Economics 326: Suggested Solutions to Final

Question 1

(a) There are two pooling equilibria.

1. $e_{L}=e_{H}=e_{1}$. The wages must satisfy $w\left(e_{1}\right)=20, w\left(e_{2}\right) \leq 24$ and $w\left(e_{3}\right) \leq 28$.
2. $e_{L}=e_{H}=e_{2}$. The wages must satisfy $w\left(e_{1}\right) \leq 11, w\left(e_{2}\right)=20$ and $w\left(e_{3}\right) \leq 24$.
(b) There are no separating equilibria. The low type will always copy the high type since $c\left(e_{3}, 10\right) \leq 20$.

Question 2

(a) There is a unique equilibrium: only the low type puts their car on the market. The price is $p=10$. To see this, note that if the medium type also puts their car on the market the price is $p=15<r\left(\theta_{M}\right)$. Similarly, if all agents put their car on the market then $p=20<r\left(\theta_{H}\right)$
(b) For the high type, revealing dominates staying at home. For the middle type, staying at home dominates revealing. Hence this is just like Akerlof with reservation values $r\left(\theta_{L}\right)=8$, $r\left(\theta_{L}\right)=16$, and $r\left(\theta_{L}\right)=25$. In the unique equilibrium, the low type goes on the market, the middle type stays at home, while the high type gets the mechanics report.

Question 3

(a) The problem is

$$
\begin{array}{ll}
\max _{w_{1}, w_{0}, e} & p(e) V\left(x_{1}-w_{1}\right)+(1-p(e)) V\left(x_{0}-w_{0}\right) \\
\text { s.t. } & p(e) u\left(w_{1}\right)+(1-p(e)) u\left(w_{0}\right)-e \geq \underline{U} \tag{IR}
\end{array}
$$

(b) The Lagrangian is

$$
\begin{align*}
\mathcal{L}= & p(e) V\left(x_{1}-w_{1}\right)+(1-p(e)) V\left(x_{0}-w_{0}\right) \tag{1}\\
& +\lambda\left[p(e) u\left(w_{1}\right)+(1-p(e)) u\left(w_{0}\right)-e-\underline{U}\right] \tag{2}
\end{align*}
$$

The FOC with respect to w_{1} yields

$$
V^{\prime}\left(x_{1}-w_{1}\right)=\lambda u^{\prime}\left(w_{1}\right)
$$

The FOC with respect to w_{0} yields

$$
V^{\prime}\left(x_{0}-w_{0}\right)=\lambda u^{\prime}\left(w_{0}\right)
$$

Thus the ratio of the marginal utilities is constant across states. Thus is known as the Borsch rule.
(c) The problem is

$$
\begin{array}{ll}
\max _{w_{1}, w_{0}, e} & p(e) V\left(x_{1}-w_{1}\right)+(1-p(e)) V\left(x_{0}-w_{0}\right) \\
\text { s.t. } & p(e) u\left(w_{1}\right)+(1-p(e)) u\left(w_{0}\right)-e \geq \underline{U} \\
& p(e) u\left(w_{1}\right)+(1-p(e)) u\left(w_{0}\right)-e \geq p\left(e^{\prime}\right) u\left(w_{1}\right)+\left(1-p\left(e^{\prime}\right)\right) u\left(w_{0}\right)-e^{\prime} \quad\left(\forall e^{\prime}\right) \tag{IC}
\end{array}
$$

(d) The agent chooses e to maximise

$$
p(e) u\left(w_{1}\right)+(1-p(e)) u\left(w_{0}\right)-e
$$

The problem is thus

$$
\begin{array}{ll}
\max _{w_{1}, w_{0}, e} & p(e) V\left(x_{1}-w_{1}\right)+(1-p(e)) V\left(x_{0}-w_{0}\right) \\
\text { s.t. } & p(e) u\left(w_{1}\right)+(1-p(e)) u\left(w_{0}\right)-e \geq \underline{U} \\
& p^{\prime}(e)\left(u\left(w_{1}\right)-u\left(w_{0}\right)\right)=1 \tag{ICFOC}
\end{array}
$$

(e) The Lagrangian is

$$
\begin{align*}
\mathcal{L}= & p(e) V\left(x_{1}-w_{1}\right)+(1-p(e)) V\left(x_{0}-w_{0}\right) \tag{3}\\
& +\lambda\left[p(e) u\left(w_{1}\right)+(1-p(e)) u\left(w_{0}\right)-e-\underline{U}\right] \tag{4}\\
& +\mu\left[p^{\prime}(e)\left(u\left(w_{1}\right)-u\left(w_{0}\right)\right)-1\right] \tag{5}
\end{align*}
$$

The FOC with respect to w_{1} yields

$$
-p(e) V^{\prime}\left(x_{1}-w_{1}\right)+\lambda p(e) u^{\prime}\left(w_{1}\right)+\mu p^{\prime}(e) u^{\prime}\left(w_{1}\right)=0
$$

Rearranging,

$$
\frac{V^{\prime}\left(x_{1}-w_{1}\right)}{u^{\prime}\left(w_{1}\right)}=\lambda+\mu \frac{p^{\prime}(e)}{p(e)}
$$

The FOC with respect to w_{0} yields

$$
-(1-p(e)) V^{\prime}\left(x_{0}-w_{0}\right)+\lambda(1-p(e)) u^{\prime}\left(w_{0}\right)-\mu p^{\prime}(e) u^{\prime}\left(w_{0}\right)=0
$$

Rearranging,

$$
\frac{V^{\prime}\left(x_{0}-w_{0}\right)}{u^{\prime}\left(w_{0}\right)}=\lambda-\mu \frac{p^{\prime}(e)}{1-p(e)}
$$

Question 4

There are three equilibria.

- θ_{1} trades. $p=5$
- θ_{1} and θ_{3} trade. $p=15$.
- All three trade. $p=16 \frac{2}{3}$.

Question 5

First let's check the corner solutions. If no agents trade, then $p=0$ and $r(0)=-3 / 10$, so this cannot be an equilibrium. If all agents trade then $p=2 / 3$ and $r(1)=7 / 10$, so this cannot be an equilibrium.

The buyers willingness to pay is

$$
\begin{aligned}
E\left[\theta \left\lvert\, \theta-\frac{3}{10} \leq p\right.\right] & =E\left[\theta \left\lvert\, \theta \leq p+\frac{3}{10}\right.\right] \\
& =\frac{2}{3}\left[p+\frac{3}{10}\right] \\
& =\frac{2}{3} p+\frac{2}{10}
\end{aligned}
$$

In equilibrium the price is $p=3 / 5$, so types below $9 / 10$ enter the market. The cumulative density is $F(\theta)=\theta^{2}$, so proportion $81 / 100$ trade.

