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Abstract

This paper considers two firms that engage in joint production. The prospect of repeated interaction

introduces dynamics in that actions that firms take today influence the costliness and effectiveness of

actions in the future. Repeated interaction also facilitates the use of informal agreements (relational

contracts) that are sustained not by the court system, but by the ongoing value of the relationship.

We characterize the optimal relational contract in this dynamic system with double moral hazard.

We show that an optimal relational contract has a simple form that does not depend on the past

history. The optimal relational contract may require that the firms terminate their relationship

with positive probability following poor performance. This may occur even when the firms observe

an independent signal for the action of each firm that allows them to assign blame. If, however, the

buyer’s action does not influence the dynamics, the need for termination is eliminated. The paper

applies the method to the issue of sequential versus parallel collaborative product development.

December 2004



1 Introduction

The success of a buyer-manufacturer relationship in creating a product often depends on the actions

of both parties. Each firm has comparative strengths in understanding different aspects of the

product’s design and the technical aspects related to its production. Accordingly, the buying firm

may provide critical technical expertise to assist the supplier in design, engineering and production.

Although a manufacturer typically provides the bulk of the infrastructure for production, a buying

firm may provide critical inputs, either in the form of specialized equipment or raw materials. The

success of the production process, then, depends on the diligence with which both firms provide

the associated physical and managerial inputs.

When a buyer and manufacturer interact, they rarely do so anticipating that they will

with certainty never interact again. The prospect of potential future interaction shapes how firms

behave in two ways. First, the prospect of future interaction facilitates the development of trust and

cooperation. Firms will be more hesitant to behave opportunistically if they anticipate that doing

so will damage their prospects for engaging trading partners in the future. Second, the prospect of

future interaction introduces dynamics as conditions and the relationship itself evolves over time.

In particular, a firm’s actions today impact the costliness and effectiveness of actions in the future.

For example, a manufacturer may invest in technologies that reduce the costs of producing certain

types of products in the future. Such an investment could impact the effectiveness of the buying

firm’s action positively or negatively. For example, if the buyer is unfamiliar with the technologies,

this may reduce the utility of the buyer’s production expertise. Further, exogenous factors, such as

general economic conditions, evolve over time, and these also shape the costliness and effectiveness

of the firms’ actions.

When firms engage in joint production, each firm observes the output of the process but does

not directly observe the full scope the actions taken by its partner. Because there is uncertainty

in how actions influence output, it is difficult for the firms to assess who bears what portion of

responsibility for the relative success or failure of the output. This introduces a temptation for the

firms to “free-ride.” Each firm knows that it can assert that a bad outcome is due to the failure of

the other firm or simple bad luck. Further, even if the firms could assess who was responsible ex

post, given the complexity of the firms’ interaction and the production process, it would be difficult

or impossible ex ante to specify in a contract payments that accurately reflect the true allocation

of responsibility. We focus on the setting where it is difficult to specify ex ante in terms that are

verifiable ex post the quality of the output.

Biopharmaceutical manufacturing provides an example of joint production. Drug developers
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(buyers) contract with contract manufacturers for capacity during the drug development process,

at least one year in advance of production. At the time of production, the buyer provides the

manufacturer with genetically modified mammalian cells and the manufacturer ferments these cells

to produce a target protein. The success of the production process depends both on the quality of

the raw materials and the skill with which the production process is managed. Because the specifics

of the production process (e.g., temperature, pressure) are unknown at the time of contracting, the

firms contractually specify the price and the rate of “batch fermentation starts” but do not attempt

to make the contract contingent on the protein yield.

Firms can provide stronger incentives for action by developing informal agreements that

make payments contingent on nonverifiable output (see §2 for an example in the biopharmaceutical

context). Because such payments are discretionary, they must be enforced by the value of the

ongoing cooperative relationship rather than the court system. Our objective is to characterize how

firms should optimally structure informal agreements in the face of dynamics and the temptation

to free-ride.

The primary vehicle in economic theory for studying long-term relationships where trust,

cooperation and reputation are important is the repeated game, in which players face the same

“stage game” in every time period and each player seeks to maximize the discounted sum of his

payoffs. Typically, a repeated game has many possible Nash equilibria, but the players are assumed

to coordinate on one that is mutually advantageous. Cooperation is enforced by the threat of

transition to an undesirable Nash equilibrium in the continuation game.

Klein and Leffler (1981) and Taylor and Wiggins (1997) consider settings where product

quality is noncontractible and is solely a function of the manufacturer’s effort. Klein and Leffler

show that in a competitive market, buyers will pay a premium above variable production cost to

firms that maintain a reputation for high quality. In Taylor and Wiggins (1997) a buyer inspects

every shipment from his manufacturer and rejects faulty items. Taylor and Wiggins show how

the buyer can avoid costly inspection by paying a premium for every shipment and threatening to

terminate this practice if he later discovers faulty items.

Baker et al. (2001, 2002) emphasize that players may shape their repeated game through

transfer payments. They have popularized the term relational contract for an informal agreement

regarding actions and voluntary payments, enforced by reputational concerns, between parties that

interact repeatedly. They study a repeated game with relationship-specific investment by one party

(“hold up”) and derive insights regarding optimal ownership structure. Levin (2003) examines

relational contracting in a principal-agent model with moral hazard or hidden information. He

proves that simple stationary relational contracts are optimal. In particular, with moral hazard,
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the relationship is never terminated on the equilibrium path, and the voluntary payment to the

agent is “one-step”: a bonus if output exceeds a threshold. Our structural analysis of relational

contracts adopts techniques from Levin, but our formulation is substantively distinct.

This paper characterizes the optimal relational contract for supply chain partners in a

Markov decision process, where actions influence the output in the current period and the cost

structure in subsequent periods. The action of one firm cannot be observed by the other, but the

state of the system, cost structure, feasible action set, and transition probabilities are common

information. That is, we have a dynamic system with double moral hazard. §2 formulates the

model, and §3 shows that an optimal relational contract is characterized by an unusual sort of

dynamic program. §4 describes structural properties of this optimal relational contract. First,

actions depend only on the current state and payments depend only on the observed transition.

Second, the optimal relational contract might require that the firms terminate their relationship

with positive probability in the event of an undesirable transition. This may occur even when the

firms observe an independent signal for the action of each firm that allows them to assign blame.

If, however, the buyer’s action in period t influences the output in period t but not subsequent

periods, then the relationship is never terminated. Third, a simple one-step payment scheme is

optimal if the first best expected discounted profit starting from the worst state is sufficiently large.

§5 applies the method to the issue of sequential versus parallel collaborative product development.

§6 provides concluding remarks.

Two recent working papers also consider double moral hazard and relational contracting,

but in a stationary environment with common observation of an independent signal for the effort of

each firm. The paper that is closest in spirit to ours, Doornik (2004), was developed independently.

Doornik shows that the optimal relational contract requires terminating the cooperative relationship

when the signal for both firms is low and, if the relationship continues, a one-step payment analogous

to Levin (2003). Doornik’s formulation is more general in that it allows both firms to receive a

portion of the output produced, whereas we consider the case where a buying firm receives the

output. Our formulation is more general in that it allows for dynamics and considers the case

where independent signals of effort are not available. Rayo (2004) characterizes optimal ownership

structure and optimal (within a limited class) relational contracts in repeated team production.

In particular, he restricts attention to non-terminating relational contracts. Ownership determines

the allocation of profit in the event of a disagreement, i.e., refusal to execute the transfer payments

specified in the relational contract. Rayo shows that when the signals are very noisy, ownership of

100% of joint output should be assigned to a single player. Although we focus on the case where

a buyer receives the output, all theoretical results in §3 and §4, with the exception of Propositions
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4 and 5, hold with a general division of ownership of output. Structural differences between the

results in Rayo (2004) and Doornik (2004) and this paper show how supply chain partners should

adapt their relational contracts to a dynamic business environment.

The aforementioned papers all assume that firms have common knowledge of cost structure

and how effort influences the distribution of output and signals. For analysis of collaborative

production under asymmetric information, we refer the reader to Iyer et al. (2002) and references

therein.

