PROFIT MAXIMIZATION

[See Chap 11]

Profit Maximization

- A profit-maximizing firm chooses both its inputs and its outputs with the goal of achieving maximum economic profits
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model

- Firm has inputs $\left(z_{1}, z_{2}\right)$. Prices $\left(r_{1}, r_{2}\right)$. - Price taker on input market.
- Firm has output $\mathrm{q}=\mathrm{f}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$. Price p .
- Price taker in output market.
- Firm's problem:
- Choose output q and inputs $\left(z_{1}, z_{2}\right)$ to maximise profits. Where:

$$
\pi=p q-r_{1} z_{1}-r_{2} z_{2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

One-Step Solution

- Choose $\left(z_{1}, z_{2}\right)$ to maximise \qquad

$$
\pi=\operatorname{pf}\left(z_{1}, z_{2}\right)-r_{1} z_{1}-r_{2} z_{2}
$$

- This is unconstrained maximization problem. \qquad
- FOCs are

$$
p \frac{\partial f\left(z_{1}, z_{2}\right)}{z_{1}}=r_{1} \quad \text { and } \quad p \frac{\partial f\left(z_{1}, z_{2}\right)}{z_{2}}=r_{2}
$$

- Together these yield optimal inputs $z_{i}{ }^{*}\left(p, r_{1}, r_{2}\right)$.
- Output is $q^{*}\left(p, r_{1}, r_{2}\right)=f\left(z_{1}{ }^{*}, z_{2}{ }^{*}\right)$. This is usually called the supply function.
- Profit is $\pi\left(p, r_{1}, r_{2}\right)=p q^{*}-r_{1} z_{1}{ }^{*}-r_{2} z_{2}{ }^{*}$

Example: $f\left(z_{1}, z_{2}\right)=z_{1}^{1 / 3} z_{2}^{1 / 3}$

- Profit is $\pi=p z_{1}{ }^{1 / 3} z_{2}{ }^{1 / 3}-r_{1} z_{1}-r_{2} z_{2}$ \qquad
- FOCs are

$$
\frac{1}{3} p z_{1}^{-2 / 3} z_{2}^{1 / 3}=r_{1} \text { and } \quad \frac{1}{3} p z_{1}^{1 / 3} z_{2}^{-2 / 3}=r_{2}
$$

- Solving these two eqns, optimal inputs are

$$
z_{1}^{*}\left(p, r_{1}, r_{2}\right)=\frac{1}{27} \frac{p^{3}}{r_{1}^{2} r_{2}} \text { and } z_{2}^{3}\left(p, r_{1}, r_{2}\right)=\frac{1}{27} \frac{p^{3}}{r_{r_{2}^{2}}^{2}}
$$

- Optimal output

$$
q^{*}\left(p, r_{1}, r_{2}\right)=\left(z_{1}^{2}\right)^{\prime \prime 3}\left(z_{2}^{*}\right)^{\prime / 1 / 3}=\frac{1}{9} \frac{p^{2}}{r_{1}^{2}}
$$

- Profits

$$
\pi^{*}\left(p, r_{1}^{1}, r_{2}\right)=p q^{*}-r_{2} z_{i}^{*}-r_{2} z_{2}^{*}=\frac{1}{27} \frac{p^{3}}{r_{1}^{2}}
$$

\qquad
\qquad

Two-Step Solution

Step 1: Find cheapest way to obtain output q. \qquad $c\left(r_{1}, r_{2}, q\right)=\min _{z 1, z 2} r_{1} z_{1}+r_{2} z_{2}$ s.t $f\left(z_{1}, z_{2}\right) \geq q$

Step 2: Find profit maximizing output.

$$
\pi\left(p, r_{1}, r_{2}\right)=\max _{\mathrm{q}} \mathrm{pq}-\mathrm{c}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{q}\right)
$$

This is unconstrained maximization problem.

- Solving yields optimal output $\mathrm{q}^{*}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{p}\right)$.
- Profit is $\pi\left(p, r_{1}, r_{2}\right)=p q^{*}-c\left(r_{1}, r_{2}, q^{*}\right)$.

Step 2: Output Choice

- We wish to maximize \qquad

$$
\mathrm{pq}-\mathrm{c}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{q}\right)
$$

- The FOC is

$$
p=d c\left(r_{1}, r_{2}, q\right) / d q
$$

- That is,

$$
\mathrm{p}=\mathrm{MC}(\mathrm{q})
$$

- Intuition: produce more if revenue from unit exceeds the cost from the unit.
- SOC: MC'(q) ≥ 0, so MC curve must be upward \qquad sloping at optimum.

