Lecture Notes - Dynamic Moral Hazard

Simon Board and Moritz Meyer-ter-Vehn

October 23, 2012

1 Dynamic Moral Hazard

- Effects
 - Consumption smoothing
 - Statistical inference
 - More strategies
 - Renegotiation
- Non-separable technologies
 - One action $a \in \{0, 1\}$, many outputs q_t
 - * Example (Mirrlees): $dq_t = adt + \sigma dZ_t$; then $q_1 \sim N(a, \sigma^2)$
 - * Basically, like single-period model
 - * But a we some inference: $\frac{f(q|L)}{f(q|H)} \to \infty$ as $q \to -\infty$
 - * Approximate first-best
 - · Pay flat wage for $q \in (q^*, \infty)$ where $q^* << 0$, and punish agent hard when $q < q^*$
 - · States $(-\infty, q^*)$ much more likely for a = 0

[Figure:
$$f(q|L), f(q|H)$$
]

- - Many actions a_1, a_2, \dots, a_T , one output q_T
 - * Agent does not learn anything
 - * Can choose a_1, a_2, \dots, a_T simultaneously
- Main model: Separable technologies
 - Time $t \in \{1, 2, \dots\}$

- Action $a_t \in A \subseteq \mathbb{R}$
- Output q_t (observable) with separable independent pdf $f(q_t|a_t)$
- Preferences $u(c_t) g(a_t)$ time-separable, stationary
- Reference utility \overline{u} per period
- Principal gets $q_t w_t$

1.1 Asymptotic Efficiency

• Fudenberg, Holmstrom, Milgrom, JET, 1990

1.1.1 Setup

- ∞ periods, common discount factor δ
- Output $q_t \in [q, \overline{q}]$
- Actions $a_t \in A$
- First best action a^* and quantity $q^* = \mathbb{E}\left[q|a^*\right] > q$
- Time-separable and stationary

1.1.2 Result

Proposition 1 If everybody is patient, first-best is almost achievable: $\forall \varepsilon, \exists \overline{\delta}, \forall \delta \geq \overline{\delta}$ there is a contract generating agent utility greater than $u(q^*) - g(a^*) - \varepsilon$ (and yielding at least 0 to the principal).

- Statement assumes that agent proposes contract and has to satisfy principal's IR constraint
- If principal proposes, can also get first-best

Idea:

- Make agent residual claimant
- He can build up savings (through principal) and then smooth his consumption

Proof.

• Agent's wealth w_t

• If wealth is high, $w_t \ge \left(q^* - \underline{q}\right)/\delta$, consume

$$q_t = q^* + \underbrace{(1-\delta)w_t - \widetilde{\varepsilon}}_{\geq 0}$$

- Earnings q^*
- Interest $(1 \delta) w_t$
- save a little $\widetilde{\varepsilon} \in (0; (1 \delta) (q^* q) / \delta)$
- If wealth is low, $w_t \leq \left(q^* \underline{q}\right)/\delta$, consume

$$q_t = \underline{q} + (1 - \delta) w_t$$

- Minimal earning q
- Interest $(1 \delta) w_t$
- This is pretty arbitrary. The point is that wealth grows

$$\mathbb{E}\left[w_{t+1}\right] - w_t \ge \min\left\{\left(q^* - q\right) / \delta, \widetilde{\varepsilon}\right\} > 0$$

• Thus, wealth is a submartingale with bounded increments and eventually exceeds any threshold forever with probability one

$$\lim_{t \to \infty} p_t = 1 \text{ where}$$

$$p_t = \Pr(w_\tau \ge x \text{ for all } \tau \ge t)$$

$$x = (q^* - q)/\delta$$

• Omitting non-negative terms gives lower bound on agent's utility

$$(1 - \delta) \sum_{\tau=0}^{\infty} \delta^{\tau} \left(u \left(q_{\tau} \right) - g \left(a^{*} \right) \right) \geq \delta^{t} p_{t} \left(u \left(q^{*} \right) - g \left(a^{*} \right) \right)$$
$$\geq u \left(q^{*} \right) - g \left(a^{*} \right) - \varepsilon$$

