)− t2] ≥ 0

Describe the principal’s profit–maximising contract.

For the rest of this question, suppose the state s is only observed by the agent.

(b) Show that your optimal contract from (a) is not incentive compatible after the state has
been revealed.

1



(c) Suppose the principal maximises her profit subject to individual rationality and incentive
compatibility. Derive the optimal contract. [Hint: you can ignore one of the (IC) constraints
and later show that it does not bind at the optimal solution].

2. Theory of A Market Maker

Suppose a risk–neutral agent wishes to trade one unit of a share with a risk–neutral intermediary.
That is, the agent can buy one share, sell one share, or choose not to trade. All parties start
with a common prior on the value of the share, θ ∼ g(θ). The game is as follows.

1. The intermediary sets bid price B and ask prices A. Assume the market for intermediaries
is competitive, so they make zero profits on each trade.

2. With probability 1 − α ∈ (0, 1) the agent is irrational, buying one share at price A and
selling one share at price B.1 With probability α the agent is rational. In this case, the
agent receives a signal s ∈ [s, s] with nondegenerate distribution f(s|θ), and chooses to
buy at A or sell at B. Assume f(s|θ) obeys the MLRP.

3. The value of the share, θ, is revealed. The agent and intermediary receive their payoffs.
The rational agent’s payoffs are as follows: if he buys, he receives θ − A; if he sells he
receives B − θ; and if he does not trade he receives 0. The intermediaries payoffs are the
opposite.

(a) Fix prices (A, B). For which signals will the rational agent trade?

(b) Given the zero profit condition for the intermediary, how are equilibrium prices (A,B)
determined?

(c) Show that, in equilibrium, A ≥ E[θ] ≥ B. Show that some rational agents will not trade.

(d) Suppose α increases. Show how this affects (a) the equilibrium prices, and (b) the proportion
of rational agents trading.

(e) What happens as α → 1?
1This is rather unrealistic, but it makes the maths easier.
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3. Screening without Transfers

A principal employs an agent who privately observes the state of the world θ ∈ [θ, θ] which is
distributed with density f(θ). The principal first makes a report to the principal who chooses
an action q ∈ {1, 2}. Consider the following direct–revelation mechanism:

1. The principal commits to a mechanism q(θ̂) ∈ {1, 2}.

2. The agent observes the state θ.

3. The agent then sends a message to the principal θ̂.

4. The principal receives payoff v(θ, q) and the agent receive payoff u(θ, q).

(a) Suppose u(θ, q) is supermodular in that

u(θH , qH) + u(θL, qL) > u(θH , qL) + u(θL, qH)

for θH > θL and qH > qL. Show incentive compatibility implies that q(θ) is increasing.

(b) Characterise the mechanism, q(·), that maximises the principal’s expected payoff.

(c) Intuitively, what happens to the optimal mechanism as the principal’s preferences converge
to those of the agent’s? That is, v(θ, q) → u(θ, q) in L1.

4. Holdup and Private Information

Suppose a buyer invests b at cost c(b), where c(·) is increasing and convex. Investment b induces
a stochastic valuation v for one unit of a good. The valuation is observed by the buyer and is
distributed according to f(v|b).

The seller then makes a TIOLI offer to the buyer of a price p. The buyer accepts or rejects.

(a) First suppose the seller observes v. How much will the buyer invest?

For the rest of the question, suppose that the seller observes neither b nor v. Assume that
buyer’s and seller’s optimisation problems are concave.
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(b) Assume f(v|b) satisfies the hazard rate order in that

f(v|b)
1− F (v|b) decreases in b (HR)

Derive the seller’s optimal price. How does the optimal price vary with b?

(c) Derive the buyer’s optimal investment choice. Notice that (HR) implies that F (v|b) decreases
in b. How does the optimal investment vary with the expected price, p?

(d) Argue that there will be a unique Nash equilibrium in (b, p) space.

(e) How does the level of investment differ from part (a)? Why?