2 Model

Joint production is modeled as a dynamic game. The state of the system in period t, Xt, takes

values in a finite, discrete state space X . The state reflects both external factors, such as economic
conditions, and internal factors, such as the capabilities of the firms. At the beginning of each

period t, the buyer and the manufacturer observe Xt and decide whether or not to transact. If

both parties agree to transact, then they sign a formal contract under which the buyer contracts to

pay pt in return for the output Yt from joint production in period t. The manufacturer undertakes a

noncontractible, productive action am ∈ Am(Xt) and incurs cost cm(am,Xt). Similarly, the buyer

chooses noncontractible action ab ∈ Ab(Xt) and incurs cost cb(ab,Xt). The feasible action sets

Am(x) and Ab(x) are closed and bounded for each state x ∈ X . The actions determine the state

transition probabilities through the transition matrix P (am, ab) with elements

Pxz(am, ab) = Pr{Xt+1 = z | Xt = x ; am, ab}.

For ease of exposition, we formulate the state space so that conditional on the transition (Xt,Xt+1),

the output in period t is independent of the actions of buyer and manufacturer in period t:

Yt = Y (Xt,Xt+1),

where Y : X × X →R+. If either firm refuses to transact in period t, then both buyer and man-

ufacturer incur zero cost, Yt = 0, and the distribution of Xt+1 is governed by transition matrix

P (0, 0).

Each party seeks to maximize his infinite horizon discounted expected profit, using discount

factor δ ∈ (0, 1). Throughout we assume that both parties observe the state of the system Xt, but

neither party observes the other’s action. The action sets, cost functions, and transition matrix are

common information. However, although the output and state-transition are observable, these are
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not formally contractible. Therefore, the manufacturer and buyer enter into a relational contract

to provide incentives for effort. The relational contract consists of four parts:

i. A formal (court-enforced) contract. If both parties agree to transact in period t, the buyer

contracts to pay pt to the manufacturer in return for the output Yt. The payment pt may be

contingent on the public history at the beginning of period t.

ii. A discretionary transfer payment at the end of period t, dt. A positive payment dt corresponds

to the buyer paying the manufacturer, while a negative payment corresponds to the reverse.

The payment dt may be contingent on the public history at the end of period t.

iii. A strategy for the manufacturer which specifies, for each period t = 1, 2, ..., whether or not

to transact with the buyer τmt ∈ {0, 1} and, in the event that both parties agree to transact,
action amt and whether or not to execute the discretionary transfer payment emt ∈ {0, 1}.

iv. A strategy for the buyer which specifies, for each period t = 1, 2, ..., whether or not to transact

with the manufacturer τ bt ∈ {0, 1} and, in the event that both parties agree to transact, action
abt and whether or not to execute the discretionary transfer payment ebt ∈ {0, 1}.

Note that the buyer must pay the price pt even if the output yield Yt turns out to be low or

zero. Formal contracts of this nature are common in the semiconductor industry, where the buyer

purchases “wafer starts” but his yield on these wafers is stochastic. Similarly, biopharmaceutical

contract manufacturers sell “batch fermentation starts” rather than actual output. An example

of a discretionary payment in the biopharmaceutical industry was described to the authors by

managers at a large contract manufacturer: The manufacturer agrees informally that if the yield

of a batch is low due to some error in its process control, the buyer will not be required to make

the full payment. However, if the manufacturer attributes the low yield to problems with the raw

material provided by the buyer, it will not give the discount. Finally, note that the firms need not

transact in every period. The relational contract may stipulate τmt = τ bt = 0 in states where the

gain from joint production is low.

The manufacturer’s discounted profit starting from the beginning of period T is given by

ΠmT =
∞X
t=T

δt−T τ btτmt [pt + dtebtemt − cm(amt,Xt)] . (1)

The buyer’s discounted profit starting from period T is given by

ΠbT =
∞X
t=T

δt−T τ btτmt [Yt − pt − dtebtemt − cb(abt,Xt)] . (2)
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The objective for each firm is to maximize its discounted expected profit. We say that a relational

contract is self-enforcing if, given the prices and discretionary transfer payments in (i) and (ii), the

firms’ strategies constitute a perfect public equilibrium (PPE) with ebt = emt = 1 for all t = 1, 2, ...

That is, the firms are willing to execute the discretionary transfer payment in every period that

they transact. As defined in Fudenberg et al. (1994), a profile of strategies is public if in each

period t, {τmt, amt, emt(Xt+1)} and {τ bt, abt, ebt(Xt+1)} depend only on the public history at the
beginning of that period Ht = {X1, ..Xt; τm1, ..τmt−1; em1, ..emt−1; τ b1, ..τ bt−1; eb1, ..ebt−1}. A PPE
is a profile of public strategies that, for each period t and history Ht, constitute a Nash equilibrium

from that time onward.

In particular, a self-enforcing relational contract must satisfy, for all t

E[Πmt|Ht] ≥ 0 (3)

E[Πbt|Ht] ≥ 0 (4)

amt ∈ argmax
a∈Am(Xt)

½
−cm(a,Xt) + Σ

z∈X
PXtz(a, abt)

£
dt(X1, ..,Xt, z) + δE[Πm(t+1)|Ht,Xt+1 = z]

¤¾
(5)

abt ∈ argmax
a∈Ab(Xt)

 −cb(a,Xt) + Σ
z∈X

PXtz(amt, a)×£
Yt(Xt, z)− dt(X1, ..,Xt, z) + δE[Πb(t+1)|Ht,Xt+1 = z]

¤
 (6)

dt(X1, ...,Xt+1) +E[Πm(t+1)|Ht,Xt+1] ≥ 0 (7)

E[Πb(t+1)|Ht,Xt+1]− dt(X1, ...,Xt+1) ≥ 0. (8)

Because a firm can refuse to transact in period t, he is guaranteed positive discounted expected

profit ((3) and (4)). The incentives for action in period t depend on the discretionary transfer pay-

ment dt(X1, ...,Xt+1), but not the formal price pt. Equation (5) specifies that the manufacturer’s

action maximizes his infinite horizon discounted expected profit, assuming that the buyer chooses

effort abt in the current period and that both parties adhere to the relational contract in all subse-

quent periods. Equation (6) plays the analogous role for the buyer. (7) and (8) ensure that both

parties prefer to execute the discretionary transfer payment rather than terminate the relationship.

Because termination is the most severe credible punishment that can be imposed on a party that

fails to execute the discretionary payment, (7) and (8) are necessary conditions for the relational

contract to be self-enforcing. Intuitively, if a relational contract is self-enforcing, then neither firm

wishes to deviate unilaterally. As observed by Abreu (1988), conditions (3)-(8) are sufficient for a

relational contract with “trigger strategies” to be self-enforcing. A trigger strategy is to adhere to

the relational contract in every period until the other firm first refuses to execute the discretionary

transfer payment, and then to refuse to transact in subsequent periods. In summary, a relational
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contract that satisfies (3)-(8) is self-enforcing. For the remainder of the paper, we will assume that

the firms use trigger strategies.

With a self-enforcing relational contract, one can adjust the initial price p in the first period

in which the firms transact to achieve any division of the total expected profit between the buyer

and manufacturer satisfying (3) and (4) at t = 1. Therefore, our objective is to maximize total

expected discounted profit E[Πb1 +Πm1], subject to the constraint that the relational contract be

self-enforcing.

The total expected discounted profit with perfect coordination is given by the dynamic

programming recursion

V (x) = max

δ Σ
z∈X

Pxz(0, 0)V (z); max

½
−cm(am, x)− cb(ab, x) + Σ

z∈X
Pxz(am, ab)

£
Y (x, z) + δV (z)

¤¾
am∈Am(Xt), ab∈Ab(Xt)

 .
(9)

Let X ⊂ X denote the states in which it is optimal to transact, and am(x), ab(x) denote the

optimal actions in state x ∈ X , obtained by solving (9). We will subsequently call these the

“first best” transaction states and actions. Clearly, V provides an upper bound on the total

expected discounted profit that the firms can achieve under any relational contract. If actions

were contractible, the buyer and manufacturer could achieve V . However, the ability to write

formal contracts with state-contingent payments pt(X1, ...,Xt,Xt+1) would not enable the buyer

and manufacturer to achieve V . The essential problem is that incentive payments to the buyer and

manufacturer must add up to zero in every period. Holmstrom (1982) proved that a third party

is needed to break this “budget balance constraint” to achieve the first best. Otherwise, to create

second best incentives for action in the current period, an undesirable transition must be followed

by “punishment” through inefficient actions in subsequent periods. These results suggest that in

our setting, with discretionary state-contingent payments dt(X1, ...Xt,Xt+1), optimal relational

contracts are complex, with history-dependent payments and actions.

