Exercise 7: Convexity

September 17, 2007

1. Show that the intersection of two convex sets is convex. Is the union of two convex sets necessarily convex?

2. Show that \(f : \mathbb{R} \to \mathbb{R} \) is concave if and only if

\[
f(\sum_i \alpha_i x_i) \geq \sum_i \alpha_i f(x_i)
\]

for \(\alpha_i \in [0, 1] \) such that \(\sum_i \alpha_i = 1 \). [Hint: Induction.]

3. Show that the sum of 2 concave functions is concave.

4. Show that the pointwise minimum (i.e. \(\min\{f(x), g(x)\} \)) of two concave functions is concave.

5. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is concave, and \(g : \mathbb{R} \to \mathbb{R} \) is increasing and concave. Show that \(g(f(x)) \) is concave.

6. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is concave, and \(g : \mathbb{R} \to \mathbb{R} \) is increasing. Show, by example, that \(g(f(x)) \) may not be concave.

7. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is quasi–concave, and \(g : \mathbb{R} \to \mathbb{R} \) is increasing. Show that \(g(f(x)) \) is quasi–concave.