when we choose δ and p_t close enough to 1

1.2 Marginal Cost of Utility is Martingale

• Rogerson, Econometrica, 1985

1.2.1 Principal's Problem

- Two periods $t \in \{1, 2\}$, no discounting
- Let $a = (a_1, a_2(q_1))$ be agent's action plan
- Principal chooses $a, w_1(q_1), w_2(q_1, q_2)$ to maximize

$$\mathbb{E}\left[\left(q_{1}-w_{1}\left(q_{1}\right)+q_{2}-w_{2}\left(q_{1},q_{2}\right)\right)|a| \text{ subject to } : \\ \mathbb{E}\left[u\left(w_{1}\left(q_{1}\right)\right)-g\left(a_{1}\right)+u\left(w_{2}\left(q_{1},q_{2}\right)\right)-g\left(a_{2}\right)|a| \geq \mathbb{E}\left[...|\widetilde{a}\right]$$
 (IC)

$$\mathbb{E}\left[u\left(w_{1}\left(q_{1}\right)\right) - g\left(a_{1}\right) + u\left(w_{2}\left(q_{1}, q_{2}\right)\right) - g\left(a_{2}\right)|a\right] \geq 2\overline{u} \tag{IR}$$

• Note: Agent can't save or borrow

1.2.2 Result

Proposition 2 The optimal long-term contract a^* , $w_1^*\left(q_1\right)$, $w_2^*\left(q_1,q_2\right)$ satisfies

$$\frac{1}{u'(w_1^*(q_1))} = \mathbb{E}\left[\frac{1}{u'(w_2^*(q_1, q_2))}|q_1, a^*\right] \tag{*}$$

for all q_1 .

Idea:

- LHS is marginal cost of providing utility today
- RHS is expected marginal cost of providing utility tomorrow
- Agent is indifferent between receiving utility today or tomorrow
- If LHS<RHS principal could profit by front-loading utility

Proof.

- \bullet Let $w_{1}^{*}\left(q_{1}\right),w_{2}^{*}\left(q_{1},q_{2}\right)$ be optimal contract
- Fix q_1
- Shift ε utility to period 1

$$u(\widehat{w}_{1}(q_{1})) = u(w_{1}^{*}(q_{1})) + \varepsilon$$

 $u(\widehat{w}_{2}(q_{1}, q_{2})) = u(w_{2}^{*}(q_{1}, q_{2})) - \varepsilon$

- Does not affect agent's IC or IR constraint
- By first-order Taylor approximation

$$\widehat{w}_{1}(q_{1}) = w_{1}^{*}(q_{1}) + \frac{\varepsilon}{u'(w_{1}^{*}(q_{1}))}
\widehat{w}_{2}(q_{1}, q_{2}) = w_{2}^{*}(q_{1}, q_{2}) - \frac{\varepsilon}{u'(w_{2}^{*}(q_{1}, q_{2}))}, \forall q_{2}$$

• Thus, effect on Revenue

$$\widehat{R} - R^* = -\varepsilon \left(\frac{1}{u'(w_1^*(q_1))} - \mathbb{E} \left[\frac{1}{u'(w_2^*(q_1, q_2))} | q_1, a^* \right] \right)$$

• As ε can be chosen positive or negative, optimality requires that the term in parantheses vanishes

1.2.3 Discussion

- Properties of optimal long-term contract a^*, w^*
 - Inertia: RHS increasing in $w_1^*(q_1)$, consumtion smoothing
 - Complex: $w_2^* \neq w_2(q_2)$
- Agent would like to save not borrow
 - Apply Jensen's inequality to (*)
 - -f(x) = 1/x is a convex function, thus $1/(\mathbb{E}[x]) \leq \mathbb{E}[1/x]$

$$u'(w_1^*(q_1)) = 1/\mathbb{E}\left[\frac{1}{u'(w_2^*(q_1, q_2))}\right] \le \mathbb{E}\left[u'(w_2^*(q_1, q_2))\right]$$

- Intuition:
 - $\ast\,$ If "=", then principal can get some IC2 for free by front-loading wages
 - * That is, offer $w_1(q_1) + dw, w_2(q_1, q_2) dw$
 - * Keep them hungry

