Below, you will find the solutions to the Math Guide problems.

Exercise 1a: using the definition of \(\frac{dF}{dx} \), find the derivatives of the functions (i) \(F(x) = x^2 \); (ii) \(F(x) = \sqrt{x} \)

Solution:

\[
\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x
\]

\[
\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}
\]

Exercise 1b: Find the first and second derivatives of \(F(x) = \frac{1}{1+x} \); \(F(x) = e^{1+2x} \); \(F(x) = \frac{1+x^2}{1+x} \)

\[
\frac{d}{dx} \left(\frac{1}{1+x} \right) = -\frac{1}{(1+x)^2}
\]

\[
\frac{d}{dx} (e^{1+2x}) = 2e^{1+2x}
\]

\[
\frac{d}{dx} \left(\frac{1+x^2}{1+x} \right) = \frac{2x(1+x) - (1+x^2)}{(1+x)^2} = \frac{x^2 + 2x - 1}{(1+x)^2}
\]

Exercise 2: Find the first- and second-order partial derivatives, and the cross-partial derivatives of (i) \(F(x,y) = xy \), (ii) \(F(x,y) = x^2y^3 \), and (iii) \(F(x,y) = 2xy-x^2-2y^2-3x-y \)

Solution: (i) \(\frac{\partial F}{\partial x} = y \), \(\frac{\partial F}{\partial y} = x \), \(\frac{\partial^2 F}{\partial x^2} = 0 \), \(\frac{\partial^2 F}{\partial y^2} = 0 \), \(\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 1 \).

(ii) \(\frac{\partial F}{\partial x} = 2xy^3 \), \(\frac{\partial F}{\partial y} = 3x^2y^2 \), \(\frac{\partial^2 F}{\partial x^2} = 2y^3 \), \(\frac{\partial^2 F}{\partial y^2} = 6x^2y \), \(\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 6xy^2 \).

(iii) \(\frac{\partial F}{\partial x} = 2y - 2x - 3 \), \(\frac{\partial F}{\partial y} = 2x - 4y - 1 \), \(\frac{\partial^2 F}{\partial x^2} = -2 \), \(\frac{\partial^2 F}{\partial y^2} = -4 \), \(\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 2 \).

Exercise 3: Let \(F(x,y) = xy \) and consider the implicit function \(F(x,y) = 5 \). Find \(\frac{dx}{dy} \) in two different ways, first by applying the implicit function theorem, then by rewriting \(x \) as an explicit function of \(y \) and taking derivatives.
Solution: \(\frac{\partial F}{\partial x} = y \) and \(\frac{\partial F}{\partial y} = x \), so

\[
\frac{dx}{dy} = -\frac{\partial F}{\partial y} = -\frac{x}{y} = -\frac{5}{y^2}, \text{ using the fact that } xy = 5
\]

Or: \(xy = 5 \), and hence \(x = \frac{5}{y} \), so that \(\frac{dx}{dy} = -\frac{5}{y^2} \).

Exercise 4: Solve for the optimal quantity \(q^* \) in the example of the profit maximizing firm, but change the cost function so that \(C(q) = \frac{1}{2}bq^2 \) for an arbitrary value of \(b \) (above, I considered the case where \(b = 1 \)). Check that the second-order condition is satisfied.

Solution: The firm’s problem is

\[
\max_q \left\{ pq - \frac{1}{2} bq^2 \right\}
\]

The corresponding FOC is

\[
p - bq = 0
\]

so that \(q^* = \frac{2}{b} \). The SOC is \(-b < 0 \), which is satisfied.

Exercise 5: Find the maximum of \(F(x, y) = 2xy - x^2 - 2y^2 - 3x - y \) by solving the pair of first-order conditions. Verify the second-order conditions to check that this is a maximum.

Solution: the pair of corresponding FOC’s is

\[
\begin{align*}
\frac{\partial F}{\partial x} &= 2y - 2x - 3 = 0 \\
\frac{\partial F}{\partial y} &= 2x - 4y - 1 = 0
\end{align*}
\]

Adding up the two FOC’s one finds: \(-2y - 4 = 0 \) or \(y = -2 \). The corresponding solution for \(x \) is \(2x = -7 \) or \(x = -3.5 \). The corresponding second-order conditions are: \(\frac{\partial^2 F}{\partial x^2} = -2 < 0 \), \(\frac{\partial^2 F}{\partial y^2} = -4 < 0 \) and \(\frac{\partial^2 F}{\partial x \partial y} \cdot \left(\frac{\partial^2 F}{\partial x \partial y} \right)^2 = (-2) (-4) - 2^2 = 4 > 0 \), and hence the solution achieves a maximum.

Exercise 6: Solve the student’s time allocation problem using the substitution method, but suppose that each additional hour studied raises her grade by 4 points. The objective function then becomes \(F(x, y) = 11 + y (14 - y) + 4x \).

