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*** PRELIMINARY AND INCOMPLETE *** 

 

ABSTRACT.   We consider a setting in which a risk-neutral agent/entrepreneur with 
limited capital seeks external financing for a project which pays stochastic cash flows 
over many periods.   These cash flows are unobservable and unverifiable by outside 
investors.  We identify the optimal long-term financial contract.  In this contract, the 
agent is induced to pay investors via the threat of the loss of control of the project.  After 
solving for the contract as an optimal mechanism, we then demonstrate that it can be 
implemented by a combination of standard forms of long-term debt contracts.  We also 
extend our analysis to allow for renegotiation of the contract.   

The model allows for both exogenous and endogenous determination of payoffs in the 
event of project termination.  Our analysis is also general enough to allow for cash flows 
that arrive continuously.  This allow us to address the optimal frequency with which 
payments to investors are made.  Interestingly, we show that it may be optimal for 
payments to occur at regular, discrete intervals. 
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1. Introduction 

This paper analyzes optimal dynamic financial contracting. The scenario under 
consideration involves an agent who has a profitable business opportunity but must raise 
external capital to finance the opportunity. Among an external investor’s concerns in 
funding a business is that the agent who manages the business might divert funds to 
himself at the expense of the investor. Our analysis incorporates this possibility. Our 
analysis also incorporates the possibility that control of the business can be transferred 
from the agent to the investor. This threat is the key to inducing the agent to pay the 
investor according to the financial contract. 

Specifically, the model entails a risk-neutral agent who seeks funding from a risk-neutral 
investor. The funding will finance a business that requires an up-front investment in 
assets. Together, the assets and the agent can generate a series of risky cash flows over 
the next T periods. The agent observes the realizations of these cash flows but the 
investor does not. The investor must rely on the agent to pay him out of these 
unobservable cash flows. At any time during the life of the business, control of the assets 
can be transferred from the agent to the investor. If the assets are transferred, the agent is 
left to pursue his best alternative and the investor is free to dispose of the assets for cash. 
A financial contract specifies payments between the agent and the investor and it 
specifies the circumstances under which control of the project is transferred from the 
agent to the investor. 

Our analysis generalizes and extends a number of prior analyses (to be discussed in 
detail). We fully characterize the optimal contract for an arbitrary number of periods, 
finite- and infinite-horizon. We assume that the business cash flows are independent over 
time but beyond that we make no distribution assumptions of consequence. We also 
present the results for both discrete-time and continuous-time versions of the model. 

After characterizing the optimal contract, we show that it can be implemented with a 
combination of long-term coupon debt and a line of credit (which the agent may make an 
immediate draw on). So in each period, the agent faces a fixed charge, principal plus 
interest -- this is the payment on the long-term coupon debt. As long as the agent makes 
the payments on the coupon debt he retains control of the business. Once the agent has 
made sufficient payments to the investor, he can begin to pay himself dividends. If the 
agent cannot make the coupon debt payments out of the business’ cash flow, he can draw 
on the line of credit. If needed, the agent can continue to draw on the line of credit until it 
is exhausted. After that, if the agent cannot make a payment, control is transferred to the 
investor with some probability. This probability is increasing in the extent of the agent’s 
shortfall.  

The coupon debt and the line of credit play different roles in implementing the optimal 
contract. The coupon debt is effective for financing early consumption for the agent (if 
given the market interest rate the agent’s time preferences are such that he prefers early 
consumption). The line of credit provides the flexibility needed given that the business’ 
cash flow are risky. For the special case in which the agent’s subjective discount rate 
equals the market interest rate, the optimal financial contract can be implemented with 
just a line of credit. In this case, the agent funds the up-front investment from the line of 
credit and then pays it down to zero as soon as possible---there is no further motive for 
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borrowing. For the limiting case in which the business cash flows are riskless, only the 
coupon debt is needed. With no cash flow risk, coupon debt with its fixed payments can 
simultaneously fund the up-front investment as well as fund the agent’s early 
consumption (if desired). 

The threat that induces the agent to pay the investor is that control of the assets can be 
transferred to the investor. If control is transferred, the investor and the agent receive 
terminal payoffs. Our modeling here covers a variety of situations of interest. It covers 
the possibility that a transfer of control involves liquidating the assets, selling them 
piecemeal at market prices. For this case, a transfer of control involves a payoff for the 
investor that is exogenous and may vary over the life of the business. Alternatively, a 
transfer of control could involve the sale of the business as a going concern. Here the sale 
price, and hence the payoff available from a transfer of control, is endogenous and 
depends on the remaining life of the business and on the wealth of potential buyers. For if 
a buyer must finance the purchase too, then we have the same problem again -- the price 
that a buyer can pay is determined as part of the solution to the optimal contracting 
problem. For the agent, a transfer of control may result in his accepting his next best 
employment alternative. For this case, his termination payoff is exogenous and may vary 
over the life of the business. Alternatively, a transfer of control could result in the agent 
borrowing to start a new business. Here the agent’s terminal payoff is endogenous and 
determined as part of the solution to the optimal contracting problem. After 
characterizing the optimal contract, we explore these and other interpretations of a 
transfer of control. 

Debt financing is typically seen as problematic because of asset-substitution problems. 
That is, equity-holders may have the incentive to make the firm riskier, thereby 
transferring wealth from debt-holders. Here, even though the optimal contract involves 
debt, there is no asset-substitution problem. The agent does not benefit from an increase 
in cash flow risk because the optimal contract has the feature that in every period, the 
agent’s expected continuation payoff equals the expected cash flow. This arises because 
the contract must satisfy an incentive-compatibility constraint in order for the agent to 
pay the investor. To satisfy this constraint, the agent must pay a cost if he makes too low 
of a payment to the investor. This cost takes the form of a possible transfer of control. 
With the optimal contract this leads to a continuation payoff that equals the current 
period’s cash flow plus a constant. 

Throughout the analysis we consider both the case in which the agent and investor can 
commit to a contract and the case in which contracts can be renegotiated. With the 
possibility of renegotiation, the contract must be Pareto optimal at any point in time 
during the life of the contract. Otherwise the agent and investor would renegotiate. Of 
course, the possibility of renegotiation effectively entails more constraints on the 
contracting problem and hence leads to worse outcomes. 

There have been a number of analyses of this contracting problem. Bolton and 
Scharfstein (1990) analyze a two-period setting in which an investor finances an agent’s 
project in the first period and depending on the first-period outcome, the investor may 
finance a second project in the second period. The threat to withhold second-period 
financing is what induces the agent to pay in the first period. Gromb (1999) analyzes a 
similar model with an arbitrary number of periods. Again, in each period, the threat 
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facing the agent is that funding for future projects will be withheld. In both, it is assumed 
that in each period, the agent’s business cash flows have a two-state (i.i.d.) distribution. 
We will show that both models correspond to special cases of our model. 

Allen (1983) analyzes a model in which an agent seeks funding for a riskless business 
and in which the agent and investor can commit to a contract.  Bulow and Rogoff (1989), 
Hart and Moore (1994), and Hart (1995) analyze financial contracting for settings in 
which the cash flows are riskless and for which contracts can be renegotiated. The key 
difference among these analyses is in the way they model renegotiation. We will show 
that the Bulow and Rogoff (1989) model is a special case of ours.  

Hart and Moore (1998) introduce risky cash flows into a two-period version of their 
model. They assume that all uncertainty is resolved immediately after the agent and 
investor sign the contract. By contrast, in our model the uncertainty is resolved over time. 
Though given our assumption of independent cash flows across periods, the Hart and 
Moore (1998) model has a feature that ours lacks – early cash flows convey information 
about later cash flows. Bolton and Scharfstein (1990) also have this possibility. 

Renegotiation in Hart (1995) and Hart and Moore (1998) is modeled as a procedure that 
is exogenously imposed on the contracting problem.1 In principle, though, a contract 
could specify an optimal renegotiation procedure; the exogenous one they impose is not 
necessarily optimal.  Harris and Raviv (1995) reconsider (an earlier working paper 
version of) the Hart and Moore (1998) model. But rather than utilize an exogenously 
specified renegotiation game, Harris and Raviv solve for the optimal contractual 
arrangement. With observable but unverifiable states, they show that the optimal contract 
involves a game in which the agent and the investor simultaneously report the state and in 
which the contract specifies the outcome as a function of the reports. 

In all of these analyses, as well as the analysis here, a threat to reduce future cash flows is 
what induces the agent to repay the investor. Bulow and Rogoff (1989) consider a 
sovereign debt setting and so the threat involves the interruption of a country’s trade. The 
other analyses consider private business settings and so the threat involves either a 
seizure of business assets or a withholding of future funding. 

There is a large literature on optimal multi-period contracting for settings in which risk-
averse agents receive risky, privately-observed cash flows and seek to share the risk. To 
mention a few, Green (1987) characterizes the optimal contract in an infinite-horizon 
model, where in each period, each agent’s income has a two-state (i.i.d.) distribution. 
Townsend (1979) and Mookherjee and Png (1989) analyze one-period problems in which 
there can be a (costly) audit; with an audit, the cash flow is made publicly observable and 
hence contractible. In the one-period setting, the threat of an audit is the key to inducing 
the agent to truthfully report the cash flow. Wang (1999) combines these ideas and 
analyzes a special case of Green’s model with deterministic auditing (meaning that the 
low cash flow is audited and the high cash flow is not). Our analysis does not incorporate 
risk sharing and we do not allow for audits. Both would be important extensions, 
especially the former. 

                                                                 
1 Hart and Moore (1994) also makes this type of renegotiation assumption.  That paper also differs in that 
the agent cannot divert the cash flows. 
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Section 2 presents the basic model and Section 3 presents an illustrative example. In 
Section 4, we solve for the optimal financial contract and in Section 5 we show how the 
optimal contract can be implemented with a combination of long-term coupon debt and a 
line of credit. In Section 6 we show how by varying the specification of terminal payoffs 
in the event of a transfer of control, we can accommodate a variety of situations of 
interest and nest some prior analyses of this issue. Section 7 discusses the asset 
substitution problem and the standard moral hazard problem of privately observed and 
costly agent effort. Section 8 has concluding remarks. 

2. The Model 

There is an agent and an investor.  The investor is risk neutral, has unlimited capital, and 
values a cash flow stream {ct}t∈T  as  ∑t∈T  e−rt E[ct], where r is the riskless interest rate.  
The agent is also risk neutral, has limited capital, and values a cash flow stream {ct}t∈T  
as  ∑t∈T e−γt E[ct], where γ ≥ r is the subjective discount rate. 

The agent has a prospective project that requires an initial investment in assets of I, at 
date t = 0.  The agent has initial wealth of Y0 ≥ 0.  If I > Y0, the agent must borrow to 
finance the project.  Alternatively, even if Y0 ≥ I, if γ > r the agent would like to borrow 
for consumption purposes.  The investor has unlimited resources and can lend the funds 
to the agent to initiate the project.  If funded, the project generates non-negative risky 
cash flows. The cash flow at date t ∈T is given by the random variable Yt. We will 
consider both cases in which the set of dates T  is finite and cases in which it is infinite.  
Assume that the project has a positive net present value, ∑t∈T  e−rt E[Yt] > I.  Also, the 
cash flows {Yt} are jointly independent and for s < t, Es[Yt] = E[Yt] = µt ; i.e., there is no 
learning about future cash flows. Finally, for all t, the minimum element of the support of 
Yt is 0.2  

There is a moral hazard problem in that the agent privately observes the project’s cash 
flows. Specifically, at each date t > 0, the agent privately observes the realization of Yt. 
The investor must rely on the agent to report this realization. Of course, the agent might 
lie about the cash flow in order to cheat the investor.  