5. Moral Hazard and Asymmetric Information

A firm employs an agent who is risk–neutral, but has limited liability (i.e. they cannot be paid
a negative wage). There is no individual rationality constraint. The agent can choose action
a ∈ {L,H} at cost {0, c}. There are two possible outputs {qL, qH}. The high output occurs
with probability pL or pH if the agent takes action L or H, respectively. The agent’s payoff is

w − c(a)

where w is the wage and c(a) the cost of the action. The principal’s payoff is

q − w

where q is the output and w is the wage.

(a) Characterise the optimal wages and action.

Suppose there are two types of agents, i ∈ {1, 2}. The principal cannot observe an agent’s type
but believes the probability of either type is 1/2. The agents are identical except for their cost
of taking the action: for agent i ∈ {1, 2} the cost of a ∈ {L,H} is {0, ci}, where c2 > c1.

(b) What are the optimal wages if the principal wishes to implement {a1, a2} = {L,L}?

(c) What are the optimal wages if the principal wishes to implement {a1, a2} = {H, H}?
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(d) What are the optimal wages if the principal wishes to implement {a1, a2} = {L,H}?

(e) What are the optimal wages if the principal wishes to implement {a1, a2} = {H, L}?

6. Pricing

Consider the pricing problem of a monopolist who has 300 units to sell and is only allowed to
choose a price p per unit (i.e. no first degree price discrimination). There are 100 agents who
are identical and have the following demand:

D(p) = 0 if p > 2

= 1 if p ∈ (1, 2]

= 5 if p ∈ [0, 1]

(a) Suppose the firm can charge a single price, p, per unit. What is the best they can do?

(b) Suppose the firm can separate the agents into two groups. The first group of N are charged
price p1 per unit. The second are charged p2 per unit. What is the best they can do?

(c) Agents are identical so, intuitively, how can splitting them into two groups help? Does this
relate to anything we covered in class?

7. Pricing

Consider a second degree price discriminating firm facing customers with two possible types
θ ∈ {3, 4} with equal probability. An agent with type θ gains utility u(θ) = θq− p from quality
q supplied at price p. If the agent does not purchase they gain utility 0. The cost of quality q

is c(q) = q2/2.

(a) Suppose the firm could observe each agents type θ. What quantity would she choose for
each type?

For the next two parts assume the firm cannot observe agents’ types. She can choose two
quantity–price bundles {q(θ), p(θ)} for θ ∈ {3, 4}.
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(b) Suppose there is a single outside good of quality q∗ = 1 and price p∗ = 1. What quantity
would the firm choose for each type?

(c) Now suppose the outside good has quality q∗ = 6 and price p∗ = 18. What quantity would
the firm choose for each type?

8. Optimal Taxation

There are two types of agents, θH > θL. Proportion β have productivity θL. An agent of type
θ who exerts effort e produces output q = θe. The utility of an agent who produces quantity q

with effort e is then
u(q − t− g(e))

where t is the net tax. Assume g(e) is increasing and strictly convex, and u(·) is strictly concave.

Suppose that output is contractible so that a mechanism consists of a pair (q(θ), t(θ)). The
government’s problem is to maximise

βu

(
qL − tL − g

(
qL

θL

))
+ (1− β)u

(
qH − tH − g

(
qH

θH

))

subject to budget balance (BB), βtL +(1−β)tH ≥ 0. Notice that there are no (IR) constraints
here.

(a) First, suppose the government can observe agents’ types. Solve for the first–best contract.
Which type puts in the most effort?

Now suppose the government cannot observe agent’s types. The incentive constraint for type
L, for example, is

u

(
qL − tL − g

(
qL

θL

))
≥ u

(
qH − tH − g

(
qH

θL

))

(b) Show that at the optimum (BB) binds.

(c) Show that at the optimum u′L ≥ u′H , where u′i is the marginal utility of type i.

(d) Show that at the optimum (ICH) binds.