Fortunately, characterization of an optimal relational contract is greatly simplified by intro-

ducing a correlation device (Aumann 1974). Suppose that at the end of each period t the buyer

and manufacturer commonly observe the value of a random variable ut. The sequence of random

variables {ut, t = 1, 2, ..} is i.i.d. uniform on [0,1] and independent of the process Xt and of the

firms’ actions. We will expand our definition to include relational contracts in which, for each t, the

discretionary payment dt, and continuation contract and strategies from period t+ 1 may depend

upon {us : s ≤ t}. In particular, a correlated termination relational contract is characterized by a
termination function Q : X ×X → [0, 1]. In the event that ut < Q(Xt,Xt+1)
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dt = 0

τ bs = 0 and τms = 0 for all s > t;

that is, the firms quit joint production. (Q is mnemonic for Quit).

Finally, observe that this model formulation allows for each firm to have a state-dependent

outside alternative to joint production in each period. The manufacturer’s cost function cm(am, x)

represents actual production costs and any forgone profit from working with an alternative partner.

(Increasing the value of the manufacturer’s outside alternative in state x increases cm(am, x) by

a constant for all am ∈ Am(x).) Similarly, the buyer’s cost function cb(ab, x) represents actual

production costs and any forgone profit from working with an alternative partner. Then, the

“profit” functions in (1)-(2) represent discounted profit in excess of the outside alternative, and (9)

is an upper bound on the value of the relationship. However, to be consistent with our assumption

each firm seeks to maximize this profit, the outside alternative should evolve exogenously rather

than be influenced by the firms’ actions.

3 Derivation of an Optimal Relational Contract

Our main result is that a correlated termination relational contract is optimal, and can be charac-

terized by an unusual sort of dynamic program. Before stating the main result, we need to develop

some machinery. For each x ∈ X and v : X →R+ define

T (v)(x) = max

δ Σ
z∈X

Pxz(0, 0)v(z); max

½
−C(am, ab, v, x) + Σ

z∈X
Pxz(am, ab)[Y (x, z) + δv(z)]

¾
am∈Am(Xt), ab∈Ab(Xt)

 ,
(10)

where the cost function is given by

C(am, ab, v, x) = cm(am, x) + cb(ab, x) (11)

+min
Vm,Vb

Σ
z∈X

Pxz(am, ab)Q(x, z)δv(z)

subject to:

Vm(x, z) ≥ 0, Vb(x, z) ≥ 0, Vm(x, z) + Vb(x, z) ≤ v(z) for z ∈ X
am ∈ argmax

a∈Am(x)

½
−cm(a, x) + Σ

z∈X
Pxz(a, ab)δVm(x, z)

¾
ab ∈ argmax

a∈Ab(x)

½
−cb(a, x) + Σ

z∈X
Pxz(am, a)[Y (x, z) + δVb(x, z)]

¾
Q(x, z) = [v(z)− Vm(x, z)− Vb(x, z)]/v(z).
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The operator Tv gives the maximum total discounted expected profit under a self-enforcing rela-

tional contract with correlated termination in period 1, assuming that if the firms do not terminate

in period 1, the total discounted expected profit at the beginning of period 2 is given by v. The

cost function C(am, ab, v, x) has two components: the direct cost of action (cm and cb) and the

expected cost associated with possible termination. Allowing for termination with positive proba-

bility weakly decreases the total cost of any given action (am, ab) ; see the minimization embedded

in (11). Thus, deliberately destroying value following some state transitions may increase total

expected discounted profit.

The operator Tv is distinctive in that the cost of an action depends upon the ongoing

value function v as well as the state x. The cost function C(am, ab, v, x) may take value ∞,
indicating infeasibility of (am, ab). For example, if v = 0 then the only feasible action pairs for the

manufacturer and buyer in state x are(
(am, ab) : am ∈ argmax

a∈Am(x)
{−cm(a, x)} , ab ∈ argmax

a∈Ab(x)
{−cb(a, x) + Σ

z∈X
Pxz(am, a)Y (x, z)}

)
.

These are Nash equilibria of the single-period game in which the firms transact without the value

of an ongoing relationship (the potential for repeat business) to induce cooperative behavior.

Observe that the cost function C(am, ab, v, x) is decreasing in v. That is, the cost for the

firms to implement any pair of actions is decreasing in the ongoing value of the relationship. The

next proposition establishes a useful structural property of the operator T .

Proposition 1 The operator T has a unique fixed point V ∗

V ∗ = TV ∗,

and V ∗ ∈ [0, V (x1)]× ...× [0, V (xN)].

All proofs with the exception of that of Theorem 1 are in Plambeck and Taylor (2004a). Let

{a∗m(x), a∗b(x)}x∈X denote the actions obtained by solving (10) with v = V ∗. Let {τ∗m(x), τ∗b(x)}x∈X
denote the corresponding rule for whether or not to transact:

τ∗m(x) = τ∗b(x) =

(
1 if V ∗(x) > δ Σ

z∈X
Pxz(0, 0)V

∗(z)

0 if V ∗(x) = δ Σ
z∈X

Pxz(0, 0)V
∗(z).

Finally, let (V ∗m(x, z),V ∗b (x, z)) denote the minimizers of C(a
∗
m(x), a

∗
b(x), x, V

∗).

Theorem 1 A correlated termination relational contract is optimal, and it achieves total dis-

counted expected profit of V ∗(X1). The termination function is
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Q∗(x, z) = [V ∗(z)− V ∗m(x, z)− V ∗b (x, z)]/V
∗(z).

The firms’ strategies for whether or not to transact satisfy

τmt =

(
τ∗m(Xt) if t ≤ Υ and ebs = ems = 1 for all s < t

0 if t > Υ or emsebs = 0 for some s < t

τ bt =
n

τ∗b(Xt) if t ≤ Υ and ebs = ems = 1 for s < t

0 if t > Υ or emsebs = 0 for some s < t,

where Υ is the period in which the relationship terminates

Υ = inf{t : ut < Q∗(Xt,Xt+1)}.

In each period that the firms transact, the formal price depends only on the current state, and the

discretionary transfer payment depends only upon the observed transition and the correlation device

pt = αV ∗(Xt) + cm(a
∗
m(Xt),Xt)− Σ

z∈X
PXtz(a

∗
m(Xt), a

∗
b(Xt))δV

∗
m(z)

dt =

(
[1−Q∗(Xt,Xt+1)]

−1 δV ∗m(Xt,Xt+1)− αδV ∗(Xt+1) if ut ≥ Q∗(Xt,Xt+1)

0 if ut < Q∗(Xt,Xt+1),

where α ∈ [0, 1] is the fraction of expected total discounted profit allocated to the manufacturer; the
action strategies depend only on the current state

amt = a∗m(Xt), abt = a∗b(Xt) for t = 1, 2, ...

and each firm is willing to execute the discretionary transfer payment

ebt = emt = 1 for t = 1, 2, ...

Proof of Theorem 1: The proof proceeds in three steps. To be considered as a candidate for

optimality, a relational contract must have certain basic properties. The first step is to describe

these properties. The second step demonstrates that for any relational contract with these basic

properties, there exists a self-enforcing correlated termination contract with the same expected

total discounted profit. This correlated termination relational contract is appealingly simple in

that the firms’ actions depend only on the current state of the system, and the discretionary

transfer payment depends only on the observed transition and the correlation device. We conclude

from the second step that in searching for an optimal relational contract, we can restrict attention

to correlated termination contracts with this simple form. The third step constructs the optimal

correlated termination contract by solving the dynamic program (10).

10



Step 1: Properties of a Candidate-Optimal Relational Contract

Consider a relational contract o with the following terms for the first period: formal payment

po(x), discretionary transfer payment do(x, z, u), strategy for the manufacturer of {τom(x),aom(x)}
and strategy for the buyer of {τob(x),aob(x)}, conditional on (X1,X2, u1) = (x, z, u). Let V o

1 (x)

denote the total expected discounted profit, conditional on X1 = x.