Control of the project can be transferred from the agent to the investor at any time.  We 
refer to this transfer of control as termination. Specifically, after the cash flow Yt is 
realized, the agent may choose to quit the firm or, if the contract allows, the investor may 
fire the agent.  In either case, the assets of the firm can be sold at a price of Lt ≥ 0, and the 
agent receives a payoff of Rt ≥ 0 representing the agent’s outside option. The liquidation 
value and the agent’s reservation value could be stochastic (in which case interpret Lt and 
Rt as expected values) but in this case, as with the cash flows, we assume that there is no 
learning about their values prior to their realization. After termination, the cash flows 
from the project cease, so that Ys = 0 for s > t. 

As we will see, the threat that the agent might lose control of the project will be what 
induces the agent to pay back the investor. Alternatively, the agent’s threat to quit the 

                                                                 
2 This is a convenient but not important assumption.  If the support of Yt is bounded below by some y>0, the 
optimal contract coincides with the limiting one derived by setting Pr(Yt ∈ [0,y)) arbitrarily small. 
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firm will limit the amount the investor can demand. Later we will show how (Lt, Rt) may 
be endogenously determined based on the investor’s ability to hire a new manager to run 
the firm, and the agent’s ability to raise capital and start a new firm.  For now, it is 
convenient to think of (Lt, Rt) as exogenous parameters.  We assume without loss of 
generality that 

 Lt = maxs≥t e−r(s−t) Ls,   and  Rt = maxs≥t  e−γ(s−t) Rs (1) 

since the assets can always be stored prior to liquidation, and the agent can always wait 
for the best outside option. 

Importantly, we assume that the cash flows Yt that the agent receives cannot be observed 
or collected by the investor. However, liquidation of the business assets is observable and 
can be contracted on.  In particular, the division of the proceeds Lt can be contractually 
specified. 

Suppose the investor funds the agent. Because of the above restrictions, a contract 
between the two cannot mandate payments from the agent to the investor, since the 
agent’s resources are not observable.3  Thus, a contract can only specify payments made 
from the investor to the agent as a function of past payments made and messages sent by 
the agent to the investor.  The contract can also specify circumstances under which 
control of the project passes from the agent to the investor, who may then terminate the 
project. 

Thus, we can describe the timing as follows.  Each period, the agent receives a cash flow 
Yt.  Then the agent makes a payment dt ≥ 0 and report mt to the investor. The “message 
space” or domain of mt is arbitrary, and we assume it is sufficiently large so as not to 
constrain communication between the parties.  After making the payment dt to the 
investor, the agent receives a payment wt from the investor.  The agent then chooses a 
quantity ct ≥ 0 to consume.  This consumption is not observed by the investor.  Any 
remaining cash balance accumulates at the continuously compounded return ρ ≤ r (all 
positive NPV investments are already included in the project).  It may be that ρ < r if it is 
costly to save funds in a form which is not observable and collectible.  Finally, before the 
next period cash flow, the investor may terminate the project, if the contract allows.  If 
the investor does not terminate the project, then the agent may choose to continue (qt = 0) 
or quit (qt = 1) the firm.4 

Let ht =  (ds, ms, ωs)s≤t denote the history of agent’s payments and reports up to t, together 
with the indicator ωs indicating whether the project is active (ωs = 0) or has been 
terminated by the investor (ωs = 1) or terminated by the agent (ωs = 2) prior to s.  The 
contract then specifies the payment made from the investor to the agent given the history 
of reports on date t, denoted by the function wt(ht) ≥ 0.  In addition, the contract also 

                                                                 
3 Stated another way, even if the contract specified such a payment, it would also have to specify what 
happens if the agent fails to pay.  Hence, the contract can only specify the investor’s reactions to potential 
actions by the agent.  (As an example consider a mortgage: the borrower is not truly required or “forced” to 
pay the monthly payment.  Rather, if the monthly payment is not made, foreclosure and liquidation occurs.)  
4 Note that there is no loss of generality in assuming that termination can only occur at the end of the 
period.  For instance, since the agent can always pay dt = 0, there is no loss to the agent from waiting until 
the end of the period to quit. 
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specifies the circumstances under which the project is terminated and the assets are sold.  
Let pt(ht) denote the contractually specified probability that the project is terminated at 
date t ≥ 0, specified as a function of the history of reports. 5    

In period 0, the timing is identical except that initially, the investor commits I to start the 
project, with the understanding that the agent will contribute d0.  If d0 is not contributed, 
the investor has the option to terminate immediately (prior to investing), and recover I.  

That is, that the investor can withhold funding if the agent fails to contribute d0 can be 
thought of as a termination value L0 ≥ I.  If d0 is contributed, the investor gives the agent 
some amount w0 for immediate consumption.   

In what follows, we will consider two contractual environments.  In the first, the contract 
signed at date 0 remains in force for the life of the project.  In the second, at any time 
during the life of the project, the contract can be renegotiated and replaced with a new 
contract if both parties agree to do so. 

 

3. An Illustration of Optimal Security Design 

We will preview our results on security design with an example. This is intended to make 
the analysis easier to follow and to highlight the nature of the results. 

A project requires an investment of I in assets, and then generates perpetual risky cash 
flows that are i.i.d. and uniformly distributed on {0,1,2,…20}. The project’s liquidation 
value is Lt = 80. The agent has capital Y0 = 5 and has a reservation wage Rt = 0. The 
riskless rate of interest is r = 10% and the agent’s subjective discount rate for 
consumption is γ = 10.5%. So the agent would like to raise funds to finance current 
consumption as well as to start the business. Assume that the financial market is 
competitive so that in initially financing the project, the agent receives all of the rents. 

In a perfect capital market, the agent would be able to raise funds of 95.1, the perpetuity 
discounted at 10% (continuously compounded). The agent would invest I, immediately 
consume 95.1 + 5 – I, and give the investor all of the business cash flow (if I > 95.1, the 
project is not worth funding). For instance, the agent sells all of the equity to the investor, 
pays out all future cash flow as dividends to the investor, and liquidation never occurs. 

Now introduce the agent’s incentive problem: the agent privately observes the realization 
of each period’s cash flow and the agent can divert the cash flow for his own 
consumption. The above financial arrangement will fail. The agent will report a cash flow 
of 0 every period keeping all of the cash flow for himself, and the investor will receive no 
dividends. To induce the agent to pay the investor, there must be a threat that the investor 
will liquidate the business. So what is the best contract that the agent can offer the 
investor and how much funding can the agent raise? 

Given the history of agent payments and reported cash flows, ht, the contract specifies the 
payment made from the investor to the agent, wt(ht) and it specifies the probability that 
the project is liquidated, pt(ht). Our analysis derives the optimal contract (w, p) and then 
                                                                 
5 If both the project and the liquidation activity are constant returns to scale technologies, probabilistic 
liquidation could be reinterpreted as deterministic liquidation of the fraction pt of the assets.   
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shows that the optimal contract can be implemented with a combination of two standard 
securities, coupon debt and a line of credit. 

Based on our analysis, in this example, the best the agent can do is raise 79.5. Given the 
agent’s initial capital of 5, the project can be financed if I ≤ 84.5. Because of the 
incentive problem, if 84.5 < I ≤ 95.1, a positive NPV project is not financed. The optimal 
contract can be implemented with perpetual coupon debt with a periodic coupon of 6.4 
and a line of credit with a limit of 23.4 and an interest rate of 10.5%. If a coupon payment 
is missed or the accumulation of interest on the credit line would put the agent over the 
limit, then the agent is in default. If the agent is in default, the unmade payments 
“convert” to control rights according to a notional value of 9. That is, if the agent defaults 
on payments totaling z, then the investor liquidates with probability z/9. Note that in this 
example, the liquidation value is high enough so that the renegotiation constraints do not 
bind. 

Depending on I, the agent may either contribute some of his capital or he may finance 
some immediate consumption. Specifically, if I < 60.9, then the agent contributes no 
capital to fund the project and the agent is provided with an additional 60.9 – I for 
immediate consumption. If 60.9 < I ≤ 65.9, then the agent contributes I – 60.9 of his own 
capital and is provided no additional funding for immediate consumption. If I > 65.9, 
then the agent contributes all of his own capital, is provided no additional funding for 
immediate consumption, and takes an initial draw on the credit line to finance the project.  

Say I ≤ 65.9 and consider the example of the cash flow history in the following table. 

 

 

A coupon payment of 6.4 is due in period 1. With a cash flow of 5, the agent must draw 
1.4 on the line of credit to pay the coupon. In period 2, another coupon of 6.4 is due and 
with interest, the credit line is up to 1.4*e.105 = 1.6. Since the cash flow is 10, the agent 
pays the coupon, pays down the credit line, and dividends himself the remaining 2. In 
period 3, the cash flow of 12 is enough to pay the coupon and the agent dividends himself 

t 1 2 3 4 5 6 7 8

Y 5 10 12 0 0 0 2 0

LT Debt -6.4 -6.4 -6.4 -6.4 -6.4 -6.4 -6.4 -6.4

Credit Line 0.0 -1.6 0.0 0.0 -7.1 -15.0 -23.8 -26.0

Net -1.4 2.0 5.6 -6.4 -13.5 -21.4 -28.2 -32.4

Excess 4.8 9.0

Term Prob 53% 100%

Divs 2.0 5.6

Credit Line -1.4 0.0 0.0 -6.4 -13.5 -21.4 -23.4 -23.4
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the remaining 5.6. The cash flow is 0 in periods 4-6 and so the agent keeps drawing on 
the credit line. In period 7, another coupon is due and with interest, the credit line is up to 
21.4*e.105 = 23.8, which would put the agent over the credit limit. To stay out of default a 
cash flow of at least 6.4 + (23.8 – 23.4) = 6.8 is required. Given a cash flow of 2, the 
agent is in default on payments totaling 4.8 and the investor is given control rights worth 
4.8. That is, given the contractually specified notional value of 9, the investor is allowed 
to liquidate the business with probability 4.8/9 = .53. Suppose, though, the project is not 
liquidated and the agent maintains control. In period 8, interest puts the credit line up to 
23.4*e.105 = 26, which again would put the agent over the credit limit. To stay out of 
default a cash flow of at least 6.4 + (26 – 23.4) = 9 is required. With a cash flow of 0 in 
period 8, the agent is now in default on payments totaling 9 and the investor liquidates 
with probability 9/9 = 1. In liquidation, the investor receives 80 and the agent receives 0. 

If I > 65.9 the contract is the same. The only difference is that, as described above, the 
agent will begin with a draw on the credit line. 