(e) Consider the government’s relaxed problem of maximising welfare subject to (BB) and
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(ICH), ignoring (ICL). Show the optimal contract satisfies:

1− 1
θH

g′
(

qH

θH

)
= 0 (1)

1− 1
θL

g′
(

qL

θL

)
=

u′L − u′H
u′L

(1− β)
(

1− 1
θH

g′
(

qL

θH

))
(2)

(f) Show that (2) implies

1− 1
θL

g′
(

qL

θL

)
≥ 0 (3)

(g) Using equations (1) and (3) show that qH ≥ qL. Use this and the fact that (ICH) binds, to
show that (ICL) holds.

(h) What does (3) imply about the level of work performed by the low type. Provide an intuition
for this distortion.
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2 Many-Agent Problems

1. Auctions with Correlated Values

A seller wants to sell a good to one of two symmetric buyers. Buyer i gains utility vixi − ti,
where vi is his valuation, xi is the probability he gets the good and ti is his payment to the
seller. The seller wishes to maximise expected payments.

A seller designs a mechanism (xi(v1, v2), ti(v1, v2)), i ∈ {1, 2}, where the allocation probability
and payments are a function of the agents’ reports. The mechanism must allocate the good to
the highest valuation buyer if valuations are different, and to each buyer with probability 1/2 if
the valuations are the same. We consider only symmetric mechanisms, where payments depend
on the agents’ reports and not their identities. Denote tab := t1(va, vb) = t2(vb, va).

Each buyer has one of two valuations, vl or vh, where vh > vl. The probability that the agents
have valuations a, b is given by pab, where a, b ∈ {l, h}. We assume phhpll > p2

hl, so valuations
are positively correlated.

(a) The seller wants to design an ex–post individually rational (EPIR) and ex–post incentive
compatible (EPIC) mechanism to maximise their expected revenue.2 Determine the optimal
transfers and the expected utility of a high and low type.

(b) The seller now drops the EPIR and EPIC requirement. The mechanism only has to be
interim individually rational (IR) and interim incentive compatible (IC). Show that the seller
can fully extract from the buyers. [Hint: Choose thh = vh/2 and thl = vh.] Intuitively, why can
the seller fully extract the buyers’ rent?

(c) The seller is concerned the buyers may collude. Suppose that if the buyers collude, they
choose a pair of reports that minimises the sum of the transfers they pay. Show that if the
buyers collude in the mechanism from part (a), they pay a total of vl. Show that if the buyers
collude in the mechanism from part (b), they pay less than vl.

(d) Show that any (IR) and (IC) mechanism where buyers pay at least vl by colluding, gives
them at least as much rent as the mechanism from part (a).

2That is, every type should be happy to participate and reveal their type truthfully after knowing their
opponent’s type.
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2. All Pay Auction

Assume all bidders have IID private valuations vi ∼ F (v) with support [0, 1]. Suppose the good
is sold via an all–pay auction.

(a) Derive the symmetric equilibrium bidding strategy directly.

(b) Derive the symmetric equilibrium bidding strategy via revenue equivalence.

3. Negotiations and Auctions

Assume all bidders have IID private valuations vi ∼ F (v) with support [V , V ]. Define marginal
revenue as

MR(v) = v − 1− F (v)
f(v)

(a) Show that E[MR(v)] = V .

(b) In terms of marginal revenues, what is the revenue from 2 bidders with no reservation price?

(c) Let the sellers valuation be v0. In terms of marginal revenue, what is the revenue from 1
bidder and a reservation price?

(d) Assume V ≥ v0, i.e. all bidders are “serious”. How is revenue affected if one bidder is
swapped for a reservation price?

4. Asymmetric Auctions

(a) There is one bidder with value v1 ∼ U [a, a + 1], where a ≥ 0. What is the optimal auction?
Intuitively, why is the optimal reservation price increasing in a?

