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1 Dynamic Moral Hazard

o Effects

Consumption smoothing

— Statistical inference

More strategies

— Renegotiation
e Non-separable technologies

— One action a € {0, 1}, many outputs ¢
* Example (Mirrlees): dg; = adt + 0dZy; then ¢ ~ N(a,0?)
* Basically, like single-period model

x But awesome inference: ]]:((g"?) — 00 as ¢ — —0o0

x Approximate first-best
- Pay flat wage for ¢ € (¢*,00) where ¢* << 0, and punish agent hard when
q<q"

- States (—o0, ¢*) much more likely for a = 0

[Figure: f(q|L), f(q|H)]

e — Many actions ay,as,--- ,ar, one output gr

x Agent does not learn anything

x Can choose aq, a9, - -+ ,ar simultaneously

e Main model: Separable technologies

— Time t € {1,2,---}



Action a; € ACR

— Output ¢; (observable) with separable independent pdf f(g:|a¢)

Preferences u(c;) — g(a;) time-separable, stationary
— Reference utility u per period

— Principal gets ¢ — w;

1.1 Asymptotic Efficiency

e Fudenberg, Holmstrom, Milgrom, JET, 1990

1.1.1 Setup

e 00 periods, common discount factor §

Output ¢; € b, 6}

Actions a; € A

First best action a* and quantity ¢* = E [¢|a*] > ¢

e Time-separable and stationary

1.1.2 Result

Proposition 1 If everybody is patient, first-best is almost achievable: Ve, 30,¥5 > § there is a
contract generating agent utility greater than u(q*) — g (a*) — € (and yielding at least O to the
principal).

e Statement assumes that agent proposes contract and has to satisfy principal’s IR constraint
e If principal proposes, can also get first-best

Idea:

e Make agent residual claimant

e He can build up savings (through principal) and then smooth his consumption

Proof.

e Agent’s wealth wy



e If wealth is high, w; > (q* — g) /0, consume

@=q¢ +(1 -8 w —¢
N————
>0

— Earnings ¢*
— Interest (1 —§) wy
— save a little £ € (0; (1-9) (q* - g) /5)

o If wealth is low, wy < (q* — g) /9, consume
g =q+ (1 —06)w

— Minimal earning ¢

— Interest (1 — ) w
e This is pretty arbitrary. The point is that wealth grows

E [wiq] — we > min{(q* —g) /5,5} >0

e Thus, wealth is a submartingale with bounded increments and eventually exceeds any thresh-

old forever with probability one

lim p, = 1 where

t—o0
pr = Pr(w; >z forall 7>1t)
= (0"=q)/o

e Omitting non-negative terms gives lower bound on agent’s utility

(1=6)Y & (ulgr) —g(a’) = &'plu(q”) —g(a"))
7=0

v

u(q) —g(a) -«

when we choose § and p; close enough to 1

1.2 Marginal Cost of Utility is Martingale

e Rogerson, Econometrica, 1985



1.2.1 Principal’s Problem

e Two periods ¢ € {1,2}, no discounting
e Let a = (a1,a2(q1)) be agent’s action plan

e Principal chooses a,w; (q1) , w2 (q1, ¢2) to maximize

E[(g1 — w1 (¢1) + g2 — w2 (q1,¢2)) |a] subject to

Vv
=
=

Efu(wi(q1)) = g(a1) +u (w2 (q1,42)) = g (az) |a]
Blu(wi (1) = g(a1) +u(wa (g1, 42)) — g (az)la] = 2u

e Note: Agent can’t save or borrow

1.2.2 Result

Proposition 2 The optimal long-term contract a*,wy (q1) , w3 (q1,q2) satisfies

1 1
—— =B | —F——F7——|q,a"
T @) | (g a)|

for all q1.
Idea:

e LHS is marginal cost of providing utility today
e RHS is expected marginal cost of providing utility tomorrow
e Agent is indifferent between receiving utility today or tomorrow

e If LHS<RHS principal could profit by front-loading utility
Proof.

e Let wi (q1),w; (q1,q2) be optimal contract

e Fix q;

e Shift ¢ utility to period 1

(1)) +e¢
(q1,92)) — €

u(wr (q1) = u(w

DO * =%

u (W (q1,92)) = u(w

(IC)
(IR)



Does not affect agent’s IC or IR constraint

By first-order Taylor approximation

—~ % £
w1 (1) = wi(q)+ 75—
u! (wy

@2((117Q2) = w;(thQ)_ !