Coupon debt and a credit line implement the optimal contract. The key property of this 
combination of securities is that they induce three regions for the contract. If cash flows 
are high, the agent is provided with current consumption and faces no threat of 
liquidation. This corresponds to the situation in which the agent has no balance on the 
credit line. With intermediate cash flows, the agent is provided with no current 
consumption but still faces no threat of liquidation. This corresponds to the situation in 
which the agent has a balance on the credit line but is below the limit. If cash flows are 
low, the agent is provided with no current consumption and faces a threat of liquidation. 
This corresponds to the situation in which the agent is in default. 

4. Optimal Contract Design 

In this section, we outline a methodology for solving for an optimal contract.  We begin 
with the case in which renegotiation of the contract is not possible and T is finite.   

Given a contract σ = (w, p), the agent will adopt an optimal strategy α = (d, m, c, q), 
where the payment, report, consumption and quit decision at date t are functions of the 
history of cash flow realizations yt = (ys)s≤t, and the termination history ωt = (ωs)s≤t.

6   
When choosing an optimal strategy, the agent must respect his resource constraints; that 
is, he can never pay or consume more than his available cash.  We denote by Kt the 
agent’s cash balance at the start of period t, given by 

 Kt = ∑0≤s<t eρ(t−s) (Ys − ds + ws − cs). 

Let τ be the (random) date at which liquidation occurs.  The agent will choose the 
strategy optimally to maximize the payoff: 

 A∗(α | σ ) = E[ ∑t e−γt ct + e−γτ Rτ | α, σ ], 

                                                                 
6 Since the contractual response to his decisions is fixed, this is essentially a single-agent decision problem, 
which is why the strategy can be written as a function of (yt, ωt) alone. 
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subject to the resource constraints,7  

0 ≤ dt ≤ Kt + Yt, 

0 ≤ ct ≤ Kt + Yt − dt + wt . 

Given the agent’s strategy, the investor’s payoff is then 

 B∗(d, m, c | σ ) =  − I  + E[ ∑t≥0 e−rt (dt − wt)  + e−rτ Lτ | α, σ ], 

where τ is the (random) date at which liquidation occurs. 

We are interested in solving for an optimal contract which maximizes the investor’s 
payoff subject to the agent receive a given payoff level.  The choice among such optimal 
contracts is then determined by the relative market power of the parties. 

Before developing the model further, note that by using a Revelation Principle-type 
argument, we can establish that private saving by the agent is not necessary in an efficient 
contract, and that messages are extraneous. 

 

PROPOSITION 1.  Given any contract σ with optimal strategy α = (d, m, c, q) for 
the agent, there exists a contract σ ∗  and optimal strategy α∗  = (d∗, m∗, c∗, q) such 
that  

 A∗(α | σ) = A∗(α∗ | σ∗),   B∗(α | σ) ≤ B∗(α∗ | σ∗), 

 d∗
t = Yt ,  m∗

t = 0,  and  c∗
t = w∗

t. 

Under the contract σ ∗ , Kt = 0 for all t. 

PROOF:  See the Appendix. 

  

This result suggests the following approach to determining an optimal contract.  First, we 
derive an optimal contract assuming private saving is impossible and no messages can be 
sent.  We know from Proposition 1 that this contract is as good as the true optimal 
contract, though it might be better since the incentive constraints related to private 
savings have been ignored and need not be satisfied.  If, however, they are satisfied at the 
solution (as we will show is the case), then we have a solution to the original contracting 
problem. 

4.1. The Problem Without Private Saving 

Thus, we now consider the simplified problem in which the agent’s only choice variables 
are (dt, qt), the payment and quit decisions made on date t.  The payoffs in this problem 
are given by 

                                                                 
7 In this formulation, we have treated the payoff Rt as a utility payoff rather than a cash payment which is 
then consumed.  This is for notational convenience only − none of the analysis would change if it were a 
direct cash payment. 
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 A(d, q | σ) = E[ ∑t e−γt (Yt − dt + wt)  + e−γτ Rτ | d, q, σ ], 

 B(d, q | σ) =  − I  + E[ ∑t e−rt (dt − wt)  + e−rτ Lτ | d, q, σ ], 

where the contract σ = (w, p) depends only on the history of payments dt and whether the 
project has terminated.  We seek to identify the best possible contract for the investor 
given any payoff for the agent.  That is, we need to solve 

 b(a) = maxd,q,σ  B(d, q | σ)   s.t.  A(d, q | σ) = a ≥ A(d′, q′ | σ)  for all (d′, q′).  

We call a contract and payment strategy (d, q, σ) optimal if it solves the above. 

We solve for an optimal contract using a dynamic programming approach.  Consider the 
subgame that begins at the end of period s, but before the period s termination decision is 
made.  Since there is no savings, past history does not affect the continuation possibilities 
for an active project.  That is, any contract after any history will determine a pair of 
continuation payoffs 

 as = E[ ∑t>s e−γt (Yt − dt + wt) + e−γτ Rτ | d, q, σ, ys ], 

 bs = E[ ∑t>s e−rt (dt − wt)  + e−rτ Lτ | d, q, σ, ys  ]. 

By varying the contract σ and optimal response (d, q), (as, bs) can be chosen from a set βs 
that is independent of the history ys. 

Next note that for an optimal contract, only those points in βs should be chosen which are 
efficient for the investor.  That is, holding the agent’s continuation payoff as fixed, an 
optimal contract will give the investor the highest possible payoff bs available in the set 
βs.

8   

That is, the set of continuation payoffs that can be used by an optimal contract on the 
subgame s can be described by the function 

 bs(a) = max { b :  (a, b) ∈ βs }. 

We can now solve for bs using dynamic programming.9  First suppose the project has a 
finite economic life T, so that it would be optimal, absent incentive problems, to 
terminate on date T.  In particular, suppose that T is the first date such that 

 ( ) ( )( ) ( )max − − − −
≥ < ≤

 + = + + ∑ r t T r s T
T T s T t s sT t s

L R E e Y e L R . (2) 

 

 

 

 

                                                                 
8 Note that this would not be true absent commitment on the part of the investor.  If there were a moral 
hazard problem for the investor as well, it might be necessary to choose a lower payoff for the investor to 
maintain interim incentives – such is the case in standard repeated games, for example.  Here, there are no 
interim incentives constraints for the investor, so the highest payoff is chosen.  
9 See Spear and Srivastava (1987), and Green (1987) for discussions of the use of this approach in solving 
dynamic contracting problems. 
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Thus, an optimal contract will lead to termination by date T.10 After T, any payments to 
the agent must come from the investor.  Since γ ≥ r, it is efficient to make any such 
payments in the next period T 

+.  Thus, we have 

 ( )( )( )( )
+γ − −= − −r T T

T T Tb a L e a R  for a ≥ RT. (3) 

In general, suppose that we have a continuation function bt with the following properties: 

1. bt is defined for a ≥ a0
t ≥ 0, 

2. bt is concave; that is, b′t is weakly decreasing. 11 

We now proceed to derive bs for s < t and show that it inherits the above properties.  The 
figure above depicts the timing assumption for the continuation function bt.  Given bt, we 
first solve for the optimal payments dt and wt, which leads to the continuation function 
b1

t.  Taking expectations and discounting we will then calculate the continuation function 
ˆ
sb .  Finally, analyzing the period s termination and quit decisions allows us to derive bs. 

 

Consider the problem faced by the agent at the start of period t, after realizing the cash 
flow yt.  The agent must then choose a payment dt to make.  Based on dt, according to the 
contract the agent will receive a payment wt from the investor and a continuation payoff 
at in the remainder of the game.  Thus, the agent must solve 

 max
td y≤  yt − d + wt(d) + at(d)  (4) 

The solution to (4) implies an optimal payment fo r the agent of 

 dt(yt) = argmax
td y≤  wt(d) − d + at(d), 

based on the contract’s specification of wt and at.  Consider the modified contract with 
ˆ tw (d) = d + wt(dt(d)) − dt(d) and ˆta (d) = at(dt(d)).  Then the problem becomes 

                                                                 
10 To see this, note that for the agent not to quit, the agent must receive aT ≥ RT in continuation.  Suppose 
the investor receives bT in continuation.  From (2), even without the observability constraint, aT + bT ≤ LT + 
RT.  Thus, by terminating immediately and paying the agent aT − RT, the investor gets LT + RT − aT ≥ bT. 
11 Strictly speaking, bs may not be differentiable on a set of measure 0.  At these points, we interpret b′s as 
an arbitrary selection from the super-gradients of bs. 

Cash flow  
Ys  

realized 

Agent pays 
ds  

to investor  

Investor pays  
ws 

 to agent 

Agent can quit 
 

Investor can 
terminate 

Cash flow  
Yt  

realized 

Date s  Date t  
( )sb a  ˆ ( )sb a  

1( )sb a  
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 max
td y≤  ˆ tw (d) − d + ˆta (d) =  max

td y≤  wt(dt(d)) − dt(d) + at(dt(d)), 

which is solved with d = yt, and all payoffs are unchanged.  Thus, we can without loss of 
generality restrict attention to contracts for which dt(yt) = yt.

12  The incentive 
compatibility condition is that 

 Gt(y)  ≡ wt(y) − y + at(y), 

is weakly increasing in y.  Note also that Gt(0) ≥ a0
t, the minimum possible continuation 

payoff for the agent. 

Thus, the agent’s payoff is given by yt + G(yt), where Gt has the properties noted above 
and is determined by the contract.  To find the optimal contract, we must consider the 
payoff to the investor.  The investor receives 

 yt − wt(yt) + bt(at(yt))  =  yt − wt(yt) + bt( yt + Gt(yt) − wt(yt)). 

Holding Gt constant, the agent’s payoff is not altered by changes to wt.  Thus, wt will be 
chosen to maximize the payoff to the investor.  That is, the optimal contract will choose 
wt to solve  

 maxw≥0  bt( yt + Gt(yt) − w) − w. 

This is solved with 

 wt(yt) = ( yt + Gt(yt) − a1
t)+,  (5) 

where13  

 a1
t = inf {a : b′t(a) ≤ −1}.  (6) 

Finally, we consider the optimal function Gt.  From the above, the ex-ante expected 
payoff for the agent and the investor before Yt is realized is given by 

 Agent:  E[ Yt + Gt(Yt) ]  ≡ µt + gt 

 Investor: E[ Yt − (Yt + Gt(Yt) − a1
t)+ + bt(min(Yt + Gt(Yt), a1

t)) ] 

Again, holding gt = E[ Gt(Yt) ] fixed, there is no change to the agent’s payoff.  Thus, the 
form of the function Gt should be chosen to maximize the investor’s expected payoff 
given the constraints that its mean is gt and it is weakly increasing (the incentive 
compatibility requirement noted previously).  We have the following result: 

 

PROPOSITION 2.  Gt(yt) = gt is optimal.  

PROOF:  Define F(z) = − (z − a1
t)+ + bt(min(z, a1

t)).  Then the problem is 

                                                                 
12 This is a standard Revelation Principle argument.  In fact, the result also follows from Proposition 1, but 
is repeated here for clarity. 
13 If bt is not strictly concave above a1

t, there will be indeterminacy in the optimal wt.  In particular, we 
could choose a1

t as any a such that b′ t(a) = −1.    Our choice of a1
t corresponds to making the payment wt as 

large as possible.  But if γ = r, for example, the agent could instead be paid the future value of the payment 
at T and payoffs would be unchanged.  When γ > r, this indeterminacy will not in general occur. 
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 maxG  E[ F(Yt + G(Yt)) ]  s.t.  E[G(Yt)] = gt, and G weakly increasing. 

