Economics 326: Suggested Solutions 3

30 March, 2004

1. Job market signaling with productive education.
(a) Agents θ chooses e to maximise

$$
\theta+e-\frac{e^{2}}{2 \theta}
$$

Maximising, $e^{*}=\theta$.
(b) The low type obtains the efficient education level, $e_{L}=\theta_{L}$. The high type must take enough to separate himself, i.e. the low type's (IC) constrain binds.

$$
\theta_{L}+e_{L}-\frac{e_{L}^{2}}{2 \theta_{L}}=\theta_{H}+e_{H}-\frac{e_{H}^{2}}{2 \theta_{L}}
$$

Since $e_{L}=\theta_{L}$ this yields quadratic

$$
e_{H}^{2}-2 \theta_{L} e_{H}+2 \theta_{L}\left(\frac{3}{2} \theta_{L}-\theta_{H}\right)
$$

this yields $e_{H}=\theta_{L}+\sqrt{2 \theta_{L}\left(\theta_{H}-\theta_{L}\right)}$. One can verify that the assumption $\theta_{L} \geq \theta_{H} / 3$ implies $e_{H} \geq \theta_{H}$.
(c) If $\theta_{L} \leq \theta_{H} / 3$ then $e_{H}=\theta_{H}$, and the (IC) constraint is irrelevant.
2. If agent 1 does not exist, social welfare if the road is built is $7+5-10=2$, while social welfare if the road is not built is 0 . If agent 1 declares a number greater that -2 , the road is built and agent 1 pays nothing. If agent 1 declares a number less than -2 , the road is not built and agent 1 pays 2 , their effect on the welfare of others. (Of course, if valuations are positive, this latter case is not relevant).

If agent 2 does not exist social welfare is $-1(=1+7-10)$ if the road is built and 0 if it is built. Thus agent 2 must pay 1 is the road is built and 0 is the road is not built. Similarly, agent 3 must pay 3 is the road is built and 0 is the road is not built.

In equilibrium, the road is built (since $2+5+7>10$) and their payments are $(0,1,3)$. Observe that the government loses money.
3. For agent 1 , (not built payment, built payment) $=(2,0)$. For agent 2, payments are $(3,0)$. For agent 3 , payments are (1,0). In equilibrium not agent pays anything as none are pivitol.
4. (a) With one judge it costs 1.
(b) Now it costs 2 .
(c) With the pivitol mechanism, it costs nothing!
5. Everyone flees, apart from the highest possible type. In any symmetric equilibrium types $\left[\theta^{*}, 1\right]$ approach. Yet $\theta^{*}<1$ will surely lose their gold, so they should also flee. Thus $\theta^{*}=1$. Notice that 'approach' strategy unravels in a similar way to the stag hunt cheaptalk example in class.
6. (a) $p_{t}=E\left[\theta \mid \theta \leq \theta_{t}\right]=\left(\theta_{t}+1\right) / 2$.
(b) $r\left(\theta_{t+1}\right)=p_{t}$. Hence $\theta_{t+1}=p_{t}-1$.
(c) We have,

t	θ_{t}	p_{t}
0	11	6
1	7	4
2	5	3
3	4	$5 / 2$
4	$7 / 2$	$9 / 4$
5	$13 / 4$	$17 / 8$

Here, $p_{t} \rightarrow 2$ and $\theta_{t} \rightarrow 3$.
(d) The equilibrium price is 2 , while sellers $[1,3]$ participate. We've just calculated the dynamics I drew in class.