V o
1 (x) = Eo [Πom1 +Π

o
b1 | X1 = x]

= Eo

" ∞X
t=1

δt−1τobtτ
o
mt[Yt − cm(a

o
mt,Xt)− cb(a

o
bt,Xt)] | X1 = x

#
,

where the superscript o indicates that the expectation Eo is taken with respect to the distribution

induced by the relational contract. Similarly, let V o
2 (x) denote the total expected discounted profit

under the optimal relational contract starting from period 2, conditional on (X1,X2) = (x, z).

V o
2 (x, z) = Eo

" ∞X
t=2

δt−2τobtτ
o
mt[Yt − cm(a

o
mt,Xt)− cb(a

o
bt,Xt)] | (X1,X2) = (x, z)

#
.

To be considered as a candidate for optimality, the relational contract o must satisfy

V o
2 (x, z) ≤ V o

1 (z) for every x, z ∈ X . (12)

If V o
2 (x, z) > V o

1 (z) the firms could achieve strictly greater expected total discounted profit by

starting with the continuation contract from period 2, rather than the initial contract for state

z. Note that (12) may be a strict inequality, in order to create incentives for action in period 1.

However, if τom(x) · τob(x) = 0 then

V o
2 (x, z) = V o

1 (z) for every z ∈ X . (13)

To be considered as a candidate for optimality, the relational contract o must also be self-

enforcing in the first period, which implies that

Eo [Πom1 | X1 = x] ≥ 0 and Eo [Πob1 | X1 = x] ≥ 0 for every x ∈ X , (14)

and for every x such that τom(x) = τob(x) = 1 so that the firms transact in the first period:

11



aom(x) = argmax
a∈Am(x)

½
−cm(a, x) + Σ

z∈X
Pxz(a, a

o
b)E

o[do + δΠom2 | X1 = x, X2 = z]

¾
(15)

aob(x) = argmax
a∈Ab(x)

½
−cb(a, x) + Σ

z∈X
Pxz(a

o
m, a)(Y (x, z) +Eo[−do + δΠob2 | X1 = x, X2 = z])

¾
(16)

Eo[δΠom2 | (X1,X2, u1) = (x, z, u)] ≥ −do(x, z, u) (17)

Eo[δΠob2 | (X1,X2, u1) = (x, z, u)] ≥ do(x, z, u). (18)

Step 2: The Equivalent Correlated Termination contract

Now we will construct a self-enforcing correlated termination relational contract with the same

expected total discounted profit as the relational contract o. The termination function is given by

Q(x, z) = [V o
1 (z)− V o

2 (x, z)] /V
o
1 (z).

The firms’ strategies for whether or not to transact are, for t = 1, 2, ...,

τmt =

(
1 if t ≤ Υ, ebs = ems = 1 for s < t and Xt ∈ {x : τom(x) = τob(x) = 1}
0 otherwise

τ bt =

(
1 if t ≤ Υ, ebs = ems = 1 for s < t and Xt ∈ {x : τom(x) = τob(x) = 1}
0 otherwise

where Υ is the period in which the relationship terminates:

Υ = inf{t : ut < Q(Xt,Xt+1)}.

Furthermore, action strategies are, for t = 1, 2, ...,

amt = aom(Xt)

abt = aob(Xt).

The formal price is po(Xt) and the discretionary transfer payment is dt = 0 if ut < Q(Xt,Xt+1),

and otherwise is

dt = d(Xt,Xt+1),

where, for each (x, z) ∈ X ×X

d(x, z) = [1−Q(x, z)]−1Eo[do + δΠom2 | X1 = x, X2 = z]− δEo[Πom1 | X1 = z].

Using (14)-(18), it is straightforward to verify that this correlated termination contract is self-

12



enforcing and achieves the same expected discounted profit for the buyer and for the manufacturer

as relational contract o, for each initial state X1 ∈ X .
Step 3: The Optimal Correlated Termination Relational Contract

Based on step 2, in searching for an optimal relational contract, we can restrict attention

to correlated termination contracts with strategies that depend only on the current state and

discretionary transfer payments that depend only upon the observed transition. We can also

assume without loss of generality that the manufacturer is allocated a fraction α ∈ [0, 1] of the
total discounted expected profit. Let V (z) denote the maximum total discounted profit that can

be achieved with such a relational contract, starting in state z. Suppose that the firms will adopt

this relational contract in the second period, and would like to develop a discretionary transfer

payment, action strategies for the two firms, and a termination function for the first period that

are self-enforcing and maximize expected total discounted profit. Given that the system is initially

in state x, this must result in expected total discounted profit of V (x).

V (x) = max

·
δ Σ
z∈X

Pxz(0, 0)v(z);

max
d,Q,am,ab

½
−cm(am, x) + cb(ab, x) + Σ

z∈X
Pxz(am, ab)[Y (x, z) + δ[1−Q(x, z)]V (z)]

¾¸
subject to:

am ∈ max
a∈Am(x)

½
−cm(a, x) + Σ

z∈X
Pxz(a, ab)[1−Q(x, z)][d(x, z) + δαV (z)]

¾
ab ∈ max

a∈Ab(x)

½
−cb(a, x) + Σ

z∈X
Pxz(am, a){Y (x, z) + [1−Q(x, z)][−d(x, z) + δ(1− α)V (z)]}

¾
δαV (z) ≥ −d(x, z)
δ(1− α)V (z) ≥ d(x, z)

0 ≤ Q(x, z) ≤ 1.

This is equivalent to

TV = V.

From Proposition 1, we know that T has a unique fixed point V ∗ and therefore V = V ∗. Thus, the

optimal terms are as given in the statement of the Theorem.

The optimal relational contract in Theorem 1 involves (probabilistic) termination following

periods with undesirable performance as reflected in an undesirable state transition. (This is for-

malized in the next section’s Proposition 3.) This termination could be interpreted as resulting

from a dispute over who is responsible for poor performance. However, termination occurs despite

13



the fact that in every period in which trade occurs the buyer and supplier take the agreed upon ac-

tion. Thus, the firms are not penalizing one another for presumed shirking. Rather, the purpose of

termination is to provide stronger incentives for action, by jointly punishing the firms for unfavor-

able stochastic outcomes. These stronger incentives lead to greater expected profit in the periods

in which the firms transact; however, profit is, of course, reduced in periods following termination.

The optimal termination relational contract balances the near-term gain from stronger incentives

for action against the eventual loss resulting from termination.

In practice, one might expect that following poor outcomes, firms would break off cooper-

ation for a limited period of time, rather than forever. One might argue that the firms cannot

credibly refuse to transact; in the event of termination, they would renegotiate the relational con-

tract to generate some ongoing profit. The economics literature on repeated games with imperfect

monitoring is subject to the same criticism that in a punishment phase, the players have an in-

centive to coordinate on a more favorable continuation equilibrium; see, for example, Abreu et

al. (1986, 1991). Several papers explore the renegotiation of formal contracts in dynamic games;

see Laffont and Tirole (1990), Rey and Salanie (1996) and references therein. They observe that

allowing renegotiation is equivalent to restricting attention to long term contracts that are immune

to renegotiation (i.e., in every period, the players cannot achieve greater profit by substituting an

alternative continuation contract).

Suppose that we impose the additional constraint that the relational contract be immune

to renegotiation. This requires that the operator T be modified so that

Vm(x, z) + Vb(x, z) ≤ v(z) for z ∈ X

in (11) is replaced by

Vm(x, z) + Vb(x, z) = v(z) for z ∈ X .

Allowing renegotiation means that the optimal relational contract cannot involve termination:

Q∗ = 0. By extension of the proof of Theorem 2 in Levin (2003), if an optimal relational contract

exists, then expected discounted profit under this optimal relational contract is the largest fixed

point of the modified operator T in [0, V ]; Theorem 1 holds with the modified operator T and

Q∗ = 0.∗ This weakly reduces expected discounted profit at time zero. In the product development

application in §5, for a wide range of parameters, the optimal contract has Q∗ = 0, i.e., allowing

renegotiation does not reduce expected discounted profit. For other parameters, the prospect of

∗A sequel paper (Plambeck and Taylor 2004b) explores the impact of renegotiation on the existence and structure
of the optimal relational contract.
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renegotiation weakens incentives so that the firms have zero expected profit.