Thus, effect on Revenue

R-R =< <u’ (wfl(fﬂ)) Bl (w3 (1%(12)) |Q17a*]>

As ¢ can be chosen positive or negative, optimality requires that the term in parantheses

vanishes

1.2.3 Discussion
e Properties of optimal long-term contract a*, w*

— Inertia: RHS increasing in wj(¢1), consumtion smoothing

— Complex: wj # wa (g2)
e Agent would like to save - not borrow

— Apply Jensen’s inequality to (*)
— f(x) =1/x is a convex function, thus 1/ (E[z]) <E[1/x]

o (wf (@) = 1/E [ } < B[ (} (q1, )]

*

w (w3 (q1,q2))
— Intuition:
x If “=" then principal can get some ICy for free by front-loading wages

« That is, offer wq(q1) + dw, wa(q1, q2) — dw
x Keep them hungry

1.3 Short-term Contracts

e Fudenberg, Holmstrom, Milgrom, JET, 1990



1.3.1 Setup
e 2 periods, no discounting
e Time separable technology and preferences

e Agent can save, but principal can monitor this

— Funny assumption, but necessary for tractability and result

— Maybe reasonable in developing countries when saving is through landlord
e Outside utility @ = u (q)
1.3.2 Principal’s Problem
e Principal chooses a1, w; = wi(q1),s = s(q1), a2 = a2(q1), wa = wa(q1, g2, $) to maximize

E (g1 — w1 + g2 — w2) |a] subject to
Elu(wi —s) = g(a1) +u(wz + s) — g (az) |a]
Elu(wi —s) = g(a1) +u(wz + s) — g (az) |a]

\%
&

Vv
[\
S

o

&

e Can ignore savings for the moment

— Savings IC constraint not-binding because observable

— Can choose s(g1) = 0 in optimal contract because principal can save for the agent by

adjusting w

1.3.3 Renegotiation and Spot Contracts

e After period 1 of contract a*, w*, the principal could offer the agent to change contract

e Optimally, he offers contract ag, w3 (g2) to maximize

E[g2 — w2 (g2) |ag] subject to : (Seq-Eff)
Blu(w2(g2)) —g(a2)lag] > B[--[ag] (IC)
Blu (w2 (g2)) —g(a2)las] > Blu(ws(q1,42)) —g(a3)[a3] (IR’)

where the last line captures the idea that the agent can insist on the original long-term

contract

e Of course, dg, w3 (g2) implicitly depend on ¢; through (IR’)



e (Call contract sequentially efficient, or renegotiation-proof if there is no such mutually bene-

ficial deviation after any realization of g1, and thus ay = a3 and W (q2) = w3 (q1,42) -
Proposition 3 The optimal long-term contract is renegotiation-proof.

e If there was a profitable deviation after ¢;, there is a weakly more profitable deviation where
IR’ is binding

— not true in general games!