1.3 Short-term Contracts

• Fudenberg, Holmstrom, Milgrom, JET, 1990

1.3.1 Setup

- 2 periods, no discounting
- Time separable technology and preferences
- Agent can save, but principal can monitor this
 - Funny assumption, but necessary for tractability and result
 - Maybe reasonable in developing countries when saving is through landlord
- Outside utility $\overline{u} = u(\overline{q})$

1.3.2 Principal's Problem

• Principal chooses $a_1, w_1 = w_1(q_1), s = s(q_1), a_2 = a_2(q_1), w_2 = w_2(q_1, q_2, s)$ to maximize

$$\mathbb{E}\left[\left(q_{1}-w_{1}+q_{2}-w_{2}\right)|a\right] \text{ subject to } :$$

$$\mathbb{E}\left[u\left(w_{1}-s\right)-g\left(a_{1}\right)+u\left(w_{2}+s\right)-g\left(a_{2}\right)|a\right] \geq \mathbb{E}\left[\cdots\left|\widetilde{a},\widetilde{s}\right] \tag{IC}$$

$$\mathbb{E}\left[u\left(w_{1}-s\right)-g\left(a_{1}\right)+u\left(w_{2}+s\right)-g\left(a_{2}\right)|a\right] \geq 2\overline{u} \tag{IR}$$

- Can ignore savings for the moment
 - Savings IC constraint not-binding because observable
 - Can choose $s(q_1) = 0$ in optimal contract because principal can save for the agent by adjusting w

1.3.3 Renegotiation and Spot Contracts

- After period 1 of contract a^*, w^* , the principal could offer the agent to change contract
- Optimally, he offers contract $\hat{a}_2, \hat{w}_2(q_2)$ to maximize

$$\mathbb{E}\left[q_2 - w_2\left(q_2\right) \middle| a_2\right]$$
 subject to : (Seq-Eff)

$$\mathbb{E}\left[u\left(\hat{w}_{2}\left(q_{2}\right)\right) - g\left(\hat{a}_{2}\right)|\hat{a}_{2}\right] \geq \mathbb{E}\left[\cdots|\tilde{a}_{2}\right] \tag{IC'}$$

$$\mathbb{E}\left[u\left(\hat{w}_{2}\left(q_{2}\right)\right) - g\left(\hat{a}_{2}\right)|\hat{a}_{2}\right] \geq \mathbb{E}\left[u\left(w_{2}^{*}\left(q_{1}, q_{2}\right)\right) - g\left(a_{2}^{*}\right)|a_{2}^{*}\right]$$
 (IR')

where the last line captures the idea that the agent can insist on the original long-term contract

• Of course, \hat{a}_2 , \hat{w}_2 (q_2) implicitly depend on q_1 through (IR')

• Call contract sequentially efficient, or renegotiation-proof if there is no such mutually beneficial deviation after any realization of q_1 , and thus $\hat{a}_2 = a_2^*$ and $\hat{w}_2(q_2) = w_2^*(q_1, q_2)$.

Proposition 3 The optimal long-term contract is renegotiation-proof.

- If there was a profitable deviation after q_1 , there is a weakly more profitable deviation where IR' is binding
 - not true in general games!
 - true here, because Pareto-frontier downward-sloping
- The original contract could then be improved by substituting the deviation into the original contract
 - Does not change agent's period 1's IC or IR because expected continuation utility after q_1 unchanged (but expected marginal utility after q_1 may have changed)
 - Agent's period 2 IC and IR satisfied

1.3.4 Spot Contracts

• The long-term contract a^* , w^* can be implemented via spot contracts if there is a saving strategy $s(q_1)$ for the agent such that the second period spot contract \overline{a}_2 , $\overline{w}_2(q_2)$ maximizes

$$\mathbb{E}\left[q_2 - w_2\left(q_2\right) \middle| a_2\right] \text{ subject to } : \tag{Spot}$$

$$\mathbb{E}\left[u\left(\overline{w}_2\left(q_2\right) + s\left(q_1\right)\right) - g\left(\overline{a}_2\right) | \overline{a}_2\right] \geq \mathbb{E}\left[\cdots | \widetilde{a}_2\right] \tag{IC-spot}$$

$$\mathbb{E}\left[u\left(\overline{w}_2\left(q_2\right) + s\left(q_1\right)\right) - g\left(\overline{a}_2\right) | \overline{a}_2\right] \ge u\left(\overline{q} + s\left(q_1\right)\right) \tag{IR-spot}$$

yields the same actions $\overline{a}_2 = a_2^*$ and wages $\overline{w}_2(q_2) + s(q_1) = w_2^*(q_1, q_2)$ as the original contract.