(b) Now there is a second bidder with value v2 ∼ U [0, 1], where agents’ types are independent.
What is the optimal auction?
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5. Grants

Each of N agents have a project which needs funding. The value they place on funding is θ ∼ F

on [0, 1]. The NSF wants to fund the most worthwhile project, but cannot observe θ. Agents
write proposals which are time consuming: an agent who spends time t on a proposal gains
utility ui(θi) = Pi · θ − ti, where the project is funded with probability Pi. The NSF can only
observe the time ti each agent spends writing their proposal. Their aim is to maximise welfare
which, since writing proposals is wasteful, is the same as maximising

∑
i ui.

(a) Specify the problem as a DRM and write down the agents’ utility.

(b) Characterise the agent’s utility under incentive compatibility in terms of an integral equation
and a monotonicity constraint.

(c) Suppose (1 − F (x))/f(x) is strictly decreasing in x. Show the NSF’s optimal policy is to
allocate the grant randomly.

6. Auctions with Hidden Quality

The economics department is trying to procure teaching services from one of N potential
assistant professors. Candidate i has an outside option of wage θi ∈ [0, 1] with distribution
function F . This wage is private information and can be thought of as the candidate’s type.
The department gets value v(θi) from type θi.

Consider a direct revelation mechanism consisting of an allocation function P (θ̃1, . . . , θ̃N ) and
a transfer function t(θ̃1, . . . , θ̃N ). Suppose candidate i’s utility is u(θi, θ̃i) = E−i[t(θ̃)− P (θ̃)θi]
and the department’s profit is π = E[P (θ̃)v(θi)− t(θ̃)].

(a) Characterise the agent’s utility under incentive compatibility in terms of an integral equation
and a monotonicity constraint.

(b) Using (a), what is the department’s profit?

For the rest of the question assume that

1 ≥ d

dθi

F (θi)
f(θi)

≥ 0
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(c) If v′(θi) ≤ 1 what is the department’s optimal hiring policy (i.e. allocation function)? How
can this be implemented?

(d) Suppose v′(θi) ≥ 2 and E[v(θi)] ≥ 1. What is the department’s optimal hiring policy (i.e.
allocation function)? How can this be implemented?

7. Double Auction

A seller and buyer participate in a double auction. The seller’s cost, c ∈ [0, 1], is distributed
according to FS . The buyer’s value, v ∈ [0, 1], is distributed according to FB. The seller names
a price s and the buyer a price b. If b ≥ s the agents trade at price p = (s + b)/2, the seller
gains p− c and the buyer gains v − p. If s < b there is no trade and both gain 0.

(a)Write down the utilities of buyer and seller. Derive the FOCs for the optimal bidding
strategies.

For the rest of the question assume c ∼ U [0, 1] and v ∼ U [0, 1].

(b) Show that S(c) = 2
3c + 1

4 and B(v) = 2
3v + 1

12 satisfy the FOCs.

(c) Under which conditions on (v, c) does trade occur?

8. Auctions with Endogenous Entry

This question studies optimal auction design with endogenous entry. There are a large number
of potential bidders who must pay k in order to enter an auction. After the entry decision, each
entering bidder learns their private value θi which are distributed independently and identically
with positive density f(θ), distribution function F (θ) and support [θ, θ]. The auctioneer has
known valuation θ0.

Denote the direct mechanism by 〈N, Pi, ti〉, which is common knowledge. The auctioneer first
allows bidders in the set N to enter. Each entering bidder learns their type θi and reports θ̃i.
If the other bidders report truthfully, bidder i wins the good with probability Pi(θ̃i, θ−i) and
pays ti(θ̃i, θ−i) yielding utility,

ui(θi, θ̃i) = Eθ−i

[
θiPi(θ̃i, θ−i)− ti(θ̃i, θ−i)

]
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where the lowest type gets utility ui(θ).

(a) Show that incentive compatibility (IC) implies that utility obeys an integral equation and
a monotonicity constraint.

(b) Write down the ex–ante individual rationality (IR) constraint which ensures that each bidder
is happy to pay the entry cost and participate.