— true here, because Pareto-frontier downward-sloping

e The original contract could then be improved by substituting the deviation into the original

contract

— Does not change agent’s period 1’s IC or IR because expected continuation utility after

¢1 unchanged (but expected marginal utility after ¢; may have changed)

— Agent’s period 2 IC and IR satisfied

1.3.4 Spot Contracts

e The long-term contract a*,w* can be implemented via spot contracts if there is a saving

strategy s (q1) for the agent such that the second period spot contract ag, ws (g2) maximizes

E [g2 — w2 (g2) |ag] subject to : (Spot)
Elu (s (q2) +s(q1)) —g(az) |a] = E[--|a] (IC-spot)
Blu (s (g2) + s (@) —g(@)[az] = u(@+s(q)) (IR-spot)

yields the same actions @2 = a3 and wages W2 (¢2) + s(q1) = w3 (q1,q2) as the original

contract.
Proposition 4 A renegotiation-proof contract can be implemented by spot contracts.

e For 2, let ag,ws (g2) be optimal continuation contract after ¢;
e Set s = s(q1) so that u (g + s) = E[u (w2 (q2)) — g(a2)|az]

e Then, @y = a2, W2 (¢2) = W2 (g2) — s solves (Spot)



1.3.5 Discussion

Rationale for Short-Term Contracting

Separates incentive-provision from consumption smoothing

Yields recursive structure of optimal long-term contract - Memory of contract can be captured

by one state variable: savings

Generalizes to

— T periods

— Preferences where a; does not affect trade-off between as and co



1.4 Optimal Linear Contracts

e Holmstrom, Milgrom, Econometrica 1987

1.4.1 Setup

e 2 periods, no discounting
e Time separable technology and preferences

e Funny utility function
u (w1, wa, a1, a2) = —exp (— (w1 + w2 — g (a1) — g (az)))

— Consumption at the end (-> no role for savings)
— Monetary costs of effort

— CARA - no wealth effects
e Outside wage w per period

e Optimal static contract a®, w®

1.4.2 Result

Proposition 5 1. The optimal long-term contract repeats the optimal static contract:
wy (1) = w’ (q1) and w3 (q1,q2) = w” (g2)
2. If q is binary, or Brownian, the optimal contract is linear in output: w*(q1,q2) = a +

B (g1 + q2)

Idea: CARA makes everything separable
Proof.

e Principal chooses ¢, w* to maximize
Elqg1 — w1 (q1) + g2 — w2 (q1, q2) |a] subject to

E[—exp (— (] (q1) + w3 (q1,42) — g (a1) — g (a3))) |a”] El[—exp(..)[a]  (IC)
E[—exp (= (w7 (q1) + w3 (q1,42) — g (a1) — g (a3))) [a’] = wu(2w) (IR)

VoIV

e Can choose w} (g1, q2) so that E[—exp (— (w3 (¢1,92) — g (a3))) |a3] = u (w) for all ¢; (make
IR binding in period 2)



Add A (q1) to all w3 (q1,¢2)
— Subtract A (¢1) from wy (¢1)

Does not affect wi (¢1) + w3 (g1, ¢2) for any realization (g1, g2)

— Principal and agent only care about this sum

e Sequential efficiency implies that in the second period after realization of ¢;, principal chooses

o, Wo t0 maximize

E [g2 — w2 (g2) |az] subject to
—exp (= (wi (q1) — g (a1))) B [exp (= (w2 (g2) — g (a2))) [az] —exp (-..) B [exp (... X&3]2)
—exp (...) Blexp (= (w2 (g2) — g (a2))) [az] > —exp(.)u(w) (IR 2)

v

\%

e Period one factors out (this is because there are no wealth effects)

e Optimal second period contract ag, ws is the optimal short-term contract, as = a®, wa (¢2) =

w® (g2), independent of g1

e Taken ay, w9 as given, the principal chooses a1, w; to maximize

maximize E[q — w1 (¢1) |a1] subject to
—E[exp (= (w1 (1) — g (a1))) [a1] B [exp (— (w2 (g2) — g (a2))) [az2] —E ..o E[.(J&]1)
—E[exp (= (w1 (1) — g (a1))) [a1] B [exp (— (w2 (q2) — g (a2))) [a2] = w(2w) (IR 1)

v

V

e This is again the static problem, proving (1)

e (2) follows because every function of ¢ binary is linear, and a Brownian motion is approxi-

mated by a binary process

1.4.3 Discussion

e Not very general, but extends to any number of periods

e Stationarity not so suprising:

