Exercise 5: Continuity

September 13, 2007

1. Let $f(x)=x^{2}$, with $x \in \mathbb{R}$. Show f is continuous. [Hint: Fix ϵ, and find an appropriate δ.]
2. Consider $f:[0, \infty) \rightarrow \mathbb{R}$, where $f(0)=0$ and $f(x)=x \sin (1 / x)$ for $x>0$. Is f continuous at 0 ? [Hint: plot the function]
3. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and an open set $A \subset \mathbb{R}$ such that $f(A)$ is not open.
4. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a closed set $B \subset \mathbb{R}$ such that $f(B)$ is not closed. Is this possible if B is also bounded?
5. Give an example of a continuous and bounded function on \mathbb{R} that does not attain a maximum or minimum.
6. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Prove that f has a fixed point. That is, there exists $x \in[0,1]$ such that $f(x)=x$. [Hint: Intermediate value theorem.]
7. Prove there is no continuous map taking $[0,1]$ onto $(0,1)$.
