INCOME AND SUBSTITUTION EFFECTS

[See Chapter 5 and 6]

1

2

3

Two Demand Functions

- Marshallian demand x_i(p₁,...,p_n,m) describes how consumption varies with prices and income.
 Obtained by maximizing utility subject to the budget constraint.
- Hicksian demand h_i(p₁,...,p_n,<u>u</u>) describes how consumption varies with prices and utility.
 - Obtained by minimizing expenditure subject to the utility constraint.

CHANGES IN INCOME

Changes in Income

- An increase in income shifts the budget constraint out in a parallel fashion
- Since p₁/p₂ does not change, the optimal MRS will stay constant as the worker moves to higher levels of utility.

Changes in Income

• The change in consumption caused by a change in income from m *to m*' can be computed using the Marshallian demands:

$$\Delta x_1 = x_1(p_1, p_2, m') - x_1(p_1, p_2, m)$$

- If $x_1(p_1,p_2,m)$ is increasing in m, i.e. $\partial x_1/\partial m \ge 0$, then good 1 is normal.
- If $x_1(p_1,p_2,m)$ is decreasing in m, i.e. $\partial x_1/\partial m < 0$, then good 1 is inferior.

Changes in a Good's Price

- A change in the price of a good alters the slope of the budget constraint
- When the price changes, two effects come into play
 - substitution effect
 - income effect
- We separate these effects using the Slutsky equation.

 The total change in x₁ caused by a change in its price from p₁ to p₁' can be computed using Marshallian demand:

$$\Delta x_1 = x_1(p_1', p_2, m) - x_1(p_1, p_2, m)$$

13

14

Two Effects

- Suppose p₁ falls.
- 1. Substitution Effect
 - The relative price of good 1 falls.
 - Fixing utility, buy more x_1 (and less x_2).

2. Income Effect

- Purchasing power also increases.
- Agent can achieve higher utility.
- Will buy more/less of \boldsymbol{x}_1 if normal/inferior.

Substitution Effect

• The substitution effect caused by a change in price from p_1 to p_1 can be computed using the Hicksian demand function:

Sub. Effect = $h_1(p_1', p_2, \underline{U}) - h_1(p_1, p_2, \underline{U})$

Income Effect

 The income effect caused by a change in price from p₁ to p₁' is the difference between the total change and the substitution effect:

Income Effect = $[x_1(p_1', p_2, m) - x_1(p_1, p_2, m)] - [h_1(p_1', p_2, \underline{U}) - h_1(p_1, p_2, \underline{U})]$

18

Hicksian & Marshallian Demand

- Marshallian demand
 - Fix prices (p_1,p_2) and income m.
 - Induces utility $\underline{u} = v(p_1, p_2, m)$
 - When we vary $\ensuremath{p_1}$ we can trace out Marshallian demand for good 1
- Hicksian demand (or compensated demand)
 - Fix prices (p1,p2) and utility u
 - By construction, $h_1(p_1,p_2,\underline{u}) = x_1(p_1,p_2,m)$
 - When we vary p_1 we can trace out Hicksian demand for good 1. $$_{\rm 20}$$

Hicksian & Marshallian Demand

- For a normal good, the Hicksian demand curve is less responsive to price changes than is the uncompensated demand curve
 - the uncompensated demand curve reflects both income and substitution effects
 - the compensated demand curve reflects only substitution effects

Slutsky Equation

- Suppose p_1 increase by Δp_1 .
- 1. Substitution Effect.
 - $\mbox{ Holding utility constant, relative prices change.} \\ \mbox{ Increases demand for } x_1 \mbox{ by } \frac{\partial h_i}{\partial p_i} \Delta p_i$

2. Income Effect

- Agent's income falls by $x^*_1 \times \Delta p_1$. - Reduces demand by $x_1^* \frac{\partial x_1^*}{\partial m} \Delta p_1$

Slutsky Equation

- Fix prices (p_1, p_2) and income m.
- Let $\underline{u} = v(p_1, p_2, m)$.
- Then

$$\frac{\partial}{\partial p_1} x_1^*(p_1, p_2, m) = \frac{\partial}{\partial p_1} h_1(p_1, p_2, \underline{u}) - x_1^*(p_1, p_2, m) \cdot \frac{\partial}{\partial m} x_1^*(p_1, p_2, m)$$

- SE always negative since h₁ decreasing in p₁.
- IE depends on whether x_1 normal/inferior.

