Production Functions

\qquad
\qquad
[See Chap 9] \qquad

Production Function

- The firm's production function for a particular good (q) shows the maximum amount of the good that can be produced using alternative combinations of inputs. \qquad

$$
q=f\left(z_{1}, \ldots, z_{N}\right)
$$

- Examples (with $\mathrm{N}=2$): \qquad
$-z_{1}=$ capital, $z_{2}=$ labor.
$-z_{1}=$ skilled labor, $z_{2}=$ unskilled labor \qquad
$-\mathrm{z}_{1}=$ capital, $\mathrm{z}_{2}=$ land.

Marginal Product

- The marginal product is the additional output that can be produced by employing one more \qquad unit of the input while holding other inputs constant:
marginal product of $z_{1}=M P_{1}=\frac{\partial q}{\partial z_{1}}=f_{1}$
\qquad
\qquad
\qquad
\qquad

Average Product

- Input productivity can be measured by average product

$$
A P_{1}=\frac{q}{z_{1}}=\frac{f\left(z_{1}, z_{2}\right)}{z_{1}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isoquants

- An isoquant shows the combinations of z_{1} and z_{2} that can produce a given level of output (q_{0})

$$
f\left(z_{1}, z_{2}\right)=q_{0}
$$

- Like indifference curves for technology.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isoquants

- Each isoquant represents a different level \qquad of output.

\qquad
\qquad
\qquad
z_{1}

Marginal Rate of Technical Substitution

\qquad

- The slope of an isoquant shows the rate at which z_{2} can be substituted for z_{1}
- MRTS = number of z_{2} the firm gives up to get 1 unit of z_{1}, if she wishes to hold output constant.

 MRTS

- The marginal rate of technical substitution (MRTS) shows the rate at which labor can be substituted for capital while holding output constant along an isoquant

$$
M R T S=-\left.\frac{d z_{2}}{d z_{1}}\right|_{q=q_{0}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MRTS and Marginal Products

- Take the total differential of the production function:

$$
d q=\frac{\partial f}{\partial z_{2}} \cdot d z_{2}+\frac{\partial f}{\partial z_{1}} \cdot d z_{1}=M P_{2} \cdot d z_{2}+M P_{1} \cdot d z_{1}
$$

- Along an isoquant $d q=0$, so

$$
M R T S=\left.\frac{-d z_{2}}{d z_{1}}\right|_{q=q_{0}}=\frac{M P_{1}}{M P_{2}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. Monotonicity

- A production function is monotone if $f\left(z_{1}, z_{2}\right)$ is strictly increasing in both inputs. \qquad

$$
\frac{\partial f}{\partial z_{i}}=f_{i}>0
$$

\qquad

- This implies that
- isoquants are thin
- isoquants do not cross
- isoquants are downward sloping.

2. Quasi-Concavity

- Suppose $z=\left(z_{1}, z_{2}\right)$ and $z^{\prime}=\left(z_{1}{ }^{\prime}, z_{2}{ }^{\prime}\right)$ are two input bundles.
- $f($.$) is quasi-concave in z$ if whenever $f(z) \geq f\left(z^{\prime}\right)$ then

$$
f\left(t z+(1-t) z^{\prime}\right) \geq f\left(z^{\prime}\right) \quad 1>t>0 .
$$

- Implications
- Isoquants are convex.
- MRTS decreases in z_{1}, as move along isoquant.

3. Concavity

- Suppose $z=\left(z_{1}, z_{2}\right)$ and $z^{\prime}=\left(z_{1}{ }^{\prime}, z_{2}{ }^{\prime}\right)$ are two input
\qquad bundles.
- $f($.$) is concave in z$ if

$$
f\left(t z+(1-t) z^{\prime}\right) \geq t f(z)+(1-t) f\left(z^{\prime}\right) \quad 1>t>0 .
$$

- Implies quasi-concavity (convex isoquants).
- Implies diminishing marginal productivity:

$$
\frac{\partial M P_{1}}{\partial z_{1}}=\frac{\partial^{2} f}{\partial z_{1}^{2}}=f_{11} \leq 0 \quad \frac{\partial M P_{2}}{\partial z_{2}}=\frac{\partial^{2} f}{\partial z_{2}^{2}}=f_{22} \leq 0
$$

- Implies constant or decreasing returns to scale.