— technology independent
— no consumption-smoothing

— no wealth-effects

10



— no benefits from long-term contracting

e Agent benefits from ability to adjust actions according to realized output

Consider generalization with ¢ € [0;7] and dg; = adt + odWy, so that gr ~ N (a, 0’2T)

— If agent cannot adjust his action, principal can implement first-best via tail-test and

appropriate surplus
— Tail-test does not work if agent can adjust effort

* Can slack at first...

x ... and only start working if ¢; drifts down to far

More generally with any concave, say, reward function w (qr), agent will

x work in steep region, after bad realization

x shirk in flat region, after good realization

Providing stationary incentives to always induce the static optimal a* is better

[Figure: Optimal contracts w(qr)]

1.5 Continuous Time (Sannikov 2008)
1.5.1 Setup

e Continuous time t € [0;00), discount rate r

e Think about time as tiny discrete increments dt; remember rdt ~ 1 — e~ "%

e Time separable technology
dXt = Cltdt + dZt

Brownian Motion Z; (also called Wiener process) characterized by

— Sample paths Z; continuous almost surely

— Increments independent and stationary with distribution Z; A — Zp ~ N (0, A)

[Figure: Zy]

Wealth of agent
W = r/ e " (u(ey) — g (ay))dt
t

=0

(the “r” annuitizes the value of the agent and renders it comparable to u and g)

11



— Cost function g with g(0) =0, ¢ >0,¢" >0
— Consumption utility with u (0) = 0,4’ > 0,4” < 0,lim; v’ () =0

— Consumption = wage; no hidden savings

Revenue of firm

I = rE {/ ertht} —r/ertctdt

= r [ e (ar —c)dt

1.5.2 Agent’s problem

Contract: a, c; as function of X<
Recursive formulation: aq, c;, Wy as function of X<

‘Promise-keeping’ constraint

Wy = rdt(u(ce) —g(ar)) + (1 — rdt) E[Wiepaad (PK)
rWidt = rdt(u(c) — g (ar)) + E [dWe|a]

Assume that value increments dWW; are linear in output increments dX; with wealth depen-
dent sensitivity b (W)

th = 7rb (Wt) dXt = rb(Wt)(atdt + dZt)
E [th|(lt] = 7rb (Wt) E [dXt] =rb (Wt) E [atdt + dZt] =rb (Wt) atdt

First-order condition

Evolution of wealth governed by

dwW, = E[dW] + (dW; — E[dW}])
= r(Wi—(u(ct) —g(ar))) dt +rb(Wy) (dXt — ardt)
= (Wi = (u(ct) — g (ar))) dt + rb (W) dZ;

— Drifting
* up when wealth and interest rW; are high

* down when consumption ¢; is high

12



*x up when effort a; is high
— Wiggling
* up, when production exceeds expectations dX; > a;dt
x down, when production falls short of expectations dX; < a;dt
1.5.3 Firm’s problem

e Choose at, ¢; as function of Xs<; to maximize II subject to (IC) and (IR)

e Example: Retiring agent with wealth W,

— Instruct agent not to take any effort a; =0
— Pay out wealth as annuity u (¢;) = W;

— Firm profit from this contract Il (u (¢)) = —c¢
[Figure: IIp and II]
e Evolution of profit

Ht = T (CLt — Ct) dt + (]. - T’dt) E [Ht—i-dt]
Ttht = T (at — Ct) dt + E [d]:[t]

e Principal’s expected profit I, is function of state variable, i.e. of agent’s wealth IT (W})
e The expected value of the increment E [dII;] can be calculated with Ito’s Lemma

Lemma 6 (Ito) Consider the stochastic process Wy governed by
th =7 (Wt) dt + O'dZt

and a process II, = I1 (W) that is a function of this original process. Then the expected increment
of Il; is given by

