Homework 3

Due: Wed 5th December

0. Nonlinear Pricing with Two Types

Suppose a seller of wine faces two types of customers, θ_{1} and θ_{2}, where $\theta_{2}>\theta_{1}$. The proportion of type θ_{1} agents is $\pi \in[0,1]$. Let q be the quality of the wine and t the price.

Let type θ_{1} buy contract (q_{1}, t_{1}) and type θ_{2} buy (q_{2}, t_{2}). The cost of production is zero, $c(q)=0$, and the seller maximises profit $\pi t_{1}+(1-\pi) t_{2}$
(a) Suppose agent θ_{i} has utility

$$
u\left(\theta_{i}\right)=\theta_{i} q-\frac{1}{2} q^{2}-t
$$

Derive the first-best and profit-maximising qualities.
(b) Suppose agent θ_{i} has utility

$$
u\left(\theta_{i}\right)=\theta_{i}\left(q-\frac{1}{2} q^{2}\right)-t
$$

Derive the first-best and profit-maximising qualities.

1. Dynamic Mechanism Design

A firm sells to a customer over $T=2$ periods. There is no discounting.

The consumer's per-period utility is

$$
u=\theta q-p
$$

where $q \in \Re$ is the quantity of the good, and p is the price. The agent's type $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$ is privately known. In period $1, \operatorname{Pr}\left(\theta=\theta_{H}\right)=\mu$. In period 2 , the agent's type may change. With probability $\alpha>1 / 2$, her type remains the same; with probability $1-\alpha$ her type switches (so a high type becomes a low type, or a low type becomes a high type).

The firm chooses a mechanism to maximise the sum of its profits. The per-period profit is given
by

$$
\pi=p-\frac{1}{2} q^{2}
$$

A mechanism consists of period 1 allocations $\left\langle q_{L}, q_{H}\right\rangle$, period 2 allocations $\left\langle q_{L L}, q_{L H}, q_{H L}, q_{H H}\right\rangle$, and corresponding prices, where $q_{L H}$ is the quantity allocated to an agent who declares L in period 1 and H in period 2.
(a) Consider period $t=2$. Fix the first period type, θ. Assume in period 2 that the lowtype's (IR) constraint binds, the high type's (IC) constraint binds and we can ignore the other constraints. Characterize the second period rents obtained by the agents, $U_{\theta L}$ and $U_{\theta H}$, as a function of $\left\{q_{L L}, q_{L H}, q_{H L}, q_{H H}\right\}$
(b) Consider period $t=1$. Assume the low-type's (IR) constraint binds, the high type's (IC) constraint binds and we can ignore the other constraints. Derive the lifetime rents obtained by the agents, U_{L} and U_{H}, as a function of $\left\{q_{L}, q_{H}, q_{L L}, q_{L H}, q_{H L}, q_{H H}\right\}$.
(c) Derive the firm's total expected profits.
(d) Assume the firm does not want to exclude, i.e. that $\Delta:=\theta_{H}-\theta_{L}$ is sufficiently small. Derive the profit-maximizing allocations $\left\{q_{L}, q_{H}, q_{L L}, q_{L H}, q_{H L}, q_{H H}\right\}$. In particular, show that $q_{H L}$ is first-best. Can you provide an intuition for this result?
(Bonus) Suppose T is arbitrary. Can you derive the form of the optimal mechanism?

2. Public Goods Provision

A firm is considering building a public good (e.g. a swimming pool). There are n agents in the economy, each with IID private value $\theta_{i} \in[0,1]$. Agents' valuations have density $f(\theta)$ and distribution $F(\theta)$. Assume that

$$
M R(\theta)=\theta-\frac{1-F(\theta)}{f(\theta)}
$$

is increasing in θ. The cost of the swimming pool is $c n$, where $c>0$.