Note that F is concave in z.  Thus, 

 F(Yt + G(Yt)) ≤ F(Yt + gt) + F′(Yt + gt) (G(Yt) − gt), 

where F′(z) is a super-gradient14 of F at z. Hence,  

 E[ F(Yt + G(Yt)) ]  ≤ E[ F(Yt + gt) ] + Cov(F′(Yt + gt), G(Yt) − gt) 

By concavity, F′ is decreasing in Yt, and from incentive compatibility, G is weakly 
increasing in Yt.  Hence the covariance is weakly negative and the result follows.  w  

 

Thus, the agent’s payment and consumption has the form wt(yt) = (yt + gt − a1
t)+; that is, 

the agent consumes cash flows in excess of a1
t − gt.  This is equivalent to the agent 

having a fixed “debt” obligation of a1
t − gt in period t, which is an interpretation we shall 

make explicit in the next section. 

Before proceeding further, Proposition 2 also allows us to establish that our restriction on 
saving is not binding: 

 

PROPOSITION 3.  In the optimal contract without private saving, the agent has no 
incentive to choose Kt > 0.  This contract is therefore also optimal when private 
saving is possible. 

PROOF:  From the above analysis, the agent’s continuation payoff given cash yt in period 
t is equal to yt + gt.  Thus, ∂/∂Kt (Agent’s Payoff in Period t ) = 1.  Consider the agent’s 
option to consume less and save in period s < t in order to pay more in period t.  The 
marginal payoff associated with this is  

 − e−γs + e−γt eρ(t−s) = e−γs(e(ρ−γ)(t−s) − 1) ≤ 0, 

since ρ ≤  γ.  Note that for this result to hold it is critical that Gt is not increasing.  The 
final conclusion then follows from the discussion following Proposition 1.    w  

4.2. Optimal Continuation Function 

Having shown that saving can be ignored, we now continue solving for the optimal 
mechanism by characterizing the continuation function for the period s prior to t.   

The form of the investor’s payoff in period t derived above is somewhat complicated.  To 
simplify it, we introduce the following to represent the continuation payoffs just prior to 
the transfers in period t 

 
0 1

1

1 1 1

( ) for   
( )

( ) ( ) for   
t t t

t
t t t t

b a a a a
b a

b a a a a a

 ≤ ≤
= 

− − ≥
. 

                                                                 
14 This is simply the derivative when it exists. 
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Note that b1
t is concave since bt is.  Given this representation, the expected payoff of the 

investor at the start of period t can be written  

 E[ Yt − (Yt + gt − a1
t)+ + bt(min(Yt + gt, a1

t)) ] 1( )t t t tE Y b Y g = + +  . (7) 

Define t− ≡ max{ t′ ∈ T : t′ < t}, so that t− is the period prior to t in T.  Similarly define t+ 
as the period following t, so that t+ − = t.   

Let s = t− and now consider bs.  The present value of the expected payoffs above in period 
s is given by 

 Agent: e−γ(t−s)( )t tgµ + ,  (8) 

 Investor: e−r(t−s)( )1( )t t t tE b Y g µ + +  . 

Thus, by varying gt ≥ a0
t (the lower bound derived above), we can trace out the frontier of 

available payoffs from the perspective of period s.  In particular, the lowest payoff for the 
agent is given by 

 ( )0 ( ) 0ˆ t s
s t ta e a−γ −= µ + . 

Also, by letting a = e−γ(t−s)( µt + gt ) 0ˆsa≥  and substituting in the investor’s payoff in (8), 

 ( )( ) 1 ( )ˆ ( ) ( )r t s t s
s t t t tb a e E b e a Y− − γ − = µ + + −µ  . (9) 

The above gives the continuation possibilities as of the end of period s if the project is not 

terminated.  Note that ˆ
sb  is concave since b1

t is.   
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We now consider the possibility of project termination.  If the project is terminated in 
period s, the agent receives Rs and the investor receives Ls.  Consider first the agent’s 
decision.  The agent will quit the firm if the agent’s continuation payoff is below Rs.  
Thus, the agent’s minimum continuation payoff from date s, if the investor does not 
terminate, is given by 

 ( )0ˆmax ,s sa R . 

Now consider the investor’s termination decision.  Since stochastic termination is 
contractible, the set of available continuation utilities is given by the convex hull of (Rs, 

Ls) and the payoffs ( )ˆ, ( )sa b a  in the region ( )0ˆmax ,s sa a R≥ .  The frontier of that set 

which is efficient for the investor then determines the function bs. 

Mathematically, this can be solved as follows.  Define 

 ( )0ˆmax ,

ˆ ( )
sup

s s

s s
s a a R

s

b a L
l

a R>

−=
−

.  (10) 

Then ls represents the slope of the tangent line from (Rs, Ls) to the frontier ( )ˆˆ ˆ, ( )s s sa b a .  

See the figure above.  Define aL
s to be the tangency point; that is, 

 ( ){ }0 ˆˆinf : max , , ' ( )= ≥ ≤L L
s s s s s sa a a a R b a l . (11) 

Then if a ∈ [Rs, aL
s), stochastic termination is optimal for the investor.  In that case, the 

investor terminates the project with probability 

Agent’s 
Payoff  a 

Investor’s 
Payoff  b 

( )sb a
ˆ

0ˆsa
 

sR

sL

L
sa

ˆ ( )sb a
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 ps(a) = 1 − (a − Rs)/(aL
s − Rs) = (aL

s − a)/(aL
s − Rs). (12) 

Adjusting for termination, this leads to a representation for the continuation frontier in 
period s, which we summarize below: 

 

PROPOSITION 4. (OPTIMAL CONTINUATION FUNCTION)  Given a0
t and bt 

concave, the continuation function at s = t− is given by a0
s = Rs and  

0

ˆ ( ) if
( )

( ) if

L
s s

s L
s s s s s

b a a a
b a

L l a R a a a

 ≥= 
+ − ≤ <

,    (13) 

where  

 { }1 0inf : ( ) 1t t ta a a b a′= ≥ ≤ − ,  (14) 

 
0 1

1

1 1 1

( ) for   
( )

( ) ( ) for   
t t t

t
t t t t

b a a a a
b a

b a a a a a

 ≤ ≤
= 

− − ≥
, (15) 

 ( )0 ( ) 0ˆ t s
s t ta e a−γ −= µ + ,  (16) 

 ( )( ) 1 ( )ˆ ( ) ( )r t s t s
s t t t tb a e E b e a Y− − γ − = µ + + −µ  , (17) 

 ( )0
ˆ ( )

ˆsup : max ,s s
s s s

s

b a L
l a a R

a R

 − = > −  
,  and (18) 

 ( ){ }0 ˆˆinf max , : ' ( )L L
s s s s s sa a a R b a l= ≥ ≤ . (19) 

Note finally that bs is concave. 

PROOF:  Follows from the preceding analysis.    w  

 

4.3. Renegotiating the Contract 

In the analysis above, we assumed that the agent and investor can commit to a contract 
for the life of the project.  We now consider the possibility that they cannot commit not to 
renegotiate the contract, and show its effect on the possible continuation payoffs in the 
optimal mechanism. 

Consider the continuation payoff function bt, which represents, for a given payoff of the 
agent, the highest payoff the investor can achieve just prior to the quit and termination 
decisions in period t.  Suppose that for some a% > a, bt(a% ) > bt(a); i.e., suppose (a, bt(a)) is 
Pareto inferior to ( a% , bt(a% )).  Then it seems natural to suppose that if the contract were to 
specify the continuation path associated with (a, bt(a)), the agent and investor would 
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renegotiate the contract in favor of some mutually preferable path.  If so, the continuation 
(a, bt(a)) is infeasible. 

Indeed, such renegotiation would likely be possible.  It would be difficult for the parties 
to commit not to act in their mutual self interest.  In fact, courts in the United States will 
not enforce contractual provisions against renegotiation.  This places restrictions on what 
can be achieved by an optimal contract and represents a form of contract incompleteness. 

Since there is full- information about the set of possible continuation payoffs, any 
bargaining game played in renegotiation will select some division of the surplus 
corresponding to a point on the Pareto frontier of the possible continuation payoffs.  This 
amounts to a restriction that in equilibrium the continuation paths taken are always Pareto 
efficient.  We can impose this restriction on the contract itself – the contract must only 
specify efficient continuation paths.  Such a contract is renegotiation-proof in the sense 
that at no point is there an alternative contract which both parties would mutually prefer.  
The result that renegotiation-proofness is equivalent to the contract being sequentially 
undominated (in terms of parties payoffs) was first shown by Hart and Tirole (1988).15 16  

In terms of our model, the restriction that bt be Pareto efficient is equivalent to b′t(a) ≤ 0 

for a ≥ a0
t.  Note that, from (15) and (17), if b′t ≤ 0 then so is ( )ˆ

sb a′  for 0ˆsa a≥ .  Thus, the 

effect of renegotiation will only be to limit the circumstances in which the project is 
terminated. 

Recall that in termination, the agent receives Rs and the investor receives Ls.  Thus, 
termination will be renegotiated if there exists a feasible continuation path with payoffs 

( )ˆ, ( )sa b a  that Pareto dominates (Rs, Ls).  From the definition of ls, this is equivalent to ls 

> 0.  Thus, termination will not occur if ls > 0.   

This leads to the following characterization: 

 

PROPOSITION 5. (OPTIMAL RENEGOTIATION-PROOF CONTINUATION 
FUNCTION)  Given a0

t and bt concave and weakly decreasing, the continuation 
function at s = t− is given by  

 
0

0 ˆmax( , ) if 0

if 0
s s s

s
s s

a R l
a

R l

 >
= 

≤
,  (20) 

together with (13) – (19). 

                                                                 
15 This corresponds as well to the standard notion of renegotiation-proofness (or Pareto-Perfection) for 
finite horizon repeated games, developed by Bernheim and Ray (1989). 
16 Hart and Moore (1994, 1998), Hart (1995) and Bulow and Rogoff (1989) do not use this approach.  They 
assume that one party can invoke renegotiation to a new point on the Pareto Frontier unilaterally (see, e.g., 
Hart and Moore (1998) page 20).  This is a restriction on the power of contracts, as courts will enforce the 
original contract unless both parties agree to the change.  As an example, suppose a contract leads to 
payoffs (6,4).  Suppose party 2 can threaten an action that will lead to outcomes (0,0).  These papers 
assume that this threat will provoke renegotiation to a new outcome such as (5,5).  Since the original threat 
is not credible, however, party 1 should not agree to renegotiate and instead enforce (6,4).     
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PROOF:  From the preceding discussion, if ls ≤ 0 termination is not renegotiated and there 
is no change to the characterization of bs.  On the other hand, if ls > 0 then termination is 
renegotiated.  In this case, since the agent earns at least 0ˆsa  by continuing, 

( )0 0ˆmax ,s s sa a R=  since the agent has the option to quit.  Also, (19) implies that aL
s = a0

s, 

so that from (13), ˆ( ) ( )s sb a b a= .  Note finally that bs is concave and weakly decreasing.  
w  

4.4. Initial Payoffs & Project Horizon 

Given the continuation function b0 available at the end of period 0, we can now derive the 
agent’s initial payoff as a function of his wealth Y0.  We explicitly consider both the case 
in which investors compete to lend to a monopolistic agent, and the converse.  
Intermediate cases can obviously also be considered. 

