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1 Dynamic Moral Hazard

� E¤ects

�Consumption smoothing

� Statistical inference

�More strategies

�Renegotiation

� Non-separable technologies

�One action a 2 f0; 1g, many outputs qt
� Example (Mirrlees): dqt = adt+ �dZt; then q1 � N(a; �2)
� Basically, like single-period model
� But awesome inference: f(qjL)

f(qjH) !1 as q ! �1
� Approximate �rst-best

� Pay �at wage for q 2 (q�;1) where q� << 0, and punish agent hard when

q < q�

� States (�1; q�) much more likely for a = 0

[Figure: f(qjL); f(qjH)]

� �Many actions a1; a2; � � � ; aT , one output qT
� Agent does not learn anything
� Can choose a1; a2; � � � ; aT simultaneously

� Main model: Separable technologies

�Time t 2 f1; 2; � � � g
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�Action at 2 A � R

�Output qt (observable) with separable independent pdf f(qtjat)

�Preferences u(ct)� g(at) time-separable, stationary

�Reference utility u per period

�Principal gets qt � wt

1.1 Asymptotic E¢ ciency

� Fudenberg, Holmstrom, Milgrom, JET, 1990

1.1.1 Setup

� 1 periods, common discount factor �

� Output qt 2
�
q; q
�

� Actions at 2 A

� First best action a� and quantity q� = E [qja�] > q

� Time-separable and stationary

1.1.2 Result

Proposition 1 If everybody is patient, �rst-best is almost achievable: 8"; 9�;8� � � there is a

contract generating agent utility greater than u (q�) � g (a�) � " (and yielding at least 0 to the
principal).

� Statement assumes that agent proposes contract and has to satisfy principal�s IR constraint

� If principal proposes, can also get �rst-best

Idea:

� Make agent residual claimant

� He can build up savings (through principal) and then smooth his consumption

Proof.

� Agent�s wealth wt
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� If wealth is high, wt �
�
q� � q

�
=�, consume

qt = q
� + (1� �)wt � e"| {z }

�0

�Earnings q�

� Interest (1� �)wt
� save a little e" 2 �0; (1� �) �q� � q� =��

� If wealth is low, wt �
�
q� � q

�
=�, consume

qt = q + (1� �)wt

�Minimal earning q

� Interest (1� �)wt

� This is pretty arbitrary. The point is that wealth grows

E [wt+1]� wt � min
��
q� � q

�
=�;e"	 > 0

� Thus, wealth is a submartingale with bounded increments and eventually exceeds any thresh-
old forever with probability one

lim
t!1

pt = 1 where

pt = Pr (w� � x for all � � t)

x =
�
q� � q

�
=�

� Omitting non-negative terms gives lower bound on agent�s utility

(1� �)
1X
�=0

�� (u (q� )� g (a�)) � �tpt(u (q
�)� g (a�))

� u (q�)� g (a�)� "

when we choose � and pt close enough to 1

1.2 Marginal Cost of Utility is Martingale

� Rogerson, Econometrica, 1985
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1.2.1 Principal�s Problem

� Two periods t 2 f1; 2g, no discounting

� Let a = (a1; a2 (q1)) be agent�s action plan

� Principal chooses a;w1 (q1) ; w2 (q1; q2) to maximize

E [(q1 � w1 (q1) + q2 � w2 (q1; q2)) ja] subject to :

E [u (w1 (q1))� g (a1) + u (w2 (q1; q2))� g (a2) ja] � E [:::jea] (IC)

E [u (w1 (q1))� g (a1) + u (w2 (q1; q2))� g (a2) ja] � 2u (IR)

� Note: Agent can�t save or borrow

1.2.2 Result

Proposition 2 The optimal long-term contract a�; w�1 (q1) ; w
�
2 (q1; q2) satis�es

1

u0 (w�1 (q1))
= E

�
1

u0 (w�2 (q1; q2))
jq1; a�

�
(*)

for all q1.

Idea:

� LHS is marginal cost of providing utility today

� RHS is expected marginal cost of providing utility tomorrow

� Agent is indi¤erent between receiving utility today or tomorrow

� If LHS<RHS principal could pro�t by front-loading utility

Proof.