In a supply network with multiple buyers and suppliers, if failure to adhere to a relational

contract is public information, then the firms can sustain more stringent relational contracts. The

value of public reputation in addition to the value of the a specific relationship form the upper

bound on discretionary transfer payments. Furthermore, public reputation can make termination

immune to renegotiation.

As a practical matter, for any given problem parameters, specifying the optimal relational

contract requires calculating the optimal value function V ∗. Proposition 2 provides a theoretical

basis for and guidance as to how to employ value iteration to compute the optimal value function.

Define T 0V ≡ V and for n ≥ 1, TnV ≡ T (Tn−1V ). Value iteration involves computing TnV for

successively larger values of n, starting with a given value function V.

Proposition 2 Value iteration converges to the optimal value function V ∗ when one begins with

the first best value function V :

V ∗ = lim
n→∞T

nV .

Furthermore, the value function after a finite number of iterations is an upper bound on the optimal

value function: TnV ≥ V ∗.

Observe that the convergence result is dependent on the initial value function. In standard dynamic

programming analyses, where the cost function does not depend on the value function, convergence

is often obtained regardless of the initial value function. The usual approach is to show that the

optimal value operator is a contraction and then to appeal to the Banach Fixed-Point Theorem

to establish convergence. In our case, because the cost function C(ab, am, v, x) depends on the

value function, the optimal value operator T need not be a contraction. However, beginning value

iteration with the first best value function V ensures that the resulting value function in each

iteration is decreasing. Using this property in conjunction with the definition of T establishes the

convergence result.

4 Structural Properties of an Optimal Relational Contract

Innovative software offers the opportunity for supply chain partners to closely monitor joint produc-

tion processes. For example, SigmaQuest software offers real-time visibility of detailed functional

test results and quality data, to facilitate collaboration between an Original Equipment Manufac-

turer and contract manufacturer in product development and introduction. In a second example,
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biopharmaceutical manufacturers and their buyers may observe detailed process control data, which

will help managers to identify problems with process control (the manufacturer’s fault) or faulty

materials (the buyer’s fault). This section explores the implications of observing such signals for

the structure of optimal relational contracts. In particular, we explore to what extent observing

signals enables the firms to avoid terminating the relationship.

First, this section considers the setting where the firms only observe the output and system

state. We establish that an optimal relational contract terminates only in the event of transition

to an undesirable state, i.e., below a specified threshold. Furthermore, the correlation device is

required only in the threshold state. This suggests that the correlation device is unnecessary in

a setting with a continuous state space and transition density function. Second, we consider the

setting where the firms have information technology that provides a signal for the manufacturer’s

action that is independent of the buyer’s action. If it is possible to write a court-enforced contract

with payments contingent on the signal, a properly designed contract achieves the first best. This

does not hold, in general, if the signal is not contractible. We identify the conditions under which

the signal enables the firms to avoid termination and achieve the first best total discounted expected

profit with a self-enforcing relational contract. We also identify conditions under which an optimal

relational contract is one-step (the manufacturer receives a fixed bonus when the signal is above

threshold) as in Levin’s (2003) stationary model with one-sided moral hazard.

To state and prove these results, we impose additional assumptions about the action sets and

how actions influence the transition probabilities. Specifically, Rogerson (1985) proposed sufficient

conditions to justify the “first order approach” (relaxing the constraint that the agent chooses an

action that maximizes his utility to a first order necessary condition) in a static principal-agent

problem. We extend these conditions to a system with Markovian dynamics. First, we assume that

the feasible action set for each firm is a real interval. For every x ∈ X

Am(x) = [am(x), am(x)] (19)

Ab(x) = [ab(x), ab(x)],

and the cost functions cm(am, x) and cb(ab, x) are increasing and continuously differentiable in the

actions am and ab, respectively. For fixed state x ∈ X , we can order the states X = {z1, z2, ..., zN}
such that

Y (x, z1) + δV ∗(z1) ≤ Y (x, z2) + δV ∗(z2) ≤ ... ≤ Y (x, zN ) + δV ∗(zN ).

Under the optimal relational contract, starting from state x, a transition to state zi+1 yields greater
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expected total discounted profit than a transition to state zi, for each i = 1, .., N − 1. The second
assumption is that for any ab ∈ Ab(x),

©
am, a

1
m, a

2
m

ª ∈ Am(x) and β ∈ [0, 1] such that cm(am, x) =
βcm(a

1
m, x) + (1− β)cm(a

2
m, x), and for each n ∈ {1, .., N},

N
Σ
i=n

Pxzi(am, ab) ≥ β
N
Σ
i=n

Pxzi(a
1
m, ab) + (1− β)

N
Σ
i=n

Pxzi(a
2
m, ab); (20)

for any am ∈ Am(x),
©
ab, a

1
b , a

2
b

ª ∈ Ab(x) and β ∈ [0, 1] such that cb(ab, x) = βcb(a
1
b , x) + (1 −

β)cb(a
2
b , x), and for each n ∈ {1, .., N},

N
Σ
i=n

Pxzi(am, ab) ≥ β
N
Σ
i=n

Pxzi(am, a
1
b) + (1− β)

N
Σ
i=n

Pxzi(am, a
2
b). (21)

Intuitively, this second assumption implies a decreasing marginal expected discounted profit for

each additional dollar’s worth of action. The third assumption is that Pxz(am, ab) strictly positive

and continuously differentiable in (am, ab), and for any am ∈ Am(x), ab ∈ Ab(x)

∂
∂am

Pxzi(am, ab)

Pxzi(am, ab)
and

∂
∂ab

Pxzi(am, ab)

Pxzi(am, ab)
increase with i. (22)

Rogerson (1985) points out that this assumption is equivalent to the following statistical property.

If one is given a prior over a firm’s action choice, observes the transition (x, z), and then calculates

a posterior distribution G(a|(x, z)) for the action choice, then for every a and i = 1, ..,N − 1,

G(a|(x, zi+1)) ≤ G(a|(x, zi)). (23)

That is, observing a more desirable transition allows one to infer that the firm took greater action,

in the sense of stochastic dominance. Together, these three assumptions guarantee that if a firm’s

ongoing expected discounted profit (including current-period output for the buyer) contingent on

the transition (x, zi) increases with i, then that firm’s objective is a concave function of his

action. This allows us to substitute the first order condition for each firm’s incentive compatibility

constraint in (5)-(6) and (11). The product design problem with continuous action spaces in the

next section satisfies these three assumptions.

Proposition 3 establishes that there exists an optimal relational contract that requires the

correlation device in at most one threshold state zn. The firms continue to cooperate if Xt+1 > zn,

termination occurs with probability 1 if Xt+1 < zn, and termination occurs with probability Q∗ ∈
[0, 1] in the threshold state Xt+1 = zn. Indeed, the correlation device is unnecessary in a setting

with a continuous state space and transition density function.

Proposition 3 There exists an optimal relational contract with the following termination threshold
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property. For each x ∈ X with V ∗(x) > δ Σ
z∈X

Pxz(0, 0)V
∗(z), i.e., for each state x in which the

firms transact, there exists a threshold state zn such that

Q∗(x, zi) =

(
1 for zi < zn

0 for zi > zn.
(24)

In the optimal relational contract in Proposition 3, if termination occurs at all, it occurs in the event

of a transition to an undesirable state which, intuitively, allows Bayesian inference that the firms

took little action (in the sense of stochastic dominance in (23)). However, although the behavior is

consistent with the idea that information is being extracted from the observed state, the firms are

not, in fact, making statistical inferences. In each period, both firms take the actions specified in

the relational contract. The purpose of this form of termination function is to provide incentives for

those actions. Finally, it is straightforward to extend the proof of Proposition 3 to show that any

optimal relational contract must have the threshold property (24) if the following two conditions

are satisfied: (22) holds in the strict sense and the optimal actions {a∗m(x), a∗b(x)}x∈X are unique.