PROPOSITION 6.  Suppose investors are perfectly competit ive.  Define 

{ }* 1
0 0 0 0( ) max : ( )a Y a Y b a I Y= ≥ ≥ −   and 

d0 = min(Y0, I − b0(a1
0))  . 

Then if a∗(Y0) exists, the agent contributes d0 and earns the total payoff a∗(Y0), for 
a net gain g0 = a∗(Y0) − Y0. 

If the investor is a monopolist, and agents are identical and perfectly competitive, 
then define 

a∗∗  = argmaxa b0(a).   

The investor proceeds and earns b0(a∗∗) + min(a∗∗ , Y0) − I  if this payoff is 
positive.  The agent earns a payoff of max(a∗∗, Y0), or a net gain g0 = (a∗∗ − Y0)+.  
Note that if contracts can be renegotiated, a∗∗  = a0

0. 

PROOF:  See the Appendix. 

  

In most of our applications, it is most natural to consider the first case above, in which 
the agent seeks financing from competitive investors.  Note that in this case, if I < b0(a1

0), 
then d0 < 0 and the agent can pull cash out of the firm at date 0.  Otherwise, the agent 
must contribute to the investment I. 

The second case in which the investor is a monopolist becomes relevant if the assets 
themselves are the unique resource.  Initially, the agent owns the resource and seeks 
outside financing from investors.  However, if the project is terminated and the investor 
takes control of the assets, in liquidation the investor will seek a new agent to run the 
firm.  Thus, the liquidation payoff will be determined as in the second case.  We discuss 
this further in Section 6. 
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One source of inefficiency introduced by the incentive problems is that the project may 
not attract initial financing.  This occurs if b0(a∗∗) < I − Y0.  Another inefficiency may be 
that the project is terminated prior to the first-best horizon T.  Below we consider the 
project horizon under the optimal contract. 

 

PROPOSITION 7.  Let  T∗  = min {t : lt ≤ −1}.  Then T∗  ≤ T,  and under the optimal 
contract the project is terminated with probability 1 in period T∗ .   When γ = r, T∗ 
= T, and as γ → ∞, T∗  → 0.     

PROOF:  See the Appendix. 

 

 

5. Interpretation and Implementation 
The optimal mechanism defined above has the following features.  The agent’s 
continuation payoff in period t is given by Yt + gt for some constant gt.  If Yt + gt exceeds 
the threshold a1

t then the agent consumes the excess, Yt + gt − a1
t.  If Yt + gt falls below 

the threshold aL
t, then the agent faces a probability of termination.  In this section we 

describe how the optimal mechanism can be implemented using standard contracts. 

First we define two types of contracts: 

 

LONG TERM DEBT:  A long term debt contract is characterized by a sequence of 
fixed payments xt .  If a payment is not made, the project is terminated. 

 

CREDIT LINE:  A credit line is characterized by an interest rate r̂  and a credit 
limit cL

t ≥ 0.  No payments need be made on the credit line unless the credit limit 
is exceeded.  If the debt exceeds the limit by zt > 0 at the end of period t, then the 
project is terminated with probability ft(zt).  Otherwise, the excess debt z is 
forgiven. 

 

We have the following characterization of the optimal contract: 

 

PROPOSITION 8.  The optimal contract is implemented by a combination of a 
long-term debt contract and a credit line. For 0 < t ≤ T∗  and s = t− (the period prior 
to t), the long-term debt contract is defined by  

 xt = µt + a1
t − eγ(t−s)a1

s . 

The agent’s initial debt obligation at date 0 is equal to x0 = a1
0 − g0, and in the 

final period, xT∗  = 0. 
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The credit line interest rate is r̂ = γ , and the credit limit for t < T∗  is given by 

 cL
t = a1

t − aL
t. 

If the credit limit is exceeded by zt in period t, the project is terminated with 
probability ft(zt) = zt/(aL

t − Rt).  Also, cL
T∗  = cL

T∗ − = 0. 

PROOF:  First we show that the credit limit cL
t ≥ 0.  Note that from the definition of T∗ , 

for t < T∗, lt > −1 and thus aL
t ≤ a1

t.  For t = T∗, since termination occurs with probability 
1, a1

T∗  = aL
T
∗  = RT

∗  and thus cL
T∗  = 0.  Note also that if t = T∗ −, then since b′T∗  ≤ −1, 

ˆ 1′ ≤ −tb  and therefore  

 1 0ˆmax( , )L
t t t ta a a R= = ( )*

* *

( )max ( ),T t
tT T

e R R−γ −= µ +   for t = T∗ −.  (21) 

Hence, *
L

T
c −  = 0.  Also, (21) implies xT∗  = 0 as we next show. 

First, suppose 
*

* *
( ) ( )T t

t T T
R e R−γ −> µ + .  Since a0

T
∗  = a1

T
∗ ,  

* *

* *
0 ( ) 0 ( )ˆ r T t r T t
t tT T

b e b e L L− − − −= = ≤ , 

where we define 0 0ˆ ˆ ˆ( )t t tb b a=  and b0
t = bt(a0

t). 

Thus, 0 0ˆˆ( , ) ( , )t t t tR L a b≥  which implies lt < −1, contradicting the definition of T∗ .  Hence, 
*

* *
( ) ( )T t

t T T
R e R−γ −≤ µ +  and so 

*

* *
1 ( ) ( )T t
t T T

a e R−γ −= µ + .  Thus, xT* = 0. 

Next note that the termination probability is well-defined; that is, that the debt never 
exceeds the credit limit by more than aL

t − Rt.  To see this, suppose the agent concludes 
the previous period s = t− with maximum debt Ds = cL

s.  Then the debt obligation in 
period t is  

 eγ(t−s) Ds + xt  =  a1
t + µt − eγ(t−s) aL

s, 

which exceeds the period t limit cL
t by zt = aL

t + µt − eγ(t−s) aL
s.  Since 

( )0 ( ) 0ˆL t s
s s t ta a e a−γ −≥ = µ + , we have  

 zt ≤ aL
t − a0

t ≤ aL
t − Rt,  (22) 

where the last inequality follows since a0
t ≥ Rt. 

Next we show that the consumption and termination profiles coincide for the debt 
contract above and the optimal contract σ.  Suppose the agent begins period s with 
outstanding debt Ds on the credit line.  Given a required coupon payment of xs, the total 
debt is Ds + xs.  We show that this corresponds to gs = a1

s − Ds − xs.  

Given cash flow realization ys in period s, the agent can consume  

(ys − Ds − xs)+ = (ys + gs − a1
s)+  



 21 

in period s after paying off all debt, which is identical to the payment under σ as in (5) 
above.  The agent then earns 

 as = min(ys + gs, a1
s) 

in continuation under σ.  If as < aL
s ≤ a1

s, then as = ys + gs and the optimal contract σ 
terminates with probability 

 ps = (aL
s − as)/(aL

s − Rs) = (aL
s − (ys + gs))/(aL

s − Rs) 

= (aL
s − (ys + a1

s − Ds − xs))/(aL
s − Rs) = (Ds + xs − ys − cL

s)/(aL
s − Rs) 

= zs/(aL
s − Rs). 

This corresponds with the termination probability specified by the credit line contract.  
Note also that if there is renegotiation and ls > 0, then aL

s = a0
s ≤ as and no termination 

occurs under σ; equivalently, from (22), zs ≤ 0 and the credit line is not exceeded. 

If as ≥ aL
s, there is also no termination under the optimal contract.  In that case, this 

implies ys + gs ≥ aL
s, or 

 0 ≥ aL
s − (ys + gs) = Ds + xs − ys − cL

s = zs , 

and again the credit limit is not exceeded. 

Absent termination, the optimal contract σ then continues by giving the agent the 
continuation payoff max(as, aL

s), which from (8) implies 

 max(as, aL
s) = e−γ(t−s)(µt + gt), 

so that the agent enters the next period with 

 gt = eγ(t−s) max(min(ys + gs, a1
s), aL

s) − µt. 

On the other hand, under the debt contract above, the agent begins next period with debt 

 Dt = eγ(t−s) min(cL
s, (Ds + xs − ys)+) = eγ(t−s) min(cL

s, (a1
s − gs − ys)+). 

Thus, 

 a1
t − Dt − xt  = a1

t − Dt − (µt + a1
t − eγ(t−s)a1

s)  

= eγ(t−s)(a1
s − min(cL

s, (a1
s − gs − ys)+)) − µt. 

But since 

 a1
s − min(cL

s, (a1
s − gs − ys)+) = max(aL

s, min(a1
s, ys + gs)), 

then gt = a1
t − Dt − xt, and we are done.  Finally, for t = 0, this yields x0 = a1

0 − g0.   w 

 

To understand better the role of each type of contract, we consider some special cases.  
First, we show that the long-term debt contract is designed to accommodate the agent’s 
impatience given γ > r.  By committing to future payments, the agent can pay less now, 
or even take cash out of the firm.  To see this, we show that when γ =  r, the long-term 
debt contract is unnecessary.   

First define the following, 
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 Vs = ∑s<t≤T*  e−γ(t−s) µt   +  e−γ(T*−s) RT*,  (23) 

the remaining value of the project if consumed exclusively by the agent. 

 

PROPOSITION 9.   Suppose γ = r.  Then T∗  = T and xt = 0 for all t ≤ T.  Also, 

1
s sa V= ,   and  1 ( )( ) − −= r T s

s s Tb a e L . 

PROOF:  See the Appendix. 

 

Our next result establishes an upper bound on the total indebtedness of the agent: 

 

PROPOSITION 10.   The agent’s total indebtedness as of date s is bounded above 
as follows: 

 ( )*

( ) ( )L t s L s s
s t s s s ss t T

c e x V a e V R
+

+ +
−γ − −γ −

< ≤
+ = − ≤ −∑ . 

PROOF:  See the Appendix. 

  

In general, we expect that the long-term debt contract will specify a payment xt ≥ 0.  In 
some circumstances, however, it is possible that xt < 0; that is, the agent receives a 
payment rather than making one.  As the proposition below shows, this only happens if 
Rt− is very large.  Then xt < 0 is necessary to induce the agent to continue rather than quit 
the firm.17 

 

PROPOSITION 11.  Let s = t−.  If Rs ≤ e−γ(t−s)(µt + a1
t), then xt ≥ 0.  A sufficient 

condition for this is 

Rs ≤ e− γ(t−s)(µt + Rt).    (24) 

Alternatively, suppose Rs > e− γ(t−s)(µt + a1
t), then 

 xt < 0,   xs ≤ 0,   and   cL
s = cL

s- = 0. 

Finally, suppose Rt ≤ Vt for t < T∗ .  Then, for s < T∗ , 

 ∑s<t≤T*  e−γ(t−s) xt ≥ 0.  