� Let w�1 (q1) ; w�2 (q1; q2) be optimal contract

� Fix q1

� Shift " utility to period 1

u ( bw1 (q1)) = u (w�1 (q1)) + "

u ( bw2 (q1; q2)) = u (w�2 (q1; q2))� "
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� Does not a¤ect agent�s IC or IR constraint

� By �rst-order Taylor approximation

bw1 (q1) = w�1 (q1) +
"

u0 (w�1 (q1))bw2 (q1; q2) = w�2 (q1; q2)�
"

u0 (w�2 (q1; q2))
, 8q2

� Thus, e¤ect on Revenue

bR�R� = �"� 1

u0 (w�1 (q1))
� E

�
1

u0 (w�2 (q1; q2))
jq1; a�

��

� As " can be chosen positive or negative, optimality requires that the term in parantheses

vanishes

1.2.3 Discussion

� Properties of optimal long-term contract a�; w�

� Inertia: RHS increasing in w�1(q1), consumtion smoothing

�Complex: w�2 6= w2 (q2)

� Agent would like to save - not borrow

�Apply Jensen�s inequality to (*)

� f (x) = 1=x is a convex function, thus 1= (E [x]) � E [1=x]

u0 (w�1 (q1)) = 1=E
�

1

u0 (w�2 (q1; q2))

�
� E

�
u0 (w�2 (q1; q2))

�
� Intuition:

� If �=�, then principal can get some IC2 for free by front-loading wages
� That is, o¤er w1(q1) + dw;w2(q1; q2)� dw
� Keep them hungry

1.3 Short-term Contracts

� Fudenberg, Holmstrom, Milgrom, JET, 1990
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1.3.1 Setup

� 2 periods, no discounting

� Time separable technology and preferences

� Agent can save, but principal can monitor this

�Funny assumption, but necessary for tractability and result

�Maybe reasonable in developing countries when saving is through landlord

� Outside utility u = u (q)

1.3.2 Principal�s Problem

� Principal chooses a1; w1 = w1(q1); s = s(q1); a2 = a2(q1); w2 = w2(q1; q2; s) to maximize

E [(q1 � w1 + q2 � w2) ja] subject to :

E [u (w1 � s)� g (a1) + u (w2 + s)� g (a2) ja] � E [� � � jea; es] (IC)

E [u (w1 � s)� g (a1) + u (w2 + s)� g (a2) ja] � 2u (IR)

� Can ignore savings for the moment

� Savings IC constraint not-binding because observable

�Can choose s (q1) = 0 in optimal contract because principal can save for the agent by
adjusting w

1.3.3 Renegotiation and Spot Contracts

� After period 1 of contract a�; w�, the principal could o¤er the agent to change contract

� Optimally, he o¤ers contract â2; ŵ2 (q2) to maximize

E [q2 � w2 (q2) ja2] subject to : (Seq-E¤)

E [u (ŵ2 (q2))� g (â2) jâ2] � E [� � � jea2] (IC�)

E [u (ŵ2 (q2))� g (â2) jâ2] � E [u (w�2 (q1; q2))� g (a�2) ja�2] (IR�)

where the last line captures the idea that the agent can insist on the original long-term

contract

� Of course, â2; ŵ2 (q2) implicitly depend on q1 through (IR�)
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� Call contract sequentially e¢ cient, or renegotiation-proof if there is no such mutually bene-
�cial deviation after any realization of q1, and thus ba2 = a�2 and bw2 (q2) = w�2 (q1; q2) :

Proposition 3 The optimal long-term contract is renegotiation-proof.

� If there was a pro�table deviation after q1, there is a weakly more pro�table deviation where
IR�is binding

� not true in general games!