Proposition 4 A renegotiation-proof contract can be implemented by spot contracts.

- For 2, let \hat{a}_2 , \hat{w}_2 (q_2) be optimal continuation contract after q_1
- Set $s = s(q_1)$ so that $u(\overline{q} + s) = \mathbb{E}\left[u(\hat{w}_2(q_2)) g(\hat{a}_2)|\hat{a}_2\right]$
- Then, $\overline{a}_2 = \widehat{a}_2$, $\overline{w}_2(q_2) = \widehat{w}_2(q_2) s$ solves (Spot)

1.3.5 Discussion

- Rationale for Short-Term Contracting
- Separates incentive-provision from consumption smoothing
- Yields recursive structure of optimal long-term contract Memory of contract can be captured by one state variable: savings
- Generalizes to
 - T periods
 - Preferences where a_1 does not affect trade-off between a_2 and c_2

1.4 Optimal Linear Contracts

• Holmstrom, Milgrom, Econometrica 1987

1.4.1 Setup

- 2 periods, no discounting
- Time separable technology and preferences
- Funny utility function

$$u(w_1, w_2, a_1, a_2) = -\exp(-(w_1 + w_2 - g(a_1) - g(a_2)))$$

- Consumption at the end (-> no role for savings)
- Monetary costs of effort
- CARA no wealth effects
- Outside wage w per period
- Optimal static contract a^s, w^s

1.4.2 Result

Proposition 5 1. The optimal long-term contract repeats the optimal static contract:

$$w_1^*(q_1) = w^s(q_1)$$
 and $w_2^*(q_1, q_2) = w^s(q_2)$

2. If q is binary, or Brownian, the optimal contract is linear in output: $w^*(q_1, q_2) = \alpha + \beta (q_1 + q_2)$

Idea: CARA makes everything separable

Proof.

• Principal chooses a^*, w^* to maximize

$$\mathbb{E}\left[q_{1}-w_{1}\left(q_{1}\right)+q_{2}-w_{2}\left(q_{1},q_{2}\right)|a\right] \text{ subject to } :$$

$$\mathbb{E}\left[-\exp\left(-\left(w_{1}^{*}\left(q_{1}\right)+w_{2}^{*}\left(q_{1},q_{2}\right)-g\left(a_{1}^{*}\right)-g\left(a_{2}^{*}\right)\right)\right)|a^{*}\right] \geq \mathbb{E}\left[-\exp\left(...\right)|\widetilde{a}\right] \quad \text{(IC)}$$

$$\mathbb{E}\left[-\exp\left(-\left(w_{1}^{*}\left(q_{1}\right)+w_{2}^{*}\left(q_{1},q_{2}\right)-g\left(a_{1}^{*}\right)-g\left(a_{2}^{*}\right)\right)\right)|a^{*}\right] \geq u\left(2w\right) \quad \text{(IR)}$$

• Can choose $w_2^*(q_1, q_2)$ so that $\mathbb{E}\left[-\exp\left(-\left(w_2^*(q_1, q_2) - g\left(a_2^*\right)\right)\right) | a_2^*\right] = u\left(w\right)$ for all q_1 (make IR binding in period 2)