PROOF:  See the Appendix. 

  

                                                                 
17 This is analogous to the vesting of benefits in standard employment contracts. 
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The last result of the proposition can be interpreted as follows.  The condition, Rt ≤ Vt, is 
that the agent would not choose to terminate the project early if he could consume all of 
the cash flows.  That is, the agent and the investor do not disagree about the optimal 
maturity of the project.  In that case, the remaining long-term debt payments are a net 
liability for the agent.  Thus, any xt < 0 can be interpreted as the proceeds of a new debt 
issue. 

In Proposition 9 above we established that the role of the long-term debt contract is to 
allow the agent to draw cash from the firm given γ > r.  Next we show that the role of the 
credit line is to allow for flexibility given the uncertainty of the cash flows.  We show this 
by demonstrating that as the cash flows become certain, the credit line disappears. 

 

PROPOSITION 12.   Suppose that there is no renegotiation, or that termination is 
efficient, and that for s = t−, µs ≥ e−γ(t−s) µt.  Then as Pr(Yt ≥ µt) → 1, cL

t = 0.  Also, 

 ( )0ˆt t tx a R
+

≤ − , 

with equality if (24) holds. 

PROOF:  See the Appendix. 

  

 

6. Termination Payoffs 
In this section we discuss a number of possible interpretations for the liquidation payoffs 
(Rt, Lt) and their implications. 

One obvious interpretation for Lt is as an exogenous liquidation value based on the value 
of the assets in some alternative use.  Suppose there is an alternative use which generates 
observable cash flows with expected value νt < µt each period.  Then it is natural to 
define 

 Ls = ∑t>s e−r(t−s) νt .  (25) 

That is, when the project is terminated, the assets are sold for use in the alternative 
technology.  The agent is dismissed, and earns a reservation utility which it is convenient 
to assume is constant and normalized to zero; i.e, Rs = 0.   

Another important interpretation of this formulation is when the project requires ongoing 
investment.  That is, suppose that an initial investment ν0 is required to start the firm, and 
that each period, an investment of νt is required to keep the firm in operation.  Then,   

 I = ν0 + L0  (26) 

is the initial capital the investor must set aside to finance the future operations.  In any 
period s, however, the investor can “pull the plug” and thereby recover Ls. 
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This formulation can also be equivalently interpreted as follows.  Suppose that there is a 
monitoring technology that can be introduced to monitor the cash flows generated by the 
firm.  Monitoring is costly, and reduces the cash flows each period by µt − νt.  Once cash 
flows are monitored, the agent is paid the reservation wage, as there is no longer an 
incentive problem. 

In the above cases, the liquidation value is exogenous.  An example of an endogenous 
liquidation value is given by the following.  Suppose that upon termination and seizure of 
the assets, the investor can hire an equivalent, new agent to replace the old.  The old 
agent is dismissed, and receives the reservation utility of 0.   

Assume the pool of available new agents is competitive.  Then when hiring the new 
agent, the investor can offer the agent the contract that yields the highest possible 
continuation utility for the investor.  That is, 

 { }0ˆ ˆmax ( ) :s s sL b a a a= ≥ .18  (27) 

Note that under this specification, termination is always renegotiation-proof.  This leads 
to the following simplification of the characterization of the optimal mechanism in 
Section 4.   

 

PROPOSITION 13.  Suppose Ls is given by (27) for all s.  Then the optimal contract 
is renegotiation-proof and is given by  

 0 0sa = ,  0ˆL
s sa a= ,  0ˆ ˆ( )s s sL b a=    and   ls = 0,     

together with (13) – (17). 

PROOF:  See the Appendix. 

 

Obvious variations on the above can be considered.  For example, each period the 
investor may have the option of either monitoring or firing and replacing the agent.  In 
that case, 

 ( )0 ( )ˆ ˆmax ( ), ( )r t s
s s s t tL b a e L− −= ν + ,  (28) 

where t = s+. 

Another variation is to suppose that there are costs associated with hiring a new agent, 
and to allow for the possibility that the new agent may have capital to contribute to the 
project.  Let ∆a

t and ∆b
t represent the switching cost of the new agent and the investor, 

respectively, and let kt be the capital of the new agent.  Then 

 ,
ˆmax ( )   s.t.   ,b a

s a k s s s sL b a k a k k k= + − ∆ ≥ + ∆ ≤ , (29) 

                                                                 
18 Note that here we use the continuation schedule ˆ

sb  rather than bs since the new agent is hired after the 

termination decision is made. 
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where the constraint a ≥ k + ∆a
s is required for the new agent to be willing to join and 

contribute capital k.   

In the case in which there are no switching costs and new agents have sufficient capital, 
there is an obvious solution – simply rent the assets to a new agent each period.  This is 
formalized below: 

 

PROPOSITION 14.  Suppose Ls is given by (29), ∆a
s = ∆b

s = 0, and ( )t s
s tk e−γ −≥ µ  

for all s, t = s+.  Then the first best is obtained by terminating the project each 
period, and hiring a new agent in period s who contributes ( )t s

te−γ − µ  and 

consumes Yt.  This is equivalent to setting cL
s = 0 and xs = e−γ(t−s).  If ks is 

inadequate, or if there are positive switching costs, the first best is not obtained 
unless γ = r and I = 0. 

PROOF:  See the Appendix. 

 

Now we turn our attention to cases in which Rs is non-trivial.  For example, suppose that 
the agent has some unique talent which can be applied in another activity in which cash 
flows are observable.  This would lead to the exogenous specification: 

 Ls = ∑t>s e−r(t−s) νt , 

 Rs = ∑t>s e−γ(t−s) ηt .  (30) 

Generally, we would suppose ηt ≤ µt (the alternative activities is the second best use of 
the specific talents), so that (24) holds.  Indeed, we would also expect ηt + νt ≤ µt. 

In the special case in which production in termination is efficient (i.e., when ηt + νt ≥ µt), 
we can characterize completely the solution.  Note that termination is not efficient in this 
case if γ > r.  Nevertheless, as we now show, the optimal contract can do no better. 

 

PROPOSITION 15.  Suppose (30) holds and ηt + νt ≥ µt for all t.  Then it is optimal 
to terminate the project each period.  Thus, the agent’s initial borrowing capacity 
is L0.  In fact a necessary and sufficient condition for this result is 

ηt + νt ≥ µt − (e(γ−r)(t−s)−1) νt, 

where s = t−.  

PROOF:  See the Appendix. 

 

As an immediate application of Proposition 15, consider the model of sovereign debt of 
Bulow and Rogoff (1989).  In that model, a consortium of banks (the investor) lend to an 
LDC (the agent).  If the LDC defaults, it is possible for the banks to monitor the LDC’s 
exports Yt and seize up to some fraction β  of them.  To prevent seizure, the LDC is 
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willing to pay β  Yt each period to the banks.  Thus, seizure represents a type of 
“monitoring” technology in which there is an upper bound on the amount the agent can 
be forced to repay.  The natural question then is whether a contract can be used to achieve 
superior results than continuous monitoring with the threat of seizure.  Proposition 15 
shows that since monitoring/seizure can be implemented without destroying cash flows, 
there is no superior contract.  In fact, the result holds as long as the monitoring/seizure 
costs are small enough relative to β  and the relative impatience of the LDC.  If these costs 
are large, then an optimal contract can be used to save monitoring costs. 

Another example in which Rs is non-trivial is when it is the agent’s human capital that is 
the scarce resource, and the phys ical assets are easily replaceable.  In this case,  Ls 
corresponds to the liquidation/replacement value of the assets.  If the project is 
terminated, the agent looses control of the existing assets, but can start a new firm and 
continue the project with new assets.  This implies that, for t = s+, 

 { } { }0 ( )ˆˆmax : ( ) t s
s s s s tR a a b a L e R−γ −= ≥ ≥ U . (31) 

That is, the agent earns the highest possible payoff consistent with being able to purchase 
new assets by borrowing Ls from a new investor.  If it would not be possible for the agent 
to finance a new project this period, the agent’s must wait until next period to attempt 
financing. 

 

PROPOSITION 16.  Suppose Rs is given by (31) for all s.  Then the optimal 
contract is renegotiation-proof. 

PROOF:  See the Appendix. 

 

This model is closely related to the model of Hart (1995; Chapter 5).  There, however, 
cash flows are deterministic so that Yt = µt. The key emphasis of this model is the 
“inalienability of human capital,” or the agent’s right to quit.  Here we model that by 
assuming the agent can quit and start a new firm if new capital can be raised to purchase 
equivalent assets for price Ls.

19  The difference between our model and Hart (1995) is the 
following.  Since we assume that asset purchases are observable, if the agent quits and 
starts a new firm in period s, the entire amount Ls must be financed externally.  Any 
funds contributed by the agent could be seized by the creditors of the initial firm.  Hart 
(1995) instead has a specification which is equivalent to assuming that the agent can 
contribute capital to start the new firm. 

This is best illustrated by an example.  Suppose Yt = µt = 10, νt = 6, T = 6, r = 0 and γ is 
very close to zero, but positive.20  Since there is no uncertainty, from Proposition 12 the 
credit line is zero.  The chart below calculates the optimal long-term debt contract xt, as 
well as the payments from Hart (1995). 

 
                                                                 
19 In Hart (1995), there is no such outside option, but instead the agent is assumed to have sufficient 
bargaining power.  The end result is the same. 
20 This assumption on γ selects Hart’s “slowest” repayment policy. 
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t 0 1 2 3 4 5 

Yt  10 10 10 10 10 

Lt 30 24 18 12 6 0 

xt  10 0 8 10 0 

H95  6 6 6 6 0 

 

To fund the project at date 0, the agent must invest 30 to buy the initial assets.  Under our 
solution, the agent can borrow 28 and so must contribute 2.  Under Hart (1995), the 
entrepreneur can borrow at most 24 and so must contribute 6. 

To understand the difference, consider the payment in period 4.  Here, x4 = 10 since the 
agent is threatened with losing the project in period 5, which is worth 10.  The agent 
would prefer to pay 6 to buy new assets, but these assets will be seized by the initial 
creditors.  The agent cannot externally finance the new assets for 6, since the agent 
cannot commit to repay any loan in period 5.  This differs from Hart (1995), since there 
the agent will never pay more than the current value of the assets. 

In period 3, x3 = 8.  Note that the threat of termination could induce the agent to pay up to 
10.  However, x3 + x4 cannot exceed 18 since otherwise at the end of period 2 the agent 
would quit and start a new firm by raising 18 and promising 8+10 to the new creditor.  
This also implies x2 = 0, since if x2 > 0 the agent will again default, consume x2 and start a 
new firm.  This cycle then repeats as more periods are added to the model. 

The above example highlights the distinction between our model and Hart (1995).  Since 
creditors can seize new assets, our contracts leads to superior outcomes.  Of course, our 
model also generalizes to the case of uncertain cash flows and different discount rates. 

 

Another variation of our model subsumes the model of Gromb (1999).  Gromb considers 
an environment in which participation of both the investor and the agent are necessary 
(neither party has an outside option).  There is a sequence of available positive NPV 
projects.  The project in period t requires investment νt and produces cash flows Yt.  
(Gromb restricts this further by assuming stationarity and Yt binary.)  Each period a 
decision must be made whether to finance the current project, or whether to “mothball” 
and remain idle. 

