Quiz: Solutions

September 26, 2007

1. Only (e) is correct.
2. (i) True. Suppose, by contradiction, that $x<a$. Since $x_{n} \rightarrow x, x_{n} \in D\left(x, \frac{a-x}{2}\right)$ for $n \geq N$. But then, $x_{n}<a$ for $n \geq N$.
(ii) False. Consider $x_{n}=a+1 / n$.
3. Let $x_{H}>x_{L}$. Consider the points $x=x_{H}$ and $x^{\prime}=0$. Define α such that $\alpha x_{H}=x_{L}$. By convexity,

$$
\frac{c\left(x_{L}\right)}{x_{L}}=\frac{c\left(\alpha x_{H}\right)}{\alpha x_{H}} \leq \frac{\alpha c\left(x_{H}\right)}{\alpha x_{H}}=\frac{c\left(x_{H}\right)}{x_{H}}
$$

4. (a) Write the constraints as

$$
\begin{array}{r}
g_{1}(x, y)=5-(x+1)^{2}-(y+1)^{2} \\
g_{2}(x, y)=x \\
g_{3}(x, y)=y
\end{array}
$$

The gradient of the inequality constraints are

$$
\nabla g_{1}(x, y)=\binom{2(x+1)}{2(y+1)} \quad \nabla g_{2}(x, y)=\binom{1}{0} \quad \nabla g_{3}(x, y)=\binom{0}{1}
$$

Since only two constraints can bind at once, and $x, y \geq 0$, these are linearly independent. Alternatively, one can use the Slater condition.
(b) The objective function is concave and the constraint function is convex, so the Kuhn-Tucker conditions are sufficient.
(c) The Kuhn-Tucker conditions are

$$
\begin{aligned}
3-2 \lambda(x+1)+\mu_{x} & =0 \\
1-2 \lambda(y+1)+\mu_{y} & =0 \\
{[5-(x+1) 2-(y+1) 2] \lambda } & =0 \\
\mu_{x} x & =0 \\
\mu_{y} y & =0 \\
5-(x+1) 2-(y+1) 2 & \geq 0 \\
x & \geq 0 \\
y & \geq 0 \\
\lambda, \mu_{x}, \mu_{y} & \geq 0
\end{aligned}
$$

The unique solution of these conditions is $\left(x, y, \lambda, \mu_{x}, \mu_{y}\right)=(1,0,3 / 4,0,1 / 2)$. The solution is hence $(x, y)=(1,0)$.