- Add $\Delta(q_1)$ to all $w_2^*(q_1, q_2)$
- Subtract $\Delta(q_1)$ from $w_1^*(q_1)$
- Does not affect $w_1^*\left(q_1\right)+w_2^*\left(q_1,q_2\right)$ for any realization $\left(q_1,q_2\right)$
- Principal and agent only care about this sum
- Sequential efficiency implies that in the second period after realization of q_1 , principal chooses \widehat{a}_2 , \widehat{w}_2 to maximize

$$\mathbb{E}\left[q_{2}-w_{2}\left(q_{2}\right)|a_{2}\right] \text{ subject to } :$$

$$-\exp\left(-\left(w_{1}^{*}\left(q_{1}\right)-g\left(a_{1}^{*}\right)\right)\right)\mathbb{E}\left[\exp\left(-\left(\widehat{w}_{2}\left(q_{2}\right)-g\left(\widehat{a}_{2}\right)\right)\right)|\widehat{a}_{2}\right] \geq -\exp\left(...\right)\mathbb{E}\left[\exp\left(...\right)\left[\mathbb{E}\left[\exp\left(...\right)\left[\mathbb{E}\left[\exp\left(-\left(\widehat{w}_{2}\left(q_{2}\right)-g\left(\widehat{a}_{2}\right)\right)\right)|\widehat{a}_{2}\right]\right] \geq -\exp\left(...\right)u\left(w\right) \quad \text{(IR 2)}$$

- Period one factors out (this is because there are no wealth effects)
- Optimal second period contract \hat{a}_2 , \hat{w}_2 is the optimal short-term contract, $\hat{a}_2 = a^s$, \hat{w}_2 $(q_2) = w^s(q_2)$, independent of q_1
- Taken \hat{a}_2, \hat{w}_2 as given, the principal chooses \hat{a}_1, \hat{w}_1 to maximize

- This is again the static problem, proving (1)
- (2) follows because every function of q binary is linear, and a Brownian motion is approximated by a binary process

1.4.3 Discussion

- Not very general, but extends to any number of periods
- Stationarity not so suprising:
 - technology independent
 - no consumption-smoothing
 - no wealth-effects

- no benefits from long-term contracting
- Agent benefits from ability to adjust actions according to realized output
 - Consider generalization with $t \in [0; T]$ and $dq_t = adt + \sigma dW_t$, so that $q_T \sim N\left(a, \sigma^2 T\right)$
 - If agent cannot adjust his action, principal can implement first-best via tail-test and appropriate surplus
 - Tail-test does not work if agent can adjust effort
 - * Can slack at first...
 - * ... and only start working if q_t drifts down to far
 - More generally with any concave, say, reward function $w(q_T)$, agent will
 - * work in steep region, after bad realization
 - * shirk in flat region, after good realization
 - Providing stationary incentives to always induce the static optimal a^* is better

[Figure: Optimal contracts $w(q_T)$]

1.5 Continuous Time (Sannikov 2008)

1.5.1 Setup

- Continuous time $t \in [0, \infty)$, discount rate r
- Think about time as tiny discrete increments dt; remember $rdt \approx 1 e^{-rdt}$
- Time separable technology

$$dX_t = a_t dt + dZ_t$$

- Brownian Motion Z_t (also called Wiener process) characterized by
 - Sample paths Z_t continuous almost surely
 - Increments independent and stationary with distribution $Z_{t+\Delta} Z_t \sim \mathcal{N}\left(0, \Delta\right)$

[Figure: Z_t]

Wealth of agent

$$W = r \int_{t=0}^{\infty} e^{-rt} \left(u \left(c_t \right) - g \left(a_t \right) \right) dt$$

(the "r" annuitizes the value of the agent and renders it comparable to u and g)

- Cost function g with g(0) = 0, g' > 0, g'' > 0
- Consumption utility with $u\left(0\right)=0, u'>0, u''<0, \lim_{x\to\infty}u'\left(x\right)=0$
- Consumption = wage; no hidden savings
- Revenue of firm

$$\Pi = r\mathbb{E}\left[\int e^{-rt} dX_t\right] - r \int e^{-rt} c_t dt$$
$$= r \int e^{-rt} (a_t - c_t) dt$$