Absent renegotiation, Gromb’s model coincides with that discussed in (26) above, since 
the investor can commit to permanent liquidation and refuse to finance any future 
projects (which Gromb shows is optimal). 

With renegotiation, this environment can be modeled with Ls as in (28), and  
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0 0 ( )

( )

ˆˆ ˆif   ( ) ( )

otherwise

r t s
s s s t t

s t s
t

a b a e L
R

e R

− −

−γ −

 > ν += 


, 

that is, the investor gets the highest possible continuation payoff with the agent 
employed, or mothballs and recovers νt.  Correspondingly, the agent only earns rents 
when the project is not mothballed. 

  

7. Asset Substitution and Agency 

The previous section investigated observable investment decisions.  In this section 
consider briefly some of the consequences of unobserved investment decisions by the 
agent.   

First we consider a pure form of the asset substitution problem; namely, that the agent 
can influence the riskiness of future cash flows, but not their mean.  Specifically, suppose 
on date s, the agent can choose a parameter φs such that for t > s, 

 E[ Yt | φs ] = E[ Yt ] = µt.  (32) 

Of course, other moments of the distribution of the cash flows are potentially affected by 
φs, so that for example Var( Yt | φs ) need not be constant in φs. 

Generally speaking, most models of debt contracts have the consequence that the agent 
has an incentive to increase the riskiness of cash flows (Jensen and Meckling (1976)).  
This results in a transfer of wealth from debt holders to the agent as the residual claimant 
or equity holder.  This problem is only avoided if debt is riskless.  Since debt is risky in 
our model, one might expect to find this same incentive for asset substitution.  
Interestingly, this is not the case as shown below. 

 

PROPOSITION 17.  Under the optimal contract of Section 4, the agent is indifferent 
with respect to the choice of the pure asset substitution parameter φs satisfying 
(32).  Thus, the agent can be assumed to choose φs optimally for the investor, 
which implies the elimination of any mean-preserving spreads.  Thus, the contract 
of Section 4 remains optimal. 

PROOF:  See the Appendix. 

 

The intuition for the above result is the following.  Increasing risk generally benefits 
equity holders since they participate in the gains, but only partially in the losses.  In our 
model, incentive compatibility requires that the agent pay for losses through forfeiture of 
control of the assets.  Thus there is no gain for the agent from increasing risk.  There is a 
loss for the debt holders, however, since generally there may be dead weight costs 
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associated with seizing the assets and terminating the project (i.e., the full information 
value of the project exceeds Rt + Lt).

21 

 

Consider next unobserved effort provision by the agent.  Suppose the agent can spend 
effort es ∈ ξs in period s, where es is denominated in consumption-equivalent units and 
we assume 0 ∈ ξs.  Suppose that this effort affects only output Ys, but not future output.  
Since the agent’s payoff under the contract in period s is then 

 E[ Ys | es ] + gs − es, 

the agent will choose e∗
s to solve 

 [ ]max |
se s sE Y e e e∈ξ = − .  (33) 

Note that this effort choice is identical to optimal choice in a first-best world with 
complete contracts and symmetric information.  However, though effort is first best under 
the contract derived in section 4, the contract of section 4 is no longer optimal.  To see 
why, note that the investor’s payoff is also increasing in the project’s output.  This 
externality is not included in problem (33).  That is, in this second best world, the optimal 
effort level generally exceeds the first best level.22  Intuitively, high output allows the 
parties to avoid inefficient termination (which is not a problem in a first best world).  An 
optimal contract will induce higher effort by rewarding high output. 23 

There is one special case in which the contract of this paper is optimal even when the 
agent takes an unobserved effort decision.  This occurs if the first best level of effort is 
already the highest level of effort possible.  While such a corner solution is unlikely in 
the general case, it is common in models with binary (high/low) effort choices. 

 

PROPOSITION 18.  Suppose an increase in es increases Ys in the sense of First 
Order Stochastic Dominance.  If the solution e∗

s to (33) is such that e∗
s = max{ e 

∈ ξs }, then the contract of Section 4 remains optimal. 

PROOF: See the Appendix. 

 

The above analysis considered contemporaneous effort; i.e., effort that affects current 
output.  If effort also affects future output, then the contract of section 4 no longer 
induces the first best effort level.  There are two reasons for this.  First, the agent 
                                                                 
21 This same argument holds in other models in which incentives are provided strictly through non-
pecuniary penalties, as introduced by Diamond (1984). 
22 To be precise, it will always exceed the first best level if effort increases output in the sense of First 
Order Stochastic Dominance, and if the first best effort is interior.  On the other hand, if effort also 
increases risk, then it is possible that optimal effort is below the first best level. 
23 In terms of the notation of section 4, an optimal contract in the presence of moral hazard will use a 
function Gs(Ys) that is increasing rather than constant to induce effort that exceeds the first best.  Note that 
rewarding the agent in this way is costly due to the concavity of the investor’s continuation function b.  
Thus, G must be chosen to balance incentives and risk.  We plan to explore this problem further in future 
work.   
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discounts future cash flows at rate γ > r.  Second, there is a positive probability in general 
that the agent will be terminated prior to receiving the benefit of the effort. 

 

 

8. Concluding Remarks 
We have assumed that the project is run at a fixed scale. In DeMarzo and Fishman (2001) 
we extend the analysis to cover more general agency problems and we allow the scale to 
be determined as part of the optimal contract. A key result here is that even though the 
profitability of current investment is independent of the profitability of past investment, 
the optimal contract entails more current investment if the past business cash flows are 
high. Like the threat of a transfer of control, the promise of funding for new investment 
can be used to induce the agent to pay the investor. This result matches the empirical 
finding that, after controlling for  investment opportunities, firms’ investment decisions 
are positively correlated with cash flow; see Fazzari, Hubbard and Petersen (1988). 
Moreover our model also matches their finding that the correlation between cash flow 
and investment is higher for firms that are not paying dividends. We also show that 
investment will be positively serially correlated over time. 

 

To be completed. 

 

9. Appendix 

PROOF OF PROPOSITION 1:  Let (yt, ωt) be a cash flow and termination history.  Then 
given the agent’s strategy (d, m), we can infer the history ht = (ds, ms, ωs)s≤t that would 
occur given yt.  Let this mapping be given by H(yt, ωt) = ht.  If for some s, ys is not in the 
support of Ys, then H(yt, ωt) is not well-defined by the above.  In that case, define H(yt, 
ωt) by computing ht as though ys = 0, which is in the support by assumption. 

Define the contract σ∗  as follows.  Given the history ht, let dt be the payments made by 
the agent.  Then let p∗

t(ht) = pt(H(dt, ωt)); that is, the probability of termination is the 
same as under the original contract if yt = dt.  Also w∗

t(ht) = ct(dt, ωt); i.e., the 
consumption he would have under strategy α and contract σ if yt = dt. 

Clearly, under that strategy, A∗(α | σ) = A∗(α∗ | σ∗).  We now argue that α∗ above is an 
optimal strategy given σ∗  for the agent.  To see that it is optimal, suppose that given σ∗ 
the agent plays some feasible strategy α′ = (d′, m′, c′, q′) instead.  Let  

e′t(yt, ωt) = c′t(yt, ωt) − w∗
t(d′(yt, ωt), m′(yt, ωt), ωt) = c′t(yt, ωt) − ct(d′(yt, ωt), ωt),  

the agent’s consumption in excess of his payment from the investor after any history.  
The net savings of the agent in period t are thus yt − d′t(yt, ωt) − e′t(yt, ωt).  We now show 
that there is an equivalent feasible deviation under σ. 
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Let y′t = d′(yt, ωt) and define the strategy α′′ = (d′′, m′′, c′′, q′) under contract σ, with 
d′′t(yt, ωt) = dt(y′t, ωt), m′′t(yt, ωt) = mt( y′t, ωt), and c′′t(yt, ωt) = ct( y′t, ωt) + e′t(yt, ωt). That 
is, the agent behaves as though yt = d′(yt, ωt), and also consumes the excess amount e′t . 
Clearly, A∗(α′ | σ∗) = A∗(α′′ | σ). 

To see that (d′′, m′′, c′′) is feasible under σ, imagine the agent maintains two private 
accounts.  The agent deposits Yt = yt in account 1, and then transfers d′t(yt, ωt) = y′t from 
account 1 to account 2. Then he pays dt(y′t, ωt) from account 2 to the investor.  The agent 
then receives wt(d(y′t, ωt), m(y′t, ωt), ωt) into account 2.  Finally, the agent consumes 
ct(y′t, ωt) from account 2 and e′t(yt, ωt) from account 1. The net cash flows to each 
account in period t are thus: 

 Account 1: yt − d′t(yt, ωt) −  e′t(yt, ωt)  

 Account 2: y′t −  dt(y′t, ωt) + wt(d(y′t, ωt), m(y′t, ωt), ωt) −  ct(y′t, ωt)  

Feasibility of α′ under σ∗  implies that the balance in account 1 does not fall below zero.  
The balance in account 2 does not fall below zero by feasibility of α under σ given 
realization y′t.  

Thus, by optimality of α under σ, we have 

 A∗(α′ | σ∗) = A∗(α′′ | σ) ≤ A∗(α | σ) = A∗(α∗ | σ∗). 

Finally, we need to show that B∗(α | σ) ≤ B∗(α∗ | σ∗).  To see this, note that for any 
contract and strategy of the agent, the feasibility constraints plus the fact that ρ ≤ r 
implies that 

B∗  ≤  − I + E[ ∑t≥0 e−rt (Yt − ct)+ e−rτ Lτ ]. 

(If ρ = r this holds with equality.)  Since this holds with equality under the new contract, 
and the liquidation policy and consumption is unchanged, the result follows.   w 

 

PROOF OF PROPOSITION 6:  First suppose investors are competitive.  If the agent 
contributes d, the investor must receive at least I − d in continuation.  Thus, the agent’s 
continuation payoff a satisfies b0(a) ≥ I − d.  Since investors are competitive, they will 
offer max{a : b0(a) ≥ I − d}.  This is increasing in d as long as d ≤ I − b0(a1

0).  Thus, the 
agent will contribute d0.  Given this, the agent’s payoff is max{a : b0(a) ≥ I − d0}, and the 
agent only earns a profit if this exceeds d0.  Thus, the agent’s payoff is  

 max{a≥d0 : b0(a) ≥ I − d0} + Y0 − d0. 

Since d0 = Y0 is equivalent to a ≤ a1
0, this is equivalent to a∗(Y0). 

Next suppose the investor is a monopolist.  Then he will choose the continuation with the 
highest payoff for the investor, which implies that the agent receives a∗∗ .  Thus, the agent 
will be willing to pay up to a∗∗  to participate.  If there is renegotiation, b′0 ≤ 0, so that a∗∗ 
= a0

0. w 
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PROOF OF PROPOSITION 7:  From (2), ˆ ( )T T Ta b a L R+ ≤ + .  Thus, lT ≤ −1 and T∗  ≤ T.  
Recall that the agent’s continuation payoff at T∗  is min(yT∗  + gT∗ , a1

T∗).  Since a1
T∗  = RT∗  = 

a0
T∗ ≤ gT∗, this continuation payoff is RT∗ . Thus from (12), pT∗ = 1, and termination by T∗ 

occurs under the optimal contract σ. 