(c) Write down the auctioneer’s program or maximising revenue, equal to the sum of payments,
subject to (IC) and (IR).

(d) Show that the (IR) constraint will bind at the optimum.

(e) Optimal allocation function. Show that the revenue maximising mechanism awards the
object to the agent with the highest valuation if that value exceeds θ0.

(f) Optimal entry policy. Define welfare with n bidders by

W (n) := Eθ max{θ0, θ1, . . . , θn}

Show that W (n + 1) − W (n) decreases in n. Use this to show that the optimal number of
bidders, n∗, obeys W (n∗)−W (n∗ − 1) ≥ k ≥ W (n∗ + 1)−W (n∗).

(g) Argue that the optimal mechanism can be implemented by a standard auction with reserve
price, entry fee and having bidders make their entry decisions sequentially. What are the
optimal entry fee and reserve price?

9. Public Goods Provision

A firm is considering building a public good (e.g. a swimming pool). There are n agents in
the economy, each with IID private value θi ∈ [0, 1]. Agents’ valuations have density f(θ) and
distribution F (θ). Assume that

MR(θ) = θ − 1− F (θ)
f(θ)

is increasing in θ. The cost of the swimming pool is cn, where c > 0.

First suppose the government passes a law that says the firm cannot exclude people from
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entering the swimming pool. A mechanism thus consists of a build decision P (θ1, . . . , θn) ∈
[0, 1] and a payment by each agent ti(θ1, . . . , θn) ∈ <. The mechanism must be individually
rational and incentive compatible. [Note: When showing familiar results your derivation can
be heuristic.]

(a) Consider an agent with type θi, whose utility is given by

θiP − ti

Derive her utility in a Bayesian incentive compatible mechanism.

(b) Given an build decision P (·), derive the firm’s profits.

(c) What is the firm’s optimal build decision?

(d) Show that E[MR(θ)] = 0.

(e) Show that as n → ∞, so the probability of provision goes to zero. [You might wish to use
the Chebyshev inequality, which says that Pr(|Z −E[Z]| ≥ α) ≤ Var(Z)

α2 for a random variable
Z.]

Next, suppose the firm can exclude agents. A mechanism now consists of a build decision
P (θ1, . . . , θn) ∈ [0, 1], a participation decision for each agent xi(θ1, . . . , θn) ∈ [0, 1] and a pay-
ment ti(θ1, . . . , θn) ∈ <. Agent i’s utility is now given by

θixiP − ti

The cost is still given by cn, where n is the number of agents in the population.

(f) Solve for the firm’s optimal build decision P (·) and participation rule xi(·).

(g) Suppose n → ∞. Show there exists a cutoff c∗ such that the firm provides the pool with
probability one if c < c∗, and with probability zero if c > c∗.

10. Bilateral Trade

Suppose two agents wish to trade a single good. The seller has privately known cost c ∼ g(·)
on [0, 1]. The buyer has privately known value v ∼ f(·) on [0, 1]. These random variables are
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independent of each other. The agents’ payoffs are

US = t− cp

UB = vp− t

where t ∈ < is a transfer and p ∈ [0, 1] is the probability of trade. If an agent abstains from
trade, they receive 0.

In class, we showed that it is impossible to implement the ex–post efficient allocation. We now
wish to find the revenue and welfare maximising mechanisms.

(a) Consider the problem of a middleman who runs mechanism 〈p(ṽ, c̃), tB(ṽ, c̃), tS(ṽ, c̃)〉 where
tB and tS are the transfers from the buyer and to the seller respectively. Show that a middleman
can make profit

Π = E
[
[MR(v)−MC(c)]p(v, c)

]
− UB(v)− US(c)

where
MR(v) = v − 1− F (v)

f(v)
and MC(c) = c +

G(c)
g(c)

(b) Maximise the middleman’s expected profits.

(c) Maximise expected welfare subject to Π = 0. [Note: We have not shown that Π = 0 implies
one can find a common transfer function t(v, c). We leave this for another day.]
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