Economics 385: Suggested Solutions to Midterm 1

14 February, 2007

1. There is one competitive equilibrium. If the low types trade, the price is 5 , so this is an equilibrium. If the low and medium types trade, the price is

$$
p=\frac{5 / 2+10 / 4}{1 / 2+1 / 4}=6 \frac{2}{3}
$$

so this is not an equilibrium. Finally, if all three types trade, $p=8 \frac{3}{4}$, so this is not an equilibrium.
2. The equilibrium is given by

$$
\begin{aligned}
p & =E\left[\theta \left\lvert\, \frac{3}{4}(\theta-1) \leq p\right.\right] \\
& =\frac{1+\frac{4}{3} p+1}{2}
\end{aligned}
$$

This yields: $p=3$. The distribution of reserve values is $r \sim U[0,7.5]$. Hence the probability of trade is

$$
\operatorname{Prob}(r \leq p)=\frac{p-\underline{r}}{\bar{r}-\underline{r}}=\frac{3}{7.5}=\frac{2}{5}
$$

By plotting the function $E[\theta \mid r(\theta) \leq p]$, one can tell that there are no other equilibria.
3. There are two pure strategy equilibria. First, low types trade and the price is $p=10$. Second, both types trade, and the price is $p=13$.

There is also a mixed strategy equilibrium. The price is $p=12$, so the high types are indifferent between putting their cars on the market and keeping them off. Let x be the probability of the high types sell their cars. We know that

$$
\frac{10+16 x}{1+x}=12
$$

This means that $x=1 / 2$. Hence the low types always sell their cars, while the high types put their cars on the market with probability $1 / 2$.