Independent Signals: the Value of Assigning Blame

Now we assume that in each period t that the firms transact, they observe a signal smt

that conveys information about the manufacturer’s action amt and is invariant with respect to the

buyer’s action. The signal takes values in an ordered set smt ∈ {s1, s2, ..., sN} where si ≥ si−1 for

i = 1, .., N . With a slight adaptation, let Px(z,si)(am, ab) denote the probability of observing signal

si and a transition to state z, given actions (am, ab) and initial state x. Assume that (20)-(22)

continue to hold with the substitution of Px(z,si)(am, ab) for Pxz(am, ab). This generalization of

(22) implies existence of a signal-threshold bsm(am, x) such that
∂

∂am
Px(z,si)(am, ab) ≥ 0 if and only if si ≥ bsm(am, x).

Holmstrom (1982) proved that firms engaged in team production cannot, in general, use

a court-enforced contract that divides the output to create incentives for the first best actions.

Incentive problems arise because the transfer payments must sum to zero; a third party is needed

to break this “budget balance constraint” and implement the first best actions. Proposition 4a

establishes that if it is possible to write a court-enforced contract contingent on the signal, then

a properly designed contract achieves the first best. Contracting on the signal breaks the budget

balance constraint. When the signal is not contractible, termination plays the role of breaking the

budget balance constraint. This seems to suggest that observing the independent signal for the

manufacturer’s action will allow the firms to avoid terminating the relationship. Proposition 4b

dashes that hopeful conjecture: optimal relational contracts continue to require termination. In
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fact, termination can occur in the optimal relational contract even with independent signals for

both the buyer and the manufacturer. A numerical example is given in §5 in the setting of product

development; see Figure 2.

Proposition 4 (a) If the signal smt is contractible, a properly designed formal contract implements

the first best actions. (b) Suppose the signal is not contractible. If the buyer’s action abt influences

the continuation total expected discounted profit in period t+1, then the optimal relational contract

may require termination.

If the signal is contractible, repeated interaction (and the discretionary payments supported thereby)

is inessential: a properly designed formal contract achieves the first best even if the firms antici-

pate interacting only once. However, in most cases a signal will not be contractible. For example,

detailed process control data observed by the firms is both complex and subject to manipulation,

making contracting on this information difficult. In the sequel we focus on the case where the signal

is not contractible.

Proposition 5 establishes the converse to Proposition 4b: if buyer’s action in period t does

not influence the continuation profit from period t+1, then there exists a non-terminating optimal

contract (Q∗ = 0). For ease in presenting previous results, we adopted a state space formulation in

which the output is a deterministic function of the observed transition, Yt = Y (Xt,Xt+1). Hence

the current state, Xt, contains information about the output in the previous period. To state

Proposition 5 we must associate states with the same ongoing profit. Let D : X → D be a mapping
with the property that for any x1, x2 ∈ X , D(x1) = D(x2) if and only if Am(x1) = Am(x2),

Ab(x1) = Ab(x2), cm(·;x1) = cm(·;x2), cb(·;x1) = cb(·;x2), and Px1·(·, ·) = Px2·(·, ·).

Proposition 5 Suppose that D(Xt+1) is invariant with respect to the buyer’s action abt. Then

there exists a non-terminating optimal relational contract (Q∗ = 0) with discretionary transfer

payment

dt =

(
β(Xt)V

∗(Xt+1) if smt ≥ bsm(a∗m(Xt),Xt)

0 if smt < bsm(a∗m(Xt),Xt),
(25)

where β(x) ∈ [0, 1], and court-enforced payment

pt = cm(a
∗
m(Xt),Xt)− Σ

s≥bsm(a∗m(Xt),Xt)
Σ
z∈X

PXt(z,s)(a
∗
m(Xt), a

∗
b(Xt))d(Xt, z). (26)

The first best is achieved if and only if, for every state x ∈ X ,

Σ
s≥bsm(am(x),x) Σz∈X

∂

∂am
Px(z,s)(am(x), ab(x))δV (z) ≥

∂

∂am
cm(am(x), x). (27)
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Proposition 5 establishes that the optimal relational contract has a simple form. In the special case

of a stationary repeated game, V ∗(Xt+1) is constant, so the discretionary payment is one-step as in

Levin’s (2003) stationary game with one-sided moral hazard. With dynamics, the size of the bonus

depends on the ongoing value of the relationship. In particular, in a state x where the optimal

relational contract has strict underinvestment by the manufacturer:

∂

∂am

·
Σ
z∈X

Pxz(a
∗
m(x), a

∗
b(x))[Y (x, z) + δV ∗(z)]− cm(am, x)

¸
> 0,

the parameter β(x) = 1, so the manufacturer receives the maximum bonus, all of the relational

capital V ∗(Xt+1), when his signal exceeds the threshold. Finally, Proposition 5 provides a neces-

sary and sufficient condition for the the first best to be achieved. This condition holds when the

discounted expected value under perfect coordination, V , is sufficiently large.

Together, Propositions 4b and 5 demonstrate one of our main insights: The presence of

dynamics and the need for termination are tightly interconnected. If the system does not exhibit

dynamics (or more precisely, if the buyer does not influence the dynamics of the system), then an

optimal relational contract does not require termination. If dynamics are present and are influenced

by the buyer’s action, termination may be required.

The intuition behind these diverging results is the following. When the buyer’s action does

not influence the dynamics of the system, the buyer has incentives for efficient action when the

discretionary transfer payment does not depend on his own action. The discretionary transfer

payment in (25) is constructed so that, indeed, it only depends on the manufacturer’s action,

as reflected in the signal smt and the continuation value V ∗(Xt+1). Providing incentives for the

manufacturer to take the optimal action does not require destroying value, because any value not

allocated to the manufacturer can be transferred as a windfall gain to the buyer, without distorting

the buyer’s incentives. When the buyer’s action does influence the dynamics of the system, this

logic breaks down. Providing incentive for optimal actions requires that the discretionary transfer

payment depends on both firms’ actions. This introduces the free-rider problem, which can be

addressed by the joint punishment of termination.

Proposition 5 provides a strong result for the case where the buyer does not influence the

dynamics. Proposition 6 provides a weaker result for the more general case where the buyer may

influence the dynamics.

Proposition 6 Suppose that for every state x ∈ X ,

Σ
s≥bsm(am(x),x) Σz∈X

∂

∂am
Px(z,s)(am(x), ab(x)) min

z∈X
V (z) ≥ ∂

∂am
cm(am(x), x). (28)
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Then every optimal relational contract is non-terminating: Q∗ = 0. Furthermore, the first best is

achieved in a self-enforcing relational contract with one-step discretionary transfer payment

dt =

(
d(Xt) if smt ≥ bsm(am(Xt),Xt)

0 if smt < bsm(am(Xt),Xt),
(29)

where

d(x) =
∂

∂am
cm(am(x), x)/

µ
Σ

s≥bsm(am(x),x) Σz∈X
∂

∂am
Px(z,s)(am(x), ab(x))

¶
, (30)

and with a court-enforced payment

pt = cm(am(Xt),Xt)− Σ
s≥bsm(am(Xt),Xt)

Σ
z∈X

PXt(z,s)(am(Xt), ab(Xt))d(Xt). (31)

Proposition 6 allows for the buyer’s action to influence the continuation value, but imposes a

stronger version of condition (27), substituting min
z∈X

V (z) for V (z) in the left hand side. When the

worst-case continuation value is sufficiently high, the first best can be implemented with a simple

one-step discretionary payment. The size of the manufacturer’s bonus for generating a signal above

the threshold depends only on the initial state Xt. This is not the unique optimal relational

contract. However, if the worst-case continuation value is sufficiently high, every optimal relational

contract is non-terminating.

Recall that increasing the value of the manufacturer’s outside alternative in state z increases

cm(am, z) by a constant for all am ∈ Am(z). Similarly, increasing the value of the buyer’s outside

alternative in state z increases cb(ab, z) by a constant for all ab ∈ Ab(z). This reduces the first-best

value of the relationship V (z) and, by violating (28), may prevent the firms from achieving the first

best and cause termination with positive probability in the second best optimal relational contract.

5 Product Design

This section provides an application of the general model developed in §2 and demonstrates how

embedding the model in a particular context allows for the development of additional insights. An

important trend in new product development is the shift towards collaborative product design.