� true here, because Pareto-frontier downward-sloping

� The original contract could then be improved by substituting the deviation into the original
contract

�Does not change agent�s period 1�s IC or IR because expected continuation utility after
q1 unchanged (but expected marginal utility after q1 may have changed)

�Agent�s period 2 IC and IR satis�ed

1.3.4 Spot Contracts

� The long-term contract a�; w� can be implemented via spot contracts if there is a saving

strategy s (q1) for the agent such that the second period spot contract a2; w2 (q2) maximizes

E [q2 � w2 (q2) ja2] subject to : (Spot)

E [u (w2 (q2) + s (q1))� g (a2) ja2] � E [� � � jea2] (IC-spot)

E [u (w2 (q2) + s (q1))� g (a2) ja2] � u (q + s (q1)) (IR-spot)

yields the same actions a2 = a�2 and wages w2 (q2) + s (q1) = w�2 (q1; q2) as the original

contract.

Proposition 4 A renegotiation-proof contract can be implemented by spot contracts.

� For 2, let â2; ŵ2 (q2) be optimal continuation contract after q1

� Set s = s (q1) so that u (q + s) = E [u (ŵ2 (q2))� g(â2)jâ2]

� Then, a2 = ba2; w2 (q2) = bw2 (q2)� s solves (Spot)
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1.3.5 Discussion

� Rationale for Short-Term Contracting

� Separates incentive-provision from consumption smoothing

� Yields recursive structure of optimal long-term contract - Memory of contract can be captured
by one state variable: savings

� Generalizes to

� T periods

�Preferences where a1 does not a¤ect trade-o¤ between a2 and c2
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1.4 Optimal Linear Contracts

� Holmstrom, Milgrom, Econometrica 1987

1.4.1 Setup

� 2 periods, no discounting

� Time separable technology and preferences

� Funny utility function

u (w1; w2; a1; a2) = � exp (� (w1 + w2 � g (a1)� g (a2)))

�Consumption at the end (-> no role for savings)

�Monetary costs of e¤ort

�CARA - no wealth e¤ects

� Outside wage w per period

� Optimal static contract as; ws

1.4.2 Result

Proposition 5 1. The optimal long-term contract repeats the optimal static contract:

w�1 (q1) = w
s (q1) and w�2 (q1; q2) = w

s (q2)

2. If q is binary, or Brownian, the optimal contract is linear in output: w� (q1; q2) = � +

� (q1 + q2)

Idea: CARA makes everything separable
Proof.

� Principal chooses a�; w� to maximize

E [q1 � w1 (q1) + q2 � w2 (q1; q2) ja] subject to :

E [� exp (� (w�1 (q1) + w�2 (q1; q2)� g (a�1)� g (a�2))) ja�] � E [� exp (:::) jea] (IC)

E [� exp (� (w�1 (q1) + w�2 (q1; q2)� g (a�1)� g (a�2))) ja�] � u (2w) (IR)

� Can choose w�2 (q1; q2) so that E [� exp (� (w�2 (q1; q2)� g (a�2))) ja�2] = u (w) for all q1 (make
IR binding in period 2)
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�Add �(q1) to all w�2 (q1; q2)

� Subtract �(q1) from w�1 (q1)

�Does not a¤ect w�1 (q1) + w
�
2 (q1; q2) for any realization (q1; q2)

�Principal and agent only care about this sum

� Sequential e¢ ciency implies that in the second period after realization of q1, principal choosesba2; bw2 to maximize
E [q2 � w2 (q2) ja2] subject to :

� exp (� (w�1 (q1)� g (a�1)))E [exp (� ( bw2 (q2)� g (ba2))) jba2] � � exp (:::)E [exp (:::) jea2](IC 2)

� exp (:::)E [exp (� ( bw2 (q2)� g (ba2))) jba2] � � exp (:::)u (w) (IR 2)

� Period one factors out (this is because there are no wealth e¤ects)

� Optimal second period contract ba2; bw2 is the optimal short-term contract, ba2 = as; bw2 (q2) =
ws (q2), independent of q1

� Taken ba2; bw2 as given, the principal chooses ba1; bw1 to maximize
maximize E [q1 � w1 (q1) ja1] subject to :

�E [exp (� ( bw1 (q1)� g (ba1))) jba1]E [exp (� ( bw2 (q2)� g (ba2))) jba2] � �E [:::jea1]E [:::jba2](IC 1)

�E [exp (� ( bw1 (q1)� g (ba1))) jba1]E [exp (� ( bw2 (q2)� g (ba2))) jba2] � u (2w) (IR 1)