Solution: the student’s problem is

\[
\max_{x,y} \{11 + y (14 - y) + 4x\} \text{ subject to: } x + y \leq 12
\]
Substituting for \(x \leq 12 - y \), we find:
\[
\begin{align*}
\max_y \{11 + y (14 - y) + 4 (12 - y)\} &= \max_y \{11 + 14y - y^2 + 48 - 4y\} \\
&= \max_y \{59 + 10y - y^2\}
\end{align*}
\]

The corresponding FOC is: \(10 - 2y = 0 \) or \(y^* = 5 \) and \(x^* = 7 \). The SOC is satisfied: \(-2 < 0\).

Exercise 7: Solve the student’s time allocation problem, when each hour studied raises the grade by 4 points. But this time, use the Lagrangian method.

Solution: The Lagrangian for the student’s problem is
\[
L (x, y; \lambda) = 11 + y (14 - y) + 4x + \lambda [12 - x - y]
\]

The corresponding FOC’s are:
\[
\begin{align*}
\frac{\partial L}{\partial x} &= 4 - \lambda = 0 \\
\frac{\partial L}{\partial y} &= 14 - 2y - \lambda = 0 \\
\frac{\partial L}{\partial \lambda} &= 12 - x - y = 0
\end{align*}
\]

The solution to these equations is \(\lambda = 4 \), \(2y = 14 - \lambda = 10 \) or \(y = 5 \) and \(x = 12 - y = 7 \).

Additional problem: For each of the functions \(F (x, y) = \sqrt{xy} \), \(F (x, y) = \sqrt{x} + \sqrt{y} \) and \(F (x, y) = x^2 + y^2 \), carry out the following calculations:

(i) define the level curves, for arbitrary levels \(K \). Find the derivative of the level curve, and check whether the level curve is concave or convex.

(ii) compute the first-order partial derivatives with respect to \(x \) and \(y \).

(iii) Consider the constrained optimization problem \(\max_{x,y} F (x, y) \) subject to the constraint that \(x + y = 1 \).

Solution for \(F (x, y) = \sqrt{xy} \):
\[
\frac{\partial F}{\partial x} = \frac{\sqrt{y}}{2\sqrt{x}}; \quad \frac{\partial F}{\partial y} = \frac{\sqrt{x}}{2\sqrt{y}}; \quad \text{so}
\]
\[
\left(\frac{dy}{dx} \right)_{\sqrt{xy}=K} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{\sqrt{y}}{\sqrt{x}} = -\frac{y}{x}
\]

\(-\frac{y}{x}\) is increasing in \(x/y \) that is, as \(x \) increases, the slope of the level curve increases (the MRS decreases). The level curve is convex. Using a Lagrangian, I solve part (iii):
\[
L (x, y; \lambda) = \sqrt{xy} + \lambda [1 - x - y]
\]
The first-order conditions are

\[
\frac{\partial L}{\partial x} = \frac{\sqrt{y}}{2\sqrt{x}} - \lambda = 0 \\
\frac{\partial L}{\partial y} = \frac{\sqrt{x}}{2\sqrt{y}} - \lambda = 0 \\
\frac{\partial L}{\partial \lambda} = 1 - x - y = 0
\]

Combining the first two yields \(x = y = 1/2 \).

Solution for \(F(x, y) = \sqrt{x} + \sqrt{y} \): \(\frac{\partial F}{\partial x} = \frac{1}{2\sqrt{x}} \), \(\frac{\partial F}{\partial y} = \frac{1}{2\sqrt{y}} \), so

\[
\left. \frac{dy}{dx} \right|_{\sqrt{xy} = K} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{1}{\frac{2\sqrt{x}}{2\sqrt{y}}} = -\sqrt{\frac{x}{y}}
\]

Again, the slope of the level curve is increasing, i.e. the level curve is convex. For part (iii), I set up the Lagrangian:

\[
L(x, y; \lambda) = \sqrt{x} + \sqrt{y} + \lambda [1 - x - y]
\]

with first-order conditions:

\[
\frac{\partial L}{\partial x} = \frac{1}{2\sqrt{x}} - \lambda = 0 \\
\frac{\partial L}{\partial y} = \frac{1}{2\sqrt{y}} - \lambda = 0 \\
\frac{\partial L}{\partial \lambda} = 1 - x - y = 0
\]

Again, combining the first two yields \(x = y = 1/2 \).

Solution for \(F(x, y) = x^2 + y^2 \): \(\frac{\partial F}{\partial x} = 2x \), \(\frac{\partial F}{\partial y} = 2y \), so

\[
\left. \frac{dy}{dx} \right|_{\sqrt{xy} = K} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{2x}{2y} = -\frac{x}{y}
\]

This time the slope of the level curve is decreasing i.e. the level curve is concave. The corresponding Lagrangian will therefore deliver a minimum. In this case, extreme solutions are optimal: if the solution \(x, y \) can take on any negative value, then no solution exists. If the solution is restricted to be non-negative, then the solution is at a corner, and since \(x = 1, y = 0 \) and \(x = 0, y = 1 \) lead to the same value of \(x^2 + y^2 \), they both represent solutions.