30

Changes in a Good's Price

 The total change in x₂ caused by a change in the price from p₁ to p₁' can be computed using the Marshallian demand function:

$$\Delta x_2 = x_2^*(p_1', p_2, m) - x_2^*(p_1, p_2, m)$$

Substitutes and Complements

- · Let's start with the two-good case
- Two goods are <u>substitutes</u> if one good may replace the other in use

 examples: tea & coffee, butter & margarine

34

• Two goods are <u>complements</u> if they are used together

- examples: coffee & cream, fish & chips

• Partial derivatives may have opposite signs:

– Let x_1 =foreign flights and x_2 =domestic flights.

– An increase in p_1 may increase x_2 (sub effect)

– An increase in p_2 may reduce x_1 (inc effect)

- Quasilinear Example: U(x,y) = In x + y
 From the UMP, demands are
 - $x_1 = p_2/p_1$ and $x_2 = (m p_2)/p_2$

We therefore have

 $\partial x_1 / \partial p_2 > 0$ and $\partial x_2 / \partial p_1 = 0$

• Two goods are always net substitutes. – Moving round indifference curve.

39

Substitution and Income Effect

- Suppose p₁ rises.
- 1. Substitution Effect
 - The relative price of good 2 falls.
 - Fixing utility, buy more x_2 (and less x_1)

2. Income Effect

- Purchasing power decreases.
- Agent can achieve lower utility.
- Will buy more/less of x2 if inferior/normal.

Demand Elasticities

- So far we have used partial derivatives to determine how individuals respond to changes in income and prices.
 - The size of the derivative depends on how the variables are measured (e.g. currency, unit size)
 - Makes comparisons across goods, periods, and countries very difficult.
- Elasticities look at percentage changes.
 - Independent of units.

Income Elasticities

• The income elasticity equals the percentage change in x₁ caused by a 1% increase in income.

$$e_{x_1,m} = \frac{\Delta x_1 / x_1}{\Delta m / m} = \frac{dx_1}{dm} \frac{m}{x_1} = \frac{\partial \ln x_1}{\partial \ln m}$$

- Normal good: e_{1,m} > 0
- Inferior good: e_{1,m} < 0
- Luxury good: e_{1,m} > 1

48

• The own price elasticity of demand $e_{x1,p1}$ is

$$e_{x_1,p_1} = \frac{\Delta x_1 / x_1}{\Delta p_1 / p_1} = \frac{\partial x_1}{\partial p_1} \cdot \frac{p_1}{x_1} = \frac{\partial \ln x_1}{\partial \ln p_1}$$

- If $|e_{x_{1,p_1}}| < -1$, demand is elastic
- If $|e_{x1,p1}| > -1$, demand is inelastic
- If $e_{x_{1,p_1}} > 0$, demand is Giffen

$$e_{x_2,p_1} = \frac{\Delta x_2 / x_2}{\Delta p_1 / p_1} = \frac{\partial x_2}{\partial p_1} \cdot \frac{p_1}{x_2} = \frac{\partial \ln x_2}{\partial \ln p_1}$$

Elasticities: Interesting Facts

• If demand is elastic, a price rise leads to an increase in spending:

$$\frac{\partial}{\partial p_1}[p_1x_1^*] = x_1^* + p_1\frac{\partial x_1^*}{\partial p_1} = x_1^*[1 + e_{x_1, p_1}] < 0$$

51

49

Elasticities: Interesting Facts

- Demand is homoegenous of degree zero. $x_1^*(kp_1, kp_2, km) = x_1^*(p_1, p_2, m)$
- · Differentiating with respect to k,

$$p_1 \cdot \frac{\partial x_1^*}{\partial p_1} + p_2 \cdot \frac{\partial x_1^*}{\partial p_2} + \mathbf{m} \cdot \frac{\partial x_1^*}{\partial \mathbf{m}} = 0$$

• Letting k=1 and dividing by x*1,

$$e_{x_1,p_1} + e_{x_1,p_2} + e_{x_1,m} = 0$$

 A 1% change in all prices and income will not change demand for x₁.