First suppose the government passes a law that says the firm cannot exclude people from entering the swimming pool. A mechanism thus consists of a build decision $P\left(\theta_{1}, \ldots, \theta_{n}\right) \in$ $[0,1]$ and a payment by each agent $t_{i}\left(\theta_{1}, \ldots, \theta_{n}\right) \in \Re$. The mechanism must be individually
rational and incentive compatible. [Note: When showing familiar results your derivation can be heuristic.]
(a) Consider an agent with type θ_{i}, whose utility is given by

$$
\theta_{i} P-t_{i}
$$

Derive her utility in a Bayesian incentive compatible mechanism.
(b) Given an build decision $P(\cdot)$, derive the firm's profits.
(c) What is the firm's optimal build decision?
(d) Show that $E[M R(\theta)]=0$.
(e) Show that as $n \rightarrow \infty$, so the probability of provision goes to zero. [You might wish to use the Chebyshev inequality, which says that $\operatorname{Pr}(|Z-E[Z]| \geq \alpha) \leq \frac{\operatorname{Var}(Z)}{\alpha^{2}}$ for a random variable Z.

Next, suppose the firm can exclude agents. A mechanism now consists of a build decision $P\left(\theta_{1}, \ldots, \theta_{n}\right) \in[0,1]$, a participation decision for each agent $x_{i}\left(\theta_{1}, \ldots, \theta_{n}\right) \in[0,1]$ and a payment $t_{i}\left(\theta_{1}, \ldots, \theta_{n}\right) \in \Re$. Agent i 's utility is now given by

$$
\theta_{i} x_{i} P-t_{i}
$$

The cost is still given by $c n$, where n is the number of agents in the population.
(f) Solve for the firm's optimal build decision $P(\cdot)$ and participation rule $x_{i}(\cdot)$.
(g) Suppose $n \rightarrow \infty$. Show there exists a cutoff c^{*} such that the firm provides the pool with probability one if $c<c^{*}$, and with probability zero if $c>c^{*}$.

3. Costly State Verification

There is a risk-neutral entrepreneur E who has a project with privately observed return y with density $f(y)$ on $[0, Y]$. The project requires investment $I<E[y]$ from an outside creditor C.

A contract is defined by a pair $(s(y), B(y))$ consisting of payment and verification decision. If
an agent reports y they pay $s(y) \leq y$ and are verified if $B(y)=1$ and not verified if $B(y)=0$. If the creditor verifies E they pay exogenously given cost c and get to observe E 's type.

The game is as follows:

- E chooses $(s(y), B(y))$ to raise I from a competitive financial market.
- Output y is realised.
- E claims the project yields \hat{y}. If $B(\hat{y})=0$ then E pays $s(\hat{y})$ and is not verified. If $B(\hat{y})=1$ then C pays c and observes E 's true type. If they are telling the truth they pay $s(y)$; if not, then C can take everything.
- Payoffs. E gets $y-s(y)$, while C gets $s(y)-c B(y)-I$.
(a) Show that a contract is incentive compatible if and only if there exists a D such that $s(y)=D$ when $B(y)=0$ and $s(y) \leq D$ when $B(y)=1$.

Consider E's problem:

$$
\begin{array}{cl}
\max _{s(y), B(y)} & E[y-s(y)] \\
\text { s.t. } & s(y) \leq y \quad(M A X) \\
& E[s(y)-c B(y)-I] \geq 0 \\
& s(y) \leq D \quad \forall y \in B^{V} \quad(I C 1) \\
& s(y)=D \quad \forall y \notin B^{V} \quad(I C 2)
\end{array}
$$

where B^{V} is the verification region (where $B(y)=1$).
(b) Show that constraint (IR) must bind at the optimum. [Hint: Proof by contradiction.]

Now E's problem becomes

$$
\begin{array}{cl}
\min _{s(y), B(y)} & E[c B(y)] \\
\text { s.t. } & (M A X),(I C 1),(I C 2) \\
& E[s(y)-c B(y)-I]=0 \tag{IR}
\end{array}
$$

(c) Show that any optimal contract $(s(y), B(y))$ has a verification range of the form $B^{V}=[0, D]$ for some D. [Hint: Proof by contradiction.]
(d) Show that any optimal contract $(s(y), B(y))$ sets $s(y)=y$ when $B(y)=1$. [Hint: Proof by contradiction.]
(e) A contract is thus characterised by D. Which D maximises E 's utility? Can you give a financial interpretation to this contract?