� This is again the static problem, proving (1)

� (2) follows because every function of q binary is linear, and a Brownian motion is approxi-
mated by a binary process

1.4.3 Discussion

� Not very general, but extends to any number of periods

� Stationarity not so suprising:

� technology independent

� no consumption-smoothing

� no wealth-e¤ects
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� no bene�ts from long-term contracting

� Agent bene�ts from ability to adjust actions according to realized output

�Consider generalization with t 2 [0;T ] and dqt = adt+ �dWt, so that qT � N
�
a; �2T

�
� If agent cannot adjust his action, principal can implement �rst-best via tail-test and
appropriate surplus

�Tail-test does not work if agent can adjust e¤ort

� Can slack at �rst...
� ... and only start working if qt drifts down to far

�More generally with any concave, say, reward function w (qT ), agent will

� work in steep region, after bad realization
� shirk in �at region, after good realization

�Providing stationary incentives to always induce the static optimal a� is better

[Figure: Optimal contracts w(qT )]

1.5 Continuous Time (Sannikov 2008)

1.5.1 Setup

� Continuous time t 2 [0;1), discount rate r

� Think about time as tiny discrete increments dt; remember rdt � 1� e�rdt

� Time separable technology
dXt = atdt+ dZt

� Brownian Motion Zt (also called Wiener process) characterized by

� Sample paths Zt continuous almost surely

� Increments independent and stationary with distribution Zt+� � Zt � N (0;�)

[Figure: Zt]

� Wealth of agent
W = r

Z 1

t=0
e�rt (u (ct)� g (at)) dt

(the �r�annuitizes the value of the agent and renders it comparable to u and g)
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�Cost function g with g(0) = 0, g0 > 0, g00 > 0

�Consumption utility with u (0) = 0; u0 > 0; u00 < 0; limx!1 u0 (x) = 0

�Consumption = wage; no hidden savings

� Revenue of �rm

� = rE
�Z

e�rtdXt

�
� r

Z
e�rtctdt

= r

Z
e�rt (at � ct) dt

1.5.2 Agent�s problem

� Contract: at; ct as function of Xs�t

� Recursive formulation: at; ct;Wt as function of Xs�t

� �Promise-keeping�constraint

Wt = rdt (u (ct)� g (at)) + (1� rdt)E [Wt+dtjat] (PK)

rWtdt = rdt (u (ct)� g (at)) + E [dWtjat]

� Assume that value increments dWt are linear in output increments dXt with wealth depen-

dent sensitivity rb (Wt)

dWt = rb (Wt) dXt = rb(Wt)(atdt+ dZt)

E [dWtjat] = rb (Wt)E [dXt] = rb (Wt)E [atdt+ dZt] = rb (Wt) atdt

� First-order condition
g0 (a (W )) = b (W ) (IC)

� Evolution of wealth governed by

dWt = E [dWt] + (dWt � E [dWt])

= r (Wt � (u (ct)� g (at))) dt+ rb (Wt) (dXt � atdt)

= r (Wt � (u (ct)� g (at))) dt+ rb (Wt) dZt

�Drifting

� up when wealth and interest rWt are high

� down when consumption ct is high
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� up when e¤ort at is high
�Wiggling

� up, when production exceeds expectations dXt > atdt
� down, when production falls short of expectations dXt < atdt

1.5.3 Firm�s problem

� Choose at; ct as function of Xs�t to maximize � subject to (IC) and (IR)

� Example: Retiring agent with wealth Wt

� Instruct agent not to take any e¤ort at = 0

�Pay out wealth as annuity u (ct) =Wt

�Firm pro�t from this contract �0 (u (c)) = �c

[Figure: �0 and �]

� Evolution of pro�t

�t = r (at � ct) dt+ (1� rdt)E [�t+dt]

r�tdt = r (at � ct) dt+ E [d�t]

� Principal�s expected pro�t �t is function of state variable, i.e. of agent�s wealth �(Wt)

� The expected value of the increment E [d�t] can be calculated with Ito�s Lemma

Lemma 6 (Ito) Consider the stochastic process Wt governed by

dWt = 
 (Wt) dt+ �dZt

and a process �t = �(Wt) that is a function of this original process. Then the expected increment

of �t is given by

E [d�(W )] =
�

 (W )�0 (W ) +

1

2
�2�00 (W )