Historically, in developing new products, buying firms often embraced a “I design, you build”

approach in dealing with suppliers. As buying firms have recognized the areas in which their

suppliers have comparative advantages (e.g., understanding of certain aspects of technology and

manufacturability), they have moved towards designing new products collaboratively with their
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suppliers (Hanfield et al. 1999). Joint product development is also pursued by firms that are

“peers”; examples of such alliances include GM and Susuzuki, Motorola and Toshiba, and Intel

and AMD (Amaldoss et al. 2000).

An important issue in product design is the degree to which development work is done in

parallel versus sequentially. Parallel development holds out the promise of more quickly identifying

a successful design. However, to the extent that a firm is seeking to identify a single design, parallel

development will typically entail actions that ex post will be revealed to be redundant and wasteful.

Hence, there is a trade-off between speed to market and the expected cost of development (Loch

et al. 2001). This trade-off and the surrounding issues are enriched when firms develop products

collaboratively.

Consider two firms that seek to jointly develop a product. Each firm focuses on a distinct,

but essential, component of the end product. The success of the end product design depends

on each of the firms developing components that work together successfully. Both firms observe

whether the end product is successful, but neither firm observes the level of design effort exerted by

the other firm. For consistency, we label one firm the buyer and one firm the manufacturer, but the

analysis applies to any two firms. The system begins in state 0, which denotes that a successful end

product has not been developed. When a successful product is developed, the system transitions

to state 1 and remains in this state for all subsequent periods: P1,1 = 1.

In each period, each firm decides the number of prototypes it will explore. For the manu-

facturer, the cost of exploring a prototype is cm, and the probability that any particular prototype

is successful is pm. Let Nmt denote the number of prototypes the manufacturer explores in period

t. The probability that at least one of the manufacturer’s prototypes is successful is

1− (1− pm)
Nmt .

Let cb, pb and Nbt denote the analogous quantities for the buyer. The end product is successful

with probability

P0,1(Nmt, Nbt) = [1− (1− pm)
Nmt ][1− (1− pb)

Nbt ],

and is a failure with probability P0,0(Nmt, Nbt) = 1 − P0,1(Nmt, Nbt). The probability that either

firm’s design process produces a successful component is increasing in the number of firm’s proto-

types, but there are diminishing returns from incremental prototypes. Further, Nmt and Nbt are

complements: the impact of one firm’s exploring an incremental prototype on the end product suc-

cess probability is increasing the number of prototypes explored by the other firm. The probability

of success depends only on the actions of the firms in the current period. This is appropriate, for
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example, when technological standards are evolving so that previous unsuccessful design efforts do

not influence the probability of success in the future.† Nevertheless, the formulation developed in

§2 is general enough to capture this type of dependence. The discounted expected profit generated

by a successful end product is G. This is captured in our framework with Y (0, 0) = Y (0, 1) = 0

and Y (1, 1) = (1− δ)G (the firms optimally explore 0 prototypes in state 1). Alternatively, G may

represent expected total discounted profit under an optimal relational contract for joint production

of the new product, involving noncontractible production activities that are not explicitly modeled

here.

One alternative is for the firms to pursue a sequential approach to product design: each

firm explores a single prototype in each period. However, because developing a successful product

requires that both firms concurrently develop successful components, parallel development—in which

one or both firms explores multiple prototypes—may be more attractive. We say that the degree of

parallelism is increasing in the number of prototypes per period explored by each firm. When the

success of the end product depends on a single component, greater parallelism reduces the expected

time to market at the expense of additional expected development cost. When the success of the

end product depends on multiple components, this trade-off is more complex. Greater parallelism

reduces the expected time to market and can reduce the expected development cost, due to the

complementarity in the number of prototypes explored by each firm.

To obtain analytical results, we focus on the case where the production technology is sym-

metric, i.e., cm = cb = c and pm = pb = p, and relax the restriction that Nm and Nb be integer-

valued. We refer to p as the component success probability; let p̄ = 1 − p. We exclude the

uninteresting case in which the firms’ profit under an optimal relational contract is zero. We begin

by considering the benchmark setting where a single firm determines the number of prototypes

(Nm, Nb) to explore. Because the production technology is stationary, it is optimal to explore the

same number of prototypes in each period prior to identifying a successful end product design. The

discounted expected profit in state 0 when the firms explore (Nm, Nb) prototypes in each period is

δP0,1(Nm,Nb)G− c(Nm +Nb)

1− δP0,0(Nm, Nb)
. (32)

The optimal (Nm,Nb) maximizes (32). Proposition 7 characterizes the optimal number of proto-types to explore.

†Alternatively, this assumption is appropriate when the design space is unstructured so that successful end product
designs are dispersed over the design space (Terwiesch and Loch 2004). In this case, the firms seek in each period to
explore a specific area of the design space jointly. If they are unsuccessful, in subsequent periods they will explore
previously unexplored regions of the design space.
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Proposition 7 In the centralized system, the optimal number of prototypes to explore is symmetric

and is given by

Nm = N b = N = max
©
N : −[1− δp̄N (2− p̄N )]c− δp̄N(1− p̄N)[(1− δ)G+ 2cN ] log(p̄) = 0

ª
.

(33)
Further, N is increasing in G and decreasing in c.

It is intuitive that as the payoff from a successful product design increases or the cost of exploring

a prototype decreases, the firm should explore more prototypes. The impact of the component

success probability and discount factor on the optimal number of prototypes is less obvious. As

the component success probability p improves, the value of an incremental prototype increases. On

the other hand, fewer prototypes are required to achieve the same end product success probability.

In extensive numerical study we observed that this second effect almost always dominates, so that

the optimal number of prototypes is decreasing in p; however, in some cases, N is increasing in

p. Similarly, the impact of the discount factor on the optimal number of prototypes is ambiguous:

depending on the problem parameters, increasing the discount factor can either increase or decrease

the optimal number of prototypes.

If the number of prototypes explored is contractible, then the firms can achieve the first best

by specifying that each firm explore the number of prototypes that is optimal for the integrated

system. However, typically each firm will not directly observe the level of design effort exerted by

its partner, much less would this level of effort be verifiable by a third party. A firm can easily

claim to have asserted more effort that it did and then claim that an unfavorable outcome of an end

product design is due to either the failure of the partner firm’s development process or “bad luck.”

In the context of parallel product design, a firm can present unsuccessful component prototypes

and untruthfully claim that these were the result of diligent product development efforts. Typically,

it will be difficult or impossible for the partner firm to ascertain the veracity of such assertions.

Our objective is to characterize the optimal relational contract and to compare this with

the first best solution. The firms can provide stronger incentives for action by imposing joint

punishment following a failure to develop a successful end product via (probabilistic) termination.

However, such termination is costly as it destroys value. An important question is whether the opti-

mal relational contract ever requires termination, and if so, under what circumstances. Proposition

8 characterizes when the optimal relational contract requires termination as well as the optimal

number of prototypes to explore. Let
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κ =

·
3 +
√
5− 2 log

µ·
1−

q
1− 4/(2 +

√
5)

¸
/2

¶¸
c/ log(p̄)

G = −(4 + 2
√
5)c/[δ log(p̄)]

G = (G+ κ) /(1− δ),

and note 0 < G < G.

Proposition 8 In the optimal relational contract, the optimal number of product prototypes to

explore is symmetric: N∗
m = N∗

b = N∗. The optimal relational contract does not terminate following

the development of a successful end product: Q∗(0, 1) = Q∗(1, 1) = 0. If G ≤ G, then the optimal

relational contract terminates with probability one following a failure to develop a successful end

product:

Q∗(0, 0) = 1, (34)

and the optimal number of prototypes is

N∗ = log
³h
1−

p
1 + 8c/[δG log(p̄)]

i
/2
´
/ log(p̄). (35)

If G ∈ ¡G,G¢ , then the optimal relational contract terminates with nonzero probability following a
failure to develop a successful end product:

Q∗(0, 0) = 1− (G−G)/(δG+ κ), (36)

and the optimal number of prototypes is

N∗ = log((3−
√
5)/2)/ log(p̄). (37)

Otherwise, the optimal relational does not require termination:

Q∗(0, 0) = 0, (38)

and the optimal number of prototypes is

N∗ = max
©
N : −2[1− δp̄N(2− p̄N )]c− δp̄N (1− p̄N)[(1− δ)G+ 2cN ] log(p̄) = 0

ª
. (39)

Further, Q∗(0, 0) is decreasing in G and p and increasing in c. N∗ is increasing in G and decreasing

in c.