4. Returns to Scale

- How does output respond to increases in all inputs together?
- suppose that all inputs are doubled, would output double?
- The effect of a proportional change in all inputs on output is called the returns to scale
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Returns to Scale

- If the production function is given by $q=$ $f\left(z_{1}, z_{2}\right)$ and all inputs are multiplied by the same positive constant $(t>1)$, then

Effect on Output	Returns to Scale
$f\left(t z_{1}, t z_{2}\right)=t f\left(z_{1}, z_{2}\right)$	Constant
$f\left(t z_{1}, t z_{2}\right)<t f\left(z_{1}, z_{2}\right)$	Decreasing
$f\left(t z_{1}, t z_{2}\right)>t f\left(z_{1}, z_{2}\right)$	Increasing

Returns to Scale

- Why should there ever be DRS?
- If expand all inputs then shouldn't output at least double (just recreate what firm was doing before).
- May be able to do better due to specialization (leading to IRS).
- DRS can be seen as coming from \qquad omitted factor of production. For example, limited management time.

Perfect Substitutes

- Suppose that the production function is
\qquad

$$
q=f\left(z_{1}, z_{2}\right)=a z_{1}+b z_{2}
$$

- Isoquants are straight lines.
- MRTS is constant, since $\mathrm{MP}_{1}=a$ and $\mathrm{MP}_{2}=\mathrm{b}$.
- Production function exhibits constant returns to scale

$$
f\left(t z_{1}, t z_{2}\right)=a t z_{1}+b t z_{2}=t\left(a z_{1}+b z_{2}\right)=t f\left(z_{1}, z_{2}\right)
$$

Perfect Substitutes

Capital and labor are perfect substitutes

Perfect Complements

- Suppose that the production function is

$$
q=\min \left(a z_{1}, b z_{2}\right) \quad a, b>0
$$

\qquad
\qquad
\qquad

- Capital and labor must always be used in a fixed ratio \qquad
- the firm will always operate along a ray where z_{1} / z_{2} is constant \qquad
\qquad

Perfect Complements

No substitution between labor and capital is possible

22

Cobb-Douglas

- Suppose that the production function is

$$
q=f\left(z_{1}, z_{2}\right)=z_{1}{ }^{a} z_{2}{ }^{b} \quad a, b>0
$$

- Returns to scale
\qquad
\qquad
\qquad
\qquad
$f\left(t z_{1}, t z_{2}\right)=\left(t z_{1}\right)^{a}\left(t z_{1}\right)^{b}=t^{a+b} z_{1}^{a} z_{1}^{b}=t^{a+b} f\left(z_{1}, z_{1}\right)$
- if $a+b=1 \Rightarrow$ constant returns to scale \qquad
- if $a+b>1 \Rightarrow$ increasing returns to scale
- if $a+b<1 \Rightarrow$ decreasing returns to scale

Generalized Subs/Comps

- Generalized perfect substitutes

$$
q=f\left(z_{1}, z_{2}\right)=\left(a z_{1}+b z_{2}\right)^{\gamma}
$$

- Generalized perfect complements

$$
q=f\left(z_{1}, z_{2}\right)=\left(\min \left(\mathrm{a} z_{1}, \mathrm{~b} z_{2}\right)\right)^{r}
$$

- Constant returns if $\gamma=1$.
- Increasing returns if $\gamma>1$.
- Decreasing returns if $\gamma<1$.

CES Production Function

- Suppose that the production function is \qquad $q=f\left(z_{1}, z_{2}\right)=\left[z_{1}^{\rho}+z_{2}^{\rho}\right]^{\gamma / \rho} \rho \leq 1, \rho \neq 0, \gamma>0$
- If $\gamma>1 \Rightarrow$ increasing returns to scale
- If $\gamma<1 \Rightarrow$ decreasing returns to scale
- Special cases
- If $\rho=1 \Rightarrow$ perfect substitutes
- If $\rho=-\infty \Rightarrow$ perfect complements
- If $\rho=0 \Rightarrow$ Cobb-Douglas

Example

- Suppose that the production function is

$$
q=f\left(z_{1}, z_{2}\right)=z_{1}+z_{2}+2\left(z_{1} z_{2}\right)^{0.5}
$$

- Marginal productivities are

$$
\begin{aligned}
& f_{1}=1+\left(z_{2} / z_{1}\right)^{0.5} \\
& f_{2}=1+\left(z_{1} / z_{2}\right)^{0.5}
\end{aligned}
$$

- Thus,

$$
M R T S=\frac{f_{1}}{f_{2}}=\frac{1+\left(z_{2} / z_{2}\right)^{0.5}}{1+\left(z_{1} / z_{2}\right)^{0.5}}
$$

Technical Progress

- Methods of production change over time
- Following the development of superior \qquad production techniques, the same level of output can be produced with fewer \qquad inputs:
- In this case the isoquants shifts down.
\qquad
\qquad
\qquad
\qquad

Technical Progress

- Suppose that the production function is
$q=A(t) f\left(z_{1}, z_{2}\right)$
where $A(t)$ represents all factors that affect the production of q other than z_{1} and z_{2}
- Changes in A over time represent technical progress
- We would imagine that $d A / d t>0$
\qquad
\qquad
\qquad
\qquad
\qquad