�
dt

Proof. By Taylor expansion

�(Wt+dt)��(Wt) = � (Wt + 
 (Wt) dt+ �dZt)��(Wt)

= (
 (Wt) dt+ �dZt)�
0 (Wt) +

1

2
(
 (Wt) dt+ �dZt)

2�00 (Wt) + o (dt)

= (
 (Wt) dt+ �dZt)�
0 (Wt) +

1

2
�2dZ2t�

00 (Wt) + o (dt)

E [d�t] = 
 (Wt) dt�
0 (Wt) +

1

2
�2dt�00 (Wt) + o (dt)

13



� The reason, the Ito term 1
2�

2�00 (Wt) comes in is thatWt is oscillating so strongly, with stdv.p
dt in every dt.

� In the case at hand we have


 (Wt) = r (Wt � (u (ct)� g (at)))

� = rg0 (at)

and we get

r�(W ) = max
a;c

r (a� c) + r (W � (u (c)� g (a)))�0 (W )+1
2
r2g0 (a)2�00 (W ) (*)

� So the principal chooses plans a = a (W ) > 0 and c = c (W ) to maximize the RHS of (*)

� The agent has to retire at some point Wr

�Marginal utility of consumption u0 (c)! 0

�Marginal cost of e¤ort g0 (a) � " > 0

� Boundary conditions

��(0) = 0: If the agent�s wealth is 0, he can achieve this by setting future e¤ort at = 0,
yielding 0 to the �rm

��(Wr) = �0 (Wr) = �u�1 (Wr): At some retirement wealth Wr, the agent retires

��0 (Wr) = �
0
0 (Wr): Smooth pasting: The pro�t function is smooth and equals �0 above

Wr

Theorem 7 There is a unique concave function �(W ) � �0(W ), maximizing (*) under the above
boundary conditions. The action and consumption pro�les a (W ) ; c (W ) constitute an optimal

contract.

1.5.4 Properties of Solution

Properties of �

� �(0) = 0

� �0 (0) > 0: terminating the contract at W = 0 is ine¢ cient, and W > 0 serves as insurance

against termination
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� �(W ) < 0 for large W , e.g. W =Wr, because agent has been promised a lot of continuation

utility

Properties of a�(W )

� Optimal e¤ort a�(W ) maximizes

ra+ rg (a)�0 (W )+
1

2
r2g0 (a)2�00 (W )

� Increased output ra

�Compensating agent for e¤ort through continuation wealth rg (a)�0 (W ) - positive for
W � 0!

�Compensating agent for income risk 1
2r
2g0 (a)2�00 (W )

� Monotonicity of a� (W ) unclear

[Figure: a�(W )]

� ��0 (W ) decreasing

��00 (W ) could be increasing or decreasing

� As r ! 0, a� (W ) decreasing

Properties of c�(W )

� Optimal consumption c�(W ) maximizes

�rc� ru (c)�0 (W )

and thus
1

u0 (c�)
= ��0 (W ) or c� = 0

� 1
u0(c�) : cost of current consumption utility

���0 (W ): cost of continuation utility - negative for small W

� Thus agent does not consume as long as W small
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1.5.5 Extensions: Career Paths

� Performance-based compensation c (Wt) serves as short-term incentive

� Now incorporate long-term incentives into model

� In baseline model principal�s outside option was retirement �0 (u (c)) = �c

� Can model, quitting, replacement or promotion by di¤erent outside options e�0
� This only changes the boundary conditions but not the di¤erential equation determining �

� If agent can quit at any time with outside utilityfW , then e�0 (u (c)) = ( �c if u (c) > fW
0 if u (c) = fW

� If agent can be replaced at pro�t D to �rm, then e�0 (u (c)) = D � c
� If agent can be promoted at costK, resulting into new value function �p, then e�0 (W ) =
max f�0 (W ) ; �p (W )�Kg

[Figure: �(W ) for three extensions]

� Ranking of �(W )

quitting < benchmark < replacement, promotion

16