The thresholds G and G are increasing in c and decreasing in p. Consequently, the optimal relational

contract involves termination with positive probability following the failure to develop a successful
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product if and only if the product design technology is sufficiently poor: the component success

probability is small, the cost to explore a prototype is large, and the value of a successful end product

is small. Further, the optimal termination probability increases as the product design technology

degrades. When this technology is very poor, the product development effort endogenously emerges

as a one-shot interaction.

To see the intuition, suppose the relational contract is non-terminating. In this case, the

firms have an incentive to underinvest in prototypes because each firm receives only a portion

of its marginal contribution to the total system. This effect is most severe when the probability

that a firm’s partner will develop a successful component is small, which occurs when the design

technology is poor. Imposing the joint punishment of termination strengthens each firm’s incentive

to exert effort, which is further strengthened because efforts are complements. The immediate

gain in expected profit more than offsets the expected future cost of possible termination. When

the product design technology is strong, the tendency to underinvest is mitigated, and the cost of

potential termination exceeds the benefit of further ameliorating underinvestment.

The intuition that as the payoff from a successful product design increases or the cost

of exploring a prototype decreases, the firms should explore more prototypes extends from the

centralized to the decentralized case. However, the impact of the component success probability

on the optimal number of prototypes may diverge. For some parameter settings with N À N∗,

increasing p simultaneously decreases N and increases N∗.

The next proposition establishes that the performance of the decentralized system is always

strictly worse than the centralized system. Decentralization distorts the actions of the firms in

two ways. When G is small, decentralization introduces termination, which never occurs in the

centralized system. This first distortion affects the second, the degree of parallelism in development.

By imposing the punishment of termination, a relational contract can provide incentives for the

firms to pursue greater parallelism than in the centralized case. Proposition 8 establishes that

doing so is never optimal.

Proposition 9 Decentralization leads to less parallelism in development:

N∗ < N.

The optimal relational contract calls for the firms to explore fewer prototypes per period than in the

centralized case. The intuition the following: As noted above, without the prospect of termination,

the firms have an incentive to underinvest in exploring prototypes. Although termination can

ameliorate this tendency to underinvest, it is counterproductive to make the punishment so strong
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as to cause overinvestment because this entails both excessive development costs and the costly

prospect of discontinued cooperation.

We have considered the case where the firms only observe whether the end product is

successful. This is appropriate when the components that the firms develop are tightly integrated

and interdependent. If the components are more loosely coupled it may be possible to attribute

the failure in an end product design to a failure of a particular component. More generally, firms

may be able to invest in testing technology that can evaluate the effectiveness of each component

independently. Observing whether a firm’s component is successful provides a signal of that firm’s

efforts that is unclouded by the partner firm’s actions. Figure 1 illustrates the impact of having this

signal information on the optimal relational contract and its performance. The upper two panels
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Figure 1: System performance and optimal relational contracts when signals of effort are or are not
observed. System parameters are: c = 1, p = 0.33 and δ = 0.9. On the top left, termination proba-
bility in the optimal relational contract, Q∗(0, 0). On the top right, optimal number of prototypes
per firm N in the centralized system and in the optimal relational contract. On the bottom left,
discounted expected system profit, as a percentage of the first best profit.

depict the optimal relational contract as a function of the discounted expected profit generated by a

successful end product G. Proposition 8 characterizes the optimal relational contract when the firms

only observe the end product’s success, i.e., without signals, and the panels illustrate this result.

The optimal relational contract requires termination if and only if G is sufficiently small, and the
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optimal number of prototypes is increasing in G. When the firms only observe the end product’s

success, imposing the joint punishment of termination is optimal because it strengthens incentives

for effort. When the firms observe signals, the need for termination is typically eliminated, as

depicted in Figure 1. Observing signals allows the firms to provide stronger incentives for effort

because in the event that only one firm’s component is successful, that firm can be rewarded

with a larger portion of the continuation profit. Consequently, observing signals results in greater

parallelism, without necessitating costly termination.

The lower panel reports the discounted expected system profit when an end product has not

been developed, as a percentage of the first best profit, V ∗(0)/V (0) and V ∗s (0)/V (0), where V ∗s (0)

denotes the discounted expected profit of the system when signals are observed. When the firms only

observe the end product’s success, the loss in system efficiency can be substantial. The loss in system

efficiency is due both to less parallelism (Proposition 9) and to endogenous termination. When G

is small, providing incentives for effort requires imposing the joint punishment of termination, and

it is here that the loss of system efficiency is largest.

As noted above, an immediate implication of Proposition 9 is that the optimal relational

contract in the setting without signals never achieves the first best profit. Observing signals can

overcome this inefficiency. Indeed, for G > 28, the optimal relational contract in the setting with

signals achieves the first best. Even when the optimal relational contract fails to achieve the

first best, the loss in system efficiency is quite small, provided that joint product development

can be sustained. Observing signals can substantially increase profit. Both the absolute gain,

V ∗s (0)−V ∗(0), and the relative gain, [V ∗s (0)−V ∗(0)]/V ∗(0) from observing the signal are decreasing
in G. Thus, perhaps surprisingly, firms that gain the least by developing a successful product gain

the most from obtaining information about the success of each firm’s individual design process.

Among automakers, Toyota has particularly deep long-term relationships with its suppliers.

In its product development process, Toyota and its suppliers pursue an approach with a substantial

degree of parallelism, exploring many more prototypes than other automakers. Further, while

other automakers closely monitor their suppliers’ development processes, Toyota follows a “hands-

off” approach. Ward et al. (1995) describe Toyota’s product development process as a paradox: On

the one hand, Toyota and its suppliers explore so many prototypes that the degree of parallelism

strikes outside observers as wasteful and inefficient. On the other hand, Toyota is the industry’s

fastest and most efficient product developer. To the extent that our simple model accurately

reflects collaborative product development in the auto industry, our results shed some light on these

phenomena. First, although the degree of parallelism in a joint product design process may appear

excessive, Figure 1 suggests that it is, in fact, (weakly) insufficient: Total system expected profit
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Figure 2: Optimal relational contract when signals of effort are observed. System parameters are:
c = 1, p = 0.6 and δ = 0.1. On the left, optimal termination probability when both firms fail to
produce a successful component, Q∗. On the right, the optimal number of prototypes per firm N .

would (weakly) increase if each firm appropriately increased the number of prototypes it explored.‡

To the extent that Toyota is able to observe whether it supplier’s component is successful, there is

little or no distortion from the first best. In contrast, the other automakers’ practice of monitoring is

expensive and effectively increases the marginal cost of exploring a prototype. This leads to larger

downward distortions from the first best, which is consistent with the observation that Toyota

pursues greater parallelism.

Although observing signals typically eliminates the need for termination, the optimal rela-

tional contract may still require termination. Figure 2 depicts the optimal relational contract for

an example in which the discount factor is small and the discounted expected profit generated

by a successful end product is small relative to the cost of a prototype. The optimal relational

contract only calls for termination if both firms fail to produce a successful component. As in the

case without signals depicted in Figure 1, the optimal relational contract requires termination with

positive probability if and only if G is sufficiently small. If G < 87.4, then the optimal relational

contract requires termination with probability one.

6 Discussion

An integral aspect of long-term interaction is the introduction of dynamics, as conditions and the

relationship itself evolve over time. While some aspects of these dynamics may be outside the

‡In fact, Proposition 9 shows that for the case where the components are tightly interconnected, the degree of
parallelism is strictly insufficient.
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control of the firms, as with general economic conditions, other aspects may be shaped by the firms

themselves, as with investments or divestments of human and physical assets.

This paper shows how firms engaged in joint economic activity (e.g., production, product de-

sign) should structure informal agreements in the face of dynamics and the temptation to free-ride.

We demonstrate that an optimal relational contract has a simple, memoryless form. To address

dynamics, it is sufficient that