4. Ironing

Consider the continuous-type price discrimination problem from class, where the principal chooses $q(\theta)$ to maximise

$$
E[q(\theta) M R(\theta)-c(q(\theta))]
$$

subject to $q(\theta)$ increasing in θ.
For $v \in[0,1]$, let

$$
H(v)=\int_{0}^{v} M R\left(F^{-1}(x)\right) d x
$$

be the expected marginal revenue up to $\theta=F^{-1}(v)$. Let $\bar{H}(v)$ be the highest convex function under $H(v)$. Then define $\overline{M R}(\theta)$ by

$$
\bar{H}(v)=\int_{0}^{v} \overline{M R}\left(F^{-1}(x)\right) d x
$$

Finally, let $\Delta(\theta)=H(F(\theta))-\bar{H}(F(\theta)) .{ }^{1}$
(a) Argue that $\Delta(\theta)>0$ implies $\overline{M R}(\theta)$ is flat. Also argue that $\Delta(\underline{\theta})=\Delta(\bar{\theta})=0$.
(b) Since $q(\theta)$ is an increasing function, show that

$$
E[q(\theta) M R(\theta)-c(q(\theta))]=E[q(\theta) \overline{M R}(\theta)-c(q(\theta))]-\int_{\underline{\theta}}^{\bar{\theta}} \Delta(\theta) d q(\theta)
$$

(c) Derive the profit-maximising allocation $q(\theta)$.

[^0]
5. Negotiations and Auctions

Assume all bidders have IID private valuations $v_{i} \sim F(v)$ with support $[\underline{V}, \bar{V}]$. Define marginal revenue as

$$
M R(v)=v-\frac{1-F(v)}{f(v)}
$$

(a) Show that $E[M R(v)]=\underline{V}$.
(b) In terms of marginal revenues, what is the revenue from 2 bidders with no reservation price?
(c) Let the sellers valuation be v_{0}. In terms of marginal revenue, what is the revenue from 1 bidder and a reservation price?
(d) Assume $\underline{V} \geq v_{0}$, i.e. all bidders are "serious". How is revenue affected if one bidder is swapped for a reservation price?

6. Revenue Management

A firm has one unit of a good to sell over T periods. One agent enters each period and has a value drawn IID from $F(\cdot)$ on $[0,1]$. Agents values are privately known. The discount rate is $\delta \in(0,1)$.

First, assume there is no recall, so agent t leaves at the end of period t if they do not buy. A mechanism $\left\langle P_{t}, Y_{t}\right\rangle$ gives the probability of allocating the object in period t as a function of the reports until time t, and the corresponding payment. Agent t's utility is then given by

$$
u_{t}=v_{t} \delta^{t} P_{t}-Y_{t}
$$

and the firm's profits equal $\Pi=\sum_{t} Y_{t}$. Assume $M R(v)=v-(1-F(v)) / f(v)$ is increasing.
(a) Argue that the firm's profit is given by

$$
\Pi=E_{0}\left[\sum_{t} \delta^{t} P_{t} M R\left(v_{t}\right)\right]
$$

where E_{0} is the expectation at time 0 , over all sequences of values. [Note: you don't have to be formal]
(b) What is the optimal allocation in period T ? [Hint: it is easy to think in terms of cutoffs v_{T}^{*}, where the firm is indifferent between allocating the object and not]
(c) Using backwards induction, characterize the optimal cutoff in period $t<T$? What happens to the cutoffs over time?

Next, suppose there is recall. Hence agent t can buy in any period $\tau \geq t$. A mechanism $\left\langle P_{t, \tau}, Y_{t}\right\rangle$ gives the probability of allocating the object to agent t in period τ as a function of the reports until time τ, and the corresponding payment. Agent t 's utility is then given by

$$
u_{t}=\sum_{\tau \geq t} v_{t} \delta^{\tau} P_{t, \tau}-Y_{t}
$$

and the firm's profits equal $\Pi=\sum_{t} Y_{t}$.
(d) Argue that the firm's profit is given by

$$
\Pi=E_{0}\left[\sum_{t} \sum_{\tau \geq t} \delta^{\tau} P_{t, \tau} M R\left(v_{t}\right)\right]
$$

(e) When there is recall, what is the optimal allocation in period T ?
(f) Using backwards induction, what is the optimal allocation in period $t<T$? What happens to the cutoffs over time? [Hint: try $t=T-1$ and $t=T-2$, and the general case only if you have time]

[^0]: ${ }^{1}$ Note, it is important that we take the convex hull in quantile space. If we use θ-space, then $\Delta(\theta)>0$ implies $\overline{M R}(\theta) f(\theta)$ is flat, which is not particularly useful.

