Exercise 12: Linear Algebra

September 20, 2007

1. Consider the following matrices

$$
A=\left(\begin{array}{ccc}
4 & 0 & 5 \\
-1 & 3 & 2
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
3 & 5 & 7
\end{array}\right) \quad C=\left(\begin{array}{cc}
2 & -3 \\
0 & 1
\end{array}\right)
$$

Calculate the following (if possible):
(a) $A+B$
(b) $A-2 B$
(c) $A C$
(d) $C A$
2. Calculate the inverse of

$$
A=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right)
$$

3. Compute the determinant of

$$
A=\left(\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right)
$$

4. Suppose we have

$$
A=\left(\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right) \quad u=\binom{6}{-5} \quad v=\binom{3}{-2}
$$

Are u and v eigenvectors of A ? Also, show that 7 is an eigenvalue and find the corresponding eigenvector.
5. Find the eigenvalues of:

$$
A=\left(\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right)
$$

6. Diagonalise the following:

$$
A=\left(\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right)
$$

7. Find the spectral decomposition of

$$
A=\left(\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Show that the resulting eigenvectors and orthogonal.

