Moral Hazard: Continuous Actions, Two Outputs

March 30, 2006

Model

A worker chooses effort $e \in [0, \infty)$. The project then succeeds with probability p(e), where p(e) is increasing, concave and satisfies $\lim_{e\to 0} p'(e) = +\infty$. Wages in state $s \in \{0, 1\}$ are $\{w_0, w_1\}$.

The worker obtains payoff $u(w_s) - c(e)$. Suppose u(w) is strictly increasing and strictly concave. Suppose c(e) = e, for simplicity. The agent has a reservation utility \underline{U} .

The principal's payoff is $x_s - w_s$, where $x_1 > x_0$.

First Best

Assume e is verifiable. Let (w_0, w_1) be the wages when the agent follows the seller's instructions. If the agent does anything else, he is decapitated.

The principal's problem is

$$\max_{w_1,w_0,e} \quad p(e)[x_1 - w_1] + (1 - p(e))[x_0 - w_0]$$

s.t.
$$p(e)u(w_1) + (1 - p(e))u(w_0) - e \ge \underline{U}$$
(IR)

The corresponding Lagrangian is

$$\mathcal{L} = p(e)[x_1 - w_1] + (1 - p(e))[x_0 - w_0] + \lambda [p(e)u(w_1) + (1 - p(e))u(w_0) - e - \underline{U}]$$

The first–order condition with respect to w_0 is

$$\frac{1}{u'(w_0)} = \lambda$$

The first–order condition with respect to w_1 is

$$\frac{1}{u'(w_1)} = \lambda$$

We claim that $\lambda > 0$. Since (IR) is an inequality constraint, $\lambda \ge 0$. Suppose, by contradiction, that $\lambda = 0$. The Lagrangian becomes

$$\mathcal{L} = p(e)[x_1 - w_1] + (1 - p(e))[x_0 - w_0]$$

Hence the firm should reduce wages, and the original solution cannot be optimal.

$$\max_{e} \quad p(e)x_1 + (1 - p(e))x_0 - u^{-1}(e + \underline{U})$$

Second Best

Suppose e is not observed by the principal. Her problem is

$$\max_{w_1,w_0,e} \quad p(e)[x_1 - w_1] + (1 - p(e))[x_0 - w_0] \\
s.t. \quad p(e)u(w_1) + (1 - p(e))u(w_0) - e \ge \underline{U} \\
\quad p(e)u(w_1) + (1 - p(e))u(w_0) - e \ge p(\hat{e})u(w_1) + (1 - p(\hat{e}))u(w_0) - \hat{e} \quad (\forall \hat{e}) \quad (\text{IC})$$

The first order approach replaces the continuum of (IC) constraints with the agent's firstorder condition. By incentive compatibility,

$$e \in \operatorname{argmax}_{\hat{e}} p(\hat{e}) u(w_1) + (1 - p(\hat{e})) u(w_0) - \hat{e}$$

Since $\lim_{e\to 0} p'(e) = +\infty$ the seller will wish to implement a strictly positive effort level and we must therefore have

$$p'(e)[u(w_1) - u(w_0) - 1 = 0$$
 (ICFOC)

Moreover, the agent's problem is concave in \hat{e} so any solution to (ICFOC) satisfies (IC).

The Lagrangian is thus

$$\mathcal{L} = p(e)[x_1 - w_1] + (1 - p(e))[x_0 - w_0] + \lambda [p(e)u(w_1) + (1 - p(e))u(w_0) - e - \underline{U}] + \mu [p'(e)[u(w_1) - u(w_0) - 1]$$

The first–order condition with respect to w_0 is

$$\frac{1}{u'(w_0)} = \lambda - \mu \frac{p'(e)}{1 - p(e)}$$

The first-order condition with respect to w_1 is

$$\frac{1}{u'(w_1)} = \lambda + \mu \frac{p'(e)}{p(e)}$$

We claim that $\lambda > 0$. Since (IR) is an inequality constrain, we know that $\lambda \ge 0$. If $\lambda = 0$

then the firm can always increase their profit by reducing wages such that $u(w_1) - u(w_0)$ remains constant. Hence this cannot be optimal.

We claim that $\mu > 0$. Suppose, by contradiction, that $\mu \leq 0$. Then the FOCs imply that $w_0 \geq w_1$, and the agent chooses e = 0. This contradicts the fact that the seller is trying to implement e > 0.

Putting this together, the FOCs imply that $w_1 > w_0$.