1.5.2 Agent's problem

- Contract: a_t, c_t as function of $X_{s \le t}$
- Recursive formulation: a_t, c_t, W_t as function of $X_{s \le t}$
- 'Promise-keeping' constraint

$$W_{t} = rdt \left(u \left(c_{t} \right) - g \left(a_{t} \right) \right) + \left(1 - rdt \right) \mathbb{E} \left[W_{t+dt} \middle| a_{t} \right]$$

$$rW_{t}dt = rdt \left(u \left(c_{t} \right) - g \left(a_{t} \right) \right) + \mathbb{E} \left[dW_{t} \middle| a_{t} \right]$$

$$(PK)$$

• Assume that value increments dW_t are linear in output increments dX_t with wealth dependent sensitivity $rb(W_t)$

$$dW_t = rb(W_t) dX_t = rb(W_t)(a_t dt + dZ_t)$$

$$\mathbb{E}[dW_t|a_t] = rb(W_t) \mathbb{E}[dX_t] = rb(W_t) \mathbb{E}[a_t dt + dZ_t] = rb(W_t) a_t dt$$

• First-order condition

$$g'(a(W)) = b(W) \tag{IC}$$

• Evolution of wealth governed by

$$dW_t = \mathbb{E}\left[dW_t\right] + \left(dW_t - \mathbb{E}\left[dW_t\right]\right)$$

$$= r\left(W_t - \left(u\left(c_t\right) - g\left(a_t\right)\right)\right)dt + rb\left(W_t\right)\left(dX_t - a_tdt\right)$$

$$= r\left(W_t - \left(u\left(c_t\right) - g\left(a_t\right)\right)\right)dt + rb\left(W_t\right)dZ_t$$

- Drifting
 - * up when wealth and interest rW_t are high
 - * down when consumption c_t is high

- * up when effort a_t is high
- Wiggling
 - * up, when production exceeds expectations $dX_t > a_t dt$
 - * down, when production falls short of expectations $dX_t < a_t dt$

1.5.3 Firm's problem

- Choose a_t, c_t as function of $X_{s \leq t}$ to maximize Π subject to (IC) and (IR)
- Example: Retiring agent with wealth W_t
 - Instruct agent not to take any effort $a_t = 0$
 - Pay out wealth as annuity $u(c_t) = W_t$
 - Firm profit from this contract $\Pi_{0}\left(u\left(c\right)\right)=-c$

[Figure: Π_0 and Π]

• Evolution of profit

$$\Pi_t = r(a_t - c_t) dt + (1 - rdt) \mathbb{E} [\Pi_{t+dt}]$$

$$r\Pi_t dt = r(a_t - c_t) dt + \mathbb{E} [d\Pi_t]$$

- Principal's expected profit Π_t is function of state variable, i.e. of agent's wealth $\Pi(W_t)$
- The expected value of the increment $\mathbb{E}[d\Pi_t]$ can be calculated with Ito's Lemma

Lemma 6 (Ito) Consider the stochastic process W_t governed by

$$dW_t = \gamma \left(W_t \right) dt + \sigma dZ_t$$

and a process $\Pi_t = \Pi(W_t)$ that is a function of this original process. Then the expected increment of Π_t is given by

$$\mathbb{E}\left[d\Pi\left(W\right)\right] = \left[\gamma\left(W\right)\Pi'\left(W\right) + \frac{1}{2}\sigma^{2}\Pi''\left(W\right)\right]dt$$

Proof. By Taylor expansion

$$\Pi(W_{t+dt}) - \Pi(W_{t}) = \Pi(W_{t} + \gamma(W_{t}) dt + \sigma dZ_{t}) - \Pi(W_{t})
= (\gamma(W_{t}) dt + \sigma dZ_{t}) \Pi'(W_{t}) + \frac{1}{2} (\gamma(W_{t}) dt + \sigma dZ_{t})^{2} \Pi''(W_{t}) + o(dt)
= (\gamma(W_{t}) dt + \sigma dZ_{t}) \Pi'(W_{t}) + \frac{1}{2} \sigma^{2} dZ_{t}^{2} \Pi''(W_{t}) + o(dt)
\mathbb{E}[d\Pi_{t}] = \gamma(W_{t}) dt \Pi'(W_{t}) + \frac{1}{2} \sigma^{2} dt \Pi''(W_{t}) + o(dt)$$