Some Price Elasticities

\rm IS	pecit	fic	Bra	an	ds	;
--------	-------	-----	-----	----	----	---

+Coke	-1.71
🗕 Pepsi	-2.08
Tide Detergent	-2.79

Some	Price	Elas	ticities

Karrow Categories:		
Transatlantic Air Travel	-1.30	
Lourism in Thailand	-1.20	
Ground Beef	-1.02	
∔ Pork	-0.78	
🕯 Milk	-0.54	
Leggs	-0.26	
		55

Recreation

Clothing

Himports

🛻 Food

Consumer Surplus

- How do we determine how our utility changes when there is a change in prices.
- What affect would a carbon tax have on welfare?
- · Cannot look at utilities directly (ordinal measure)
- Need monetary measure.

Consumer Surplus

 One way to evaluate the welfare cost of a price increase (from p₁ to p₁') would be to compare the expenditures required to achieve a given level of utilities <u>U</u> under these two situations

Initial expenditure = $e(p_1, p_2, \underline{U})$

Expenditure after price rise = $e(p'_1, p_2, \underline{U})$

Consumer Surplus

 Clearly, if p₁' > p₁ the expenditure has to increase to maintain the same level of utility:

 $e(p_1',p_2,\underline{U})>e(p_1,p_2,\underline{U})$

• The difference between the new and old expenditures is called the <u>compensating</u> <u>variation</u> (*CV*):

 $CV = e(p_1', p_2, \underline{U}) - e(p_1, p_2, \underline{U})$

where $\underline{U} = v(p_1, p_2, m)$.

60

58

Consumer Surplus

• From Shepard's Lemma:

 $\frac{\partial e(p_1, p_2, \underline{U})}{\partial p_1} = h_1(p_1, p_2, \underline{U})$

· CV equals the integral of the Hicksian demand

$$\begin{split} CV &= e(p_1,p_2,\underline{U}) \cdot e(p_1,p_2,\underline{U}) \\ &= \int_{p_1}^{p_1^{'}} \frac{\partial}{\partial p_1} E(z,p_2,\underline{U}) dz = \int_{p_1}^{p_1^{'}} h_1(z,p_2,\underline{U}) dz \end{split}$$

 This integral is the area to the left of the Hicksian demand curve between p₁ and p₁'

Consumer Surplus

- Consumer surplus equals the area under the Hicksian demand curve above the current price.
- CS equals welfare gain from reducing price from p₁=∞ to current market price.
- That is, CS equals the amount the person would be willing to pay for the right to consume the good at the current market price.

A Problem

- Problem: Hicksian demand depends on the utility level which is not observed.
- Answer: Approximate with Marchallisn demand.
- From the Slutsky equation, we know the Hicksian and Marshallian demand functions have approximately the same slope when the good forms only a small part of the consumption bundle (i.e. when income effects are small)

66

Quasilinear Utility

- Suppose $u(x_1, x_2) = v(x_1) + x_2$
- From UMP, Marshallian demand for x_1 $v'(x_1^*)=p_1/p_2$
- From EMP, Hicksian demand for x1, $v'(h_1)=p_1/p_2$

 $v(n_1) = p_1/p_2$

• Hence $x_1^*(p_1, p_2, m) = h_1(p_1, p_2, \underline{u})$.

$$CV = \int_{p_1}^{p_1'} h_1(z, p_2, \underline{U}) dz = \int_{p_1}^{p_1'} x_1^*(z, p_2, m) dz$$

68