As γ → ∞, the agent’s continuation payoff from any path goes to zero.  Hence, the agent 
will consume all cash immediately, and cannot be induced to pay anything to the 
investor.  The investor will therefore choose to terminate immediately (not start the 
project) and receive L0. 

If γ = r, then b′T = −1.  Similarly, for s < T, ˆ 1′≥ −sb  and thus b′s ≥ −1.  This implies that bt 

≡ b1
t for all t. 

To show T∗  = T, first define the following, 

 Vs = ∑s<t≤T  e−γ(t−s) µt   +  e−γ(T−s) RT . 

We now show that a1
s = Vs by induction.  Note that a1

T = a0
T = RT = VT.  Thus suppose a1

t 
= Vt for t = s+.  Then 

 Vs = e−r(t−s)(µt + a1
t). 

Hence, from the definition of a1
t, ( ) ( )1ˆ 1s s t t tb V E b a Y′  ′= + = −   and, since 0 is in the 

support of Yt, ( )ˆ 1sb a′ > −  for sa V< .  Thus, a1
s = Vs as long as Vs ≥ aL

s.  To see this holds, 

first note that  

 ( )( ) ( )( ) 1 ( ) 1ˆ ( ) r t s r t s
s s t t t t t tb V e E b a Y e b a− − − − = µ + + =  . 

Iterating the above and using the fact that bT(a1
T) = bT(RT) = LT, we have 

 ( )ˆ ( ) r T s
s s Tb V e L− −= .  (34) 

Next, from the definition of Vs and T, 

 ( )( ) ( )ˆ ( ) r t s r T s
s s s t T T s ss t T

V b V e e R L R L− − − −
< ≤

+ = µ + + > +∑ . 

This implies that ls > −1 and that, from (1),  

 ( )ˆ ( ) r T s
s s s s s s T s sR V b V L V e L L V− −< + − = + − ≤ . 

Thus,  

 a1
s = Vs > aL

s ≥ Rs,   (35) 

verifying the induction hypothesis. 

Since ls > −1, we have shown that T∗  = T.      w 
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PROOF OF PROPOSITION 9:  This follows from the case γ = r in Proposition 7.  For a1
s 

and bs(a1
s), see (34) and (35).  Finally, a1

s = Vs implies  xt = µt + a1
t − er(t−s) a1

s = 0.  w 

 

PROOF OF PROPOSITION 10:  Note that from the definition of xt and the fact that a1
T∗  = 

RT∗ , 

 ∑s<t≤T*  e−γ(t−s) xt = Vs − a1
s.  (36) 

Using the definition of cL
s then gives the first result.  Since  

 ( )0 ( ) 0ˆL t s
s s t ta a e a−γ −≥ = µ + , 

where t = s+, and a0
t ≥ Rt,  

 Vs − aL
s ≤ Vs − e−γ(t−s)(µt + Rt) = e−γ(t−s)(Vt − Rt). 

 w 

 

PROOF OF PROPOSITION 11:  Recall that  

( )( ) ( )ˆ '( ) max( '( ), 1)r t s t s
s t t tb a e E b e a Yγ − − γ − = + − µ −  , 

Since γ ≥ r, Yt ≥ 0, and b′t is decreasing, ( )ˆ ' 1≤ −sb a  if eγ(t−s)a − µt ≥ a1
t.  Thus, since 

ˆ' '≤s sb b , b′s(a) ≤ −1 if a ≥ e−γ(t−s)(a1
t + µt).  Thus, if Rs ≤ e−γ(t−s)(a1

t + µt), then a1
s ≤  

e−γ(t−s)(a1
t + µt)  and xt ≥ 0.  The sufficient condition follows immediately since a1

t ≥ Rt.   

Suppose instead that Rs > e−γ(t−s)(a1
t + µt).��  Then, from the definition of T∗ , liquidation is 

not efficient: ˆ ( )s s sb R L> .  Hence,  

 a1
s = aL

s = a0
s = Rs.   (37) 

Then xt < 0 and cL
s = 0 follow immediately.   

Note that  

 ( ) ( )1 0 ( ) 0 ( ) 1ˆ r s s r s s
s s s ss s

a a e a e a
− −

− −
− − − −≥ = µ + = µ + .  

Thus, xs ≤ 0. Also, this implies  

 ( )1 0ˆmax ,L

s s s s
a a a R− − − −= = , 

so that cL
s− = 0. 

Now we prove the last result.  From (36), we need to show that a1
s ≤ Vs.  This holds for 

T∗ ; suppose it holds for t ≤ T∗ .  Then, by the same arguments as above, 

Rs ≤ a1
s ≤ e−γ(t−s)(a1

t + µt) ≤  e−γ(t−s)(Vt + µt) = Vs. 

 w 
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PROOF OF PROPOSITION 12:  Note that cL
T∗  = 0 immediately. We now show that for t < 

T∗ , 

 1 0ˆmax( , )L
t t t ta a a R= =  and cL

t = 0. 

The case t = T∗ − follows from (21).  We show it holds for s < t by induction. 

Suppose for now that Yt = µt.  Recall that  

 ( )0 ( ) 0ˆ t s
s t ta e a−γ −= µ + . 

Thus, 

 ( )0 ( )( ) ( ) 0ˆ ˆ ˆ( ) max ( ), 1r t s t s
s s t s t tb a e E b e a Yγ − − γ − ′ ′= + − µ −   

( )( )( ) 0max ( ), 1r t s
t t te b aγ − − ′= µ + − . 

This yields the intermediate result 

 µt + a0
t ≥ a1

t  implies  0ˆ ˆ( ) 1s sb a′ ≤ − .  (38) 

Suppose 0ˆ ˆ( ) 1s sb a′ ≤ − .  Then since lt > −1,  

 1 0ˆmax( , )L
s s s sa a a R= =  and cL

s = 0. 

Hence, it remains to show that µt + a0
t ≥ a1

t, or 

 1 0 0 0ˆmax( , )t t t t t ta a a R aµ ≥ − = − .   

Since a0
t ≥ Rt and µt ≥ 0, it is sufficient to show that  

 ( )0 ( ) 0ˆ t t
t t t tt t

a R e a R
+

+ +
−γ −µ ≥ − = µ + − . 

Since termination is not renegotiated, a0
t+ = Rt+.  But then, from our assumption on µt, 

and also using (1), 

 ( ) ( )( ) 0 ( ) ( )t t t t t t
t t tt t t t t

e a R e R R e
+ + +

+ + + + +
−γ − −γ − −γ −µ + − = µ + − ≤ µ ≤ µ . 

which completes the induction. 

Note that to derive (38) above, we assumed Yt = µt.  It is easy to verify that (38) requires 
only that 

 
( )( ) 0

0

( )
Pr( )

1 ( )

r t s
t t

t t
t t

e b a
Y

b a

−γ − +

+

′+≥ µ ≥
′+

. 

For xt, note that  

 ( ) ( )1 ( ) 1 0 ( ) 0ˆ ˆmax , max ,t s t s
t t t s t t t s sx a e a a R e a Rγ − γ −= µ + − = µ + −  
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  ( ) ( ) ( )0 ( ) 0 0 0ˆ ˆ ˆmax , max ,t s
t t t s t t t t ta R e a a R aγ −≤ µ + − = µ + − µ +  

( ) ( )0 0 0ˆ ˆmax ,t t t t ta R a a R
+

= − ≤ − . (39) 

Finally, if (24) holds and if termination is not renegotiated, then 
0 ( ) 0ˆ ( )t s

s s t tR a e a−γ −≤ = µ +  and a0
t = Rt, and so the above holds with equality.  w 

 

PROOF OF PROPOSITION 13:  This specification implies b′t ≤ 0 for all t.  Hence, ˆ 0sb ′ ≤ , 

so that ˆ
sb  is maximized at 0ˆsa .  The rest is immediate. w 

 

PROOF OF PROPOSITION 14:  It is obvious that the above solution attains the first best.  
To see how it relates to our earlier characterization, suppose the project is terminated for 

sure next period.  Then 0 ( )ˆ t s
s ta e−γ −= µ  and 0ˆ ˆ( ) 1s sb a′ ≤ − .  From (29), 0 0ˆ ˆs s sL b a= +  with  so 

that ls = −1 and the project is terminated in period s.  Alternatively, since ls = −1, we can 
instead set 1 0ˆL

s s sa a a= =  (see footnote 13), which gives the second implementation.  

Finally, if ks is inadequate or switching costs are positive, then first best cannot be 
attained unless there is no possibility termination.  However, without termination, the 
agent’s incentive constraint cannot be satisfied unless the agent consumes all cash flows.  
This is consistent with first best only if γ =r and I = 0.   w 

 

PROOF OF PROPOSITION 15:  Suppose termination occurs for sure in period t.  Then for s 
= t−, 

 0 ( )ˆ ( )t s
s t ta e R−γ −= µ +  and  0 ( )ˆ r t s

s tb e L− −= , 

where we use the fact that a0
t = Rt, b0

t = Lt, and b′t(a0
t) ≤ −1.  Since γ ≥ r, 

 0 0 ( ) ( ) ( )ˆˆ t s t s r t s
s s t t ta b e e R e L−γ − −γ − − −+ = µ + +  

  ( ) ( ) ( ) ( )t s t s r t s r t s
t t t t s se e R e e L R L−γ − −γ − − − − −≤ η + + ν + = + . 

Thus, ls ≤ −1 and termination is optimal in period s.  The necessary and sufficient 
condition follows from the above inequality.  w 

 

PROOF OF PROPOSITION 16:  Clearly, if Rs > e−γ(t−s)Rt, then 0 0ˆs s sa R a= ≥ .  Also, 
0 ˆ( ) ( ) 0s s s sb a b R′ ′= ≤ .  If Rs = e−γ(t−s)Rt , then ˆmax ( )

ss a R sL b a≥>  and thus ls < 0.  w 

 

PROOF OF PROPOSITION 17:  From the analysis in section 4, the agent’s continuation 
payoff in period t is equal to Yt + gt for some constant gt.  Thus, the agent’s expected 
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payoff is unaffected by φs.  On the other hand, the investor’s continuation payoff in 
period t is given by (see (7)) 

 Yt + b1
t(Yt + gt). 

Since b1
t is concave, the investor has an induced risk aversion regarding the cash flows of 

the firm.  Thus, the investor will prefer that φs be chosen to eliminate mean-preserving-
spreads. w 

 

PROOF OF PROPOSITION 18:  Recall from section 4 that the agent’s incentive 
compatibility constraint on reporting output implies that agent’s payoff in period s is 
given by 

 Ys + Gs(Ys) − es, 

where Gs is weakly increasing.  Given such a payoff, by FOSD and the fact that e∗
s = 

max{e∈ξ s} solves (33), the agent will choose effort e∗
s under any feasible contract.  

Thus, we can regard this effort choice as exogenous and solve for the optimal contract as 
in the previous analysis.  w 
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