E [dIT (W)] = | (W) TV (W)+%UQH” )| at

Proof. By Taylor expansion

II (Wt—i-dt) —1I (Wt) = 1II (Wt + v (Wt) dt + O'dZt) —1I (Wt)
= (’}/ (Wt) dt + O'dZt) T (Wt) + % (’}’ (Wt) dt + O'dZt)2 " (Wt) 4+ o0 (dt)
— (W) dt + 0dZ) T (W) + %JZdeH” (W) + o (dt)

E[dIl] = - (W) deT (Wt)+%a2dtﬂ” (W2) + o (dt)

13



e The reason, the Ito term 202I1” (W;) comes in is that W} is oscillating so strongly, with stdv.
Vdt in every dt.

e In the case at hand we have
yWi) = r(We—(u(er) —g(at)))
o = ¢ (a)

and we get

rIL(W) = maxr (a — c) + (W = (u(c) - g (a))) II' (W) +%T29’ (@?I" (W) (¥

a,c

e So the principal chooses plans a = a (W) > 0 and ¢ = ¢ (W) to maximize the RHS of (*)
e The agent has to retire at some point W,

— Marginal utility of consumption u’ (¢) — 0

— Marginal cost of effort ¢’ (a) > ¢ >0
e Boundary conditions

— I1(0) = 0: If the agent’s wealth is 0, he can achieve this by setting future effort a; = 0,
yielding 0 to the firm

— I(W,) =TIy (W,) = —u~! (W,): At some retirement wealth W,., the agent retires

— II' (W,) = IIj; (W,): Smooth pasting: The profit function is smooth and equals IIy above
W

Theorem 7 There is a unique concave function I[(W) > o(W), maximizing (*) under the above
boundary conditions. The action and consumption profiles a (W) ,c (W) constitute an optimal
contract.
1.5.4 Properties of Solution
Properties of II

¢ II(0)=0

e II'(0) > 0: terminating the contract at W = 0 is inefficient, and W > 0 serves as insurance

against termination
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o II (W) < 0 for large W, e.g. W = W, because agent has been promised a lot of continuation
utility

Properties of a*(W)

e Optimal effort a*(W) maximizes
1
ra+rg(a) Il (W) +§7‘2g’ (a)?TI" (W)

— Increased output ra

— Compensating agent for effort through continuation wealth rg (a) II' (W) - positive for
W ~ 0!

— Compensating agent for income risk 2r%g’ (a)? 11" (W)
e Monotonicity of a* (W) unclear
[Figure: a*(W)]

e — II'(W) decreasing

— II” (W) could be increasing or decreasing

e Asr — 0, a* (W) decreasing

Properties of ¢*(W)
e Optimal consumption ¢*(W) maximizes
—rc—ru(c) II' (W)

and thus

= —H/ * =
7 () (W) orc*=0

- ﬁ: cost of current consumption utility

— —II' (W): cost of continuation utility - negative for small W

e Thus agent does not consume as long as W small

15



1.5.5 Extensions: Career Paths

e Performance-based compensation ¢ (WW;) serves as short-term incentive

e Now incorporate long-term incentives into model

In baseline model principal’s outside option was retirement Iy (u (¢)) = —c¢

Can model, quitting, replacement or promotion by different outside options ﬁo

This only changes the boundary conditions but not the differential equation determining IT

L —c ifu(e)>W
— If agent can quit at any time with outside utility W, then Iy (u (¢)) = c 1 u() —~
0 ifu(c)=W

— If agent can be replaced at profit D to firm, then Iy (u (c)) = D — ¢

— If agent can be promoted at cost K, resulting into new value function II,, then I, (W) =
max {IIo (W) ; 1L, (W) — K}

[Figure: II(W) for three extensions]
e Ranking of II(IW)

quitting < benchmark < replacement, promotion
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