- The reason, the Ito term $\frac{1}{2}\sigma^2\Pi''(W_t)$ comes in is that W_t is oscillating so strongly, with stdv. \sqrt{dt} in every dt.
- In the case at hand we have

$$\gamma(W_t) = r(W_t - (u(c_t) - g(a_t)))$$

$$\sigma = rg'(a_t)$$

and we get

$$r\Pi(W) = \max_{a,c} r(a-c) + r(W - (u(c) - g(a)))\Pi'(W) + \frac{1}{2}r^2g'(a)^2\Pi''(W)$$
 (*)

- So the principal chooses plans a = a(W) > 0 and c = c(W) to maximize the RHS of (*)
- The agent has to retire at some point W_r
 - Marginal utility of consumption $u'(c) \to 0$
 - Marginal cost of effort $g'(a) \ge \varepsilon > 0$
- Boundary conditions
 - $\Pi(0) = 0$: If the agent's wealth is 0, he can achieve this by setting future effort $a_t = 0$, yielding 0 to the firm
 - $-\Pi\left(W_{r}\right)=\Pi_{0}\left(W_{r}\right)=-u^{-1}\left(W_{r}\right)$: At some retirement wealth W_{r} , the agent retires
 - $-\Pi'(W_r) = \Pi'_0(W_r)$: Smooth pasting: The profit function is smooth and equals Π_0 above W_r

Theorem 7 There is a unique concave function $\Pi(W) \geq \Pi_0(W)$, maximizing (*) under the above boundary conditions. The action and consumption profiles a(W), c(W) constitute an optimal contract.

1.5.4 Properties of Solution

Properties of Π

- $\Pi(0) = 0$
- $\Pi'(0) > 0$: terminating the contract at W = 0 is inefficient, and W > 0 serves as insurance against termination

• $\Pi(W) < 0$ for large W, e.g. $W = W_r$, because agent has been promised a lot of continuation utility

Properties of $a^*(W)$

• Optimal effort $a^*(W)$ maximizes

$$ra + rg\left(a\right)\Pi'\left(W\right) + \frac{1}{2}r^{2}g'\left(a\right)^{2}\Pi''\left(W\right)$$

- Increased output ra
- Compensating agent for effort through continuation wealth $rg\left(a\right)\Pi'\left(W\right)$ positive for $W\approx0!$
- Compensating agent for income risk $\frac{1}{2}r^{2}g'\left(a\right)^{2}\Pi''\left(W\right)$
- Monotonicity of $a^*(W)$ unclear

[Figure:
$$a^*(W)$$
]

- $-\Pi'(W)$ decreasing
 - $-\Pi''(W)$ could be increasing or decreasing
- As $r \to 0$, $a^*(W)$ decreasing

Properties of $c^*(W)$

• Optimal consumption $c^*(W)$ maximizes

$$-rc-ru(c)\Pi'(W)$$

and thus

$$\frac{1}{u'\left(c^*\right)} = -\Pi'\left(W\right) \text{ or } c^* = 0$$

- $-\frac{1}{u'(c^*)}$: cost of current consumption utility
- $-\Pi'(W)$: cost of continuation utility negative for small W
- \bullet Thus agent does not consume as long as W small

1.5.5 Extensions: Career Paths

- Performance-based compensation $c(W_t)$ serves as short-term incentive
- Now incorporate long-term incentives into model
- In baseline model principal's outside option was retirement $\Pi_0(u(c)) = -c$
- Can model, quitting, replacement or promotion by different outside options $\widetilde{\Pi}_0$
- This only changes the boundary conditions but not the differential equation determining Π
 - If agent can quit at any time with outside utility \widetilde{W} , then $\widetilde{\Pi}_{0}\left(u\left(c\right)\right)=\begin{cases} -c & \text{if } u\left(c\right)>\widetilde{W}\\ 0 & \text{if } u\left(c\right)=\widetilde{W} \end{cases}$
 - If agent can be replaced at profit D to firm, then $\widetilde{\Pi}_{0}\left(u\left(c\right)\right)=D-c$
 - If agent can be promoted at cost K, resulting into new value function Π_p , then $\widetilde{\Pi}_0(W) = \max \{\Pi_0(W); \Pi_p(W) K\}$

[Figure: $\Pi(W)$ for three extensions]

• Ranking of $\Pi(W)$

quitting < benchmark < replacement, promotion