Exercise 5: Continuity

September 13, 2007

1. Let $f(x) = x^2$, with $x \in \mathbb{R}$. Show f is continuous. [Hint: Fix ϵ , and find an appropriate δ .]

2. Consider $f: [0, \infty) \to \mathbb{R}$, where f(0) = 0 and $f(x) = x \sin(1/x)$ for x > 0. Is f continuous at 0? [Hint: plot the function]

3. Give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ and an open set $A \subset \mathbb{R}$ such that f(A) is not open.

4. Give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ and a closed set $B \subset \mathbb{R}$ such that f(B) is not closed. Is this possible if B is also bounded?

5. Give an example of a continuous and bounded function on IR that does not attain a maximum or minimum.

6. Let $f : [0,1] \to [0,1]$ be continuous. Prove that f has a fixed point. That is, there exists $x \in [0,1]$ such that f(x) = x. [Hint: Intermediate value theorem.]

7. Prove there is no continuous map taking [0,1] onto (0,1).