Production Functions [See Chap 9]

1

2

3

Production Function

• The firm's <u>production function</u> for a particular good (*q*) shows the maximum amount of the good that can be produced using alternative combinations of inputs.

 $q=\mathit{f}(z_1,\,\ldots\,,\,z_N)$

• Examples (with N=2):

 $-z_1 = capital, z_2 = labor.$

- $-z_1 =$ skilled labor, $z_2 =$ unskilled labor
- $-z_1 = capital, z_2 = land.$

Marginal Product

• The <u>marginal product</u> is the additional output that can be produced by employing one more unit of the input while holding other inputs constant:

marginal product of
$$z_1 = MP_1 = \frac{\partial q}{\partial z_1} = f_1$$

 Input productivity can be measured by average product

$$AP_I = \frac{q}{z_I} = \frac{f(z_1, z_2)}{z_I}$$

4

6

Isoquants

• An <u>isoquant</u> shows the combinations of z_1 and z_2 that can produce a given level of output (q_0)

 $f(z_1,\,z_2)=q_0$

• Like indifference curves for technology.

• Take the total differential of the production function:

$$dq = \frac{\partial f}{\partial z_2} \cdot dz_2 + \frac{\partial f}{\partial z_1} \cdot dz_1 = MP_2 \cdot dz_2 + MP_1 \cdot dz_1$$

$$MRTS = \frac{-dz_2}{dz_1} \bigg|_{q=q_0} = \frac{MP_1}{MP_2}$$

10

12

1. Monotonicity

• A production function is monotone if $f(z_1, z_2)$ is strictly increasing in both inputs.

$$\frac{\partial f}{\partial z_i} = f_i > 0$$

- · This implies that
 - isoquants are thin
 - isoquants do not cross
 - $-\operatorname{isoquants}$ are downward sloping.

2. Quasi-Concavity

- Suppose z=(z₁,z₂) and z'=(z₁',z₂') are two input bundles.
- f(.) is quasi-concave in z if whenever $f(z) \ge f(z')$ then

 $f(tz+(1-t)z') \ge f(z')$ 1>t>0.

- Implications
 - Isoquants are convex.
 - MRTS decreases in z₁, as move along isoquant.

3. Concavity

- Suppose z=(z₁,z₂) and z'=(z₁',z₂') are two input bundles.
- f(.) is concave in z if $f(tz+(1-t)z') \geq tf(z) + (1-t)f(z') \quad 1{>}t{>}0.$
- Implies quasi-concavity (convex isoquants).
- Implies diminishing marginal productivity:

$$\frac{\partial MP_1}{\partial z_1} = \frac{\partial^2 f}{\partial z_1^2} = f_{11} \le 0 \qquad \qquad \frac{\partial MP_2}{\partial z_2} = \frac{\partial^2 f}{\partial z_2^2} = f_{22} \le 0$$

• Implies constant or decreasing returns to scale.

4. Returns to Scale

- How does output respond to increases in all inputs together?
 - suppose that all inputs are doubled, would output double?
- The effect of a proportional change in all inputs on output is called the <u>returns to</u> <u>scale</u>

15

Returns to Scale

If the production function is given by q = f(z₁,z₂) and all inputs are multiplied by the same positive constant (t >1), then

Effect on Output	Returns to Scale
$f(tZ_1, tZ_2) = tf(Z_1, Z_2)$	Constant
$f(tz_1, tz_2) < tf(z_1, z_2)$	Decreasing
$f(tz_1, tz_2) > tf(z_1, z_2)$	Increasing

16

17

Returns to Scale

- Why should there ever be DRS?
 - If expand all inputs then shouldn't output at least double (just recreate what firm was doing before).
 - May be able to do better due to specialization (leading to IRS).
- DRS can be seen as coming from omitted factor of production. For example, limited management time.

Perfect Substitutes

- Suppose that the production function is $q = f(Z_1, Z_2) = a Z_1 + b z_2$
- Isoquants are straight lines.
 MRTS is constant, since MP₁=a and MP₂=b.
- Production function exhibits constant returns to scale $f(tz_1, tz_2) = atz_1 + btz_2 = t(az_1 + bz_2) = tf(z_1, z_2)_{19}$

Perfect Complements

- Suppose that the production function is
 - $q = \min(az_1, bz_2) \ a, b > 0$
- Capital and labor must always be used in a fixed ratio
 - the firm will always operate along a ray where z_1/z_2 is constant

Cobb-Douglas • Suppose that the production function is $q = f(z_1, z_2) = z_1^a z_2^b \quad a, b > 0$ Returns to scale $f(tZ_1, tZ_2) = (tZ_1)^a (tZ_1)^b = t^{a+b} Z_1^a Z_1^b = t^{a+b} f(Z_1, Z_1)$

- if $a + b = 1 \Rightarrow$ constant returns to scale

- if $a + b > 1 \Rightarrow$ increasing returns to scale

- if $a + b < 1 \Rightarrow$ decreasing returns to scale

23

Generalized Subs/Comps

· Generalized perfect substitutes

 $q = f(Z_1, Z_2) = (aZ_1 + bZ_2)^{\gamma}$

- · Generalized perfect complements $q = f(z_1, z_2) = (\min(az_1, bz_2))^{\gamma}$
- Constant returns if $\gamma=1$.
- Increasing returns if $\gamma > 1$.
- Decreasing returns if $\gamma < 1$.

CES Production Function

- Suppose that the production function is
 - $q = f(z_1, z_2) = [z_1^{\rho} + z_2^{\rho}]^{\gamma/\rho} \quad \rho \le 1, \ \rho \ne 0, \ \gamma > 0$
 - If $\gamma > 1 \Rightarrow$ increasing returns to scale - If $\gamma < 1 \Rightarrow$ decreasing returns to scale
 - if $\gamma < 1 \implies$ decreasing returns to scale
- Special cases
 - If ρ = 1 \Longrightarrow perfect substitutes
 - If ρ = -- \gg perfect complements
 - If ρ = 0 \Rightarrow Cobb-Douglas

25

Technical Progress

- Methods of production change over time
- Following the development of superior production techniques, the same level of output can be produced with fewer inputs:

- In this case the isoquants shifts down.

Technical Progress

• Suppose that the production function is $q = A(t)f(z_1, z_2)$

where A(t) represents all factors that affect the production of q other than z_1 and z_2

 Changes in A over time represent technical progress

- We would imagine that dA/dt > 0