Example: $f\left(\mathbf{z}_{1}, z_{2}\right)=\mathbf{z}_{1}{ }^{1 / 3} \mathbf{z}_{2}{ }^{1 / 3}$

- From cost slides (p18), \qquad

$$
c\left(r_{1}, r_{2}, q\right)=2\left(r_{1} r_{2}\right)^{1 / 2} q^{3 / 2}
$$

- We wish to maximize

$$
\pi=p q-2\left(r_{1} r_{2}\right)^{1 / 2} q^{3 / 2}
$$

- FOC is

$$
p=3\left(r_{1} r_{2}\right)^{1 / 2} q^{1 / 2}
$$

- Rearranging, optimal output is

$$
q^{*}\left(p, r_{1}, r_{2}\right)=\frac{1}{9} \frac{p^{2}}{r_{1} r_{2}}
$$

- Profits are

$$
\pi^{*}\left(p, r_{1}, r_{2}\right)=p q^{*}-c\left(r_{1}, r_{2}, q^{*}\right)=\frac{1}{27} \frac{p^{3}}{r_{1} r_{2}}
$$

Profit Function

- Profits are given by \qquad $\pi=p q^{*}-\mathrm{c}\left(\mathrm{q}^{*}\right)$
- We can write this as
\qquad

$$
\pi=\mathrm{pq}^{*}-\mathrm{AC}\left(\mathrm{q}^{*}\right) \mathrm{q}^{*}=\left[\mathrm{p}-\mathrm{AC}\left(\mathrm{q}^{*}\right)\right] \mathrm{q}^{*}
$$

- We can also write this as

$$
\pi=p q^{*}-\int_{0}^{q} M C(x) d x-F=\int_{0}^{q}[p-M C(x)] d x-F
$$

where F is fixed cost
\qquad
\qquad
\qquad
\qquad

Left: Profit is distance between two lines.
Right: Max profit equals $A+B+C$. If no fixed cost, this equals $A+B+D+E$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Supply with Fixed Cost

Supply with Fixed Cost

Supply Curve

- We can use the marginal cost curve to show how much the firm will produce at every possible market price.
- The firm can always choose $q=0$
- Firm only operates if revenue covers costs.
- Firm chooses $q=0$ if $p q<c$ or $p<A C$.

Supply Function \#1

\qquad
\qquad
\qquad
\qquad

- Increasing marginal costs.
- No fixed cost

Supply Function \#3

- U-shaped marginal costs.
- No fixed cost.

Supply Function \#4

(a)

- Wiggly marginal costs.
- No fixed cost

Sunk Costs

- In the short run, there may be sunk costs (i.e. unavoidable costs).
- Let AVC = average variable cost (excluding sunk cost).
- Then supply function is given by MC curve if $p>A V C$.
- Firm shuts down if $p<A V C$.
\qquad

Cost Function: Properties
 1. $\pi\left(p, r_{1}, r_{2}\right)$ is homogenous of degree 1 in $\left(p, r_{1}, r_{2}\right)$

- If prices double, profit equation scales up so optimal choices unaffected and profit doubles.

2. $\pi\left(p, r_{1}, r_{2}\right)$ increases in p and decreases in $\left(r_{1}, r_{2}\right)$
3. Hotelling's Lemma:

$$
\frac{\partial}{\partial p} \pi\left(p, r_{1}, r_{2}\right)=q^{*}\left(p, r_{1}, r_{2}\right)
$$

- If p rises by Δp, then $\pi($.$) rises by \Delta p \times q^{*}($.
- Optimal output also changes, but effect second order.

4. $\pi\left(p, r_{1}, r_{2}\right)$ is convex in p.

Convexity and Hotelling's Lemma

- This shows the pseudo-profit functions, when output is fixed, and real profit function. 24
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Convexity and Hotelling's Lemma

- Hotelling Lemma: $B+C \approx B$ when Δp small.
- Convexity: C means profit increases more than linearly. 25

Supply Functions: Properties

1. $q^{*}\left(p, r_{1}, r_{2}\right)$ is homogenous of degree 0 in (p, r_{1}, r_{2})

- If prices double profit equation scales up, so optimal output unaffected.

2. Law of supply

$$
\frac{\partial}{\partial p} q^{*}=\frac{\partial}{\partial p}\left[\frac{\partial}{\partial p} \pi\right] \leq 0
$$

- Uses Hotelling's Lemma and convexity of $\pi($.)
- Hence supply curve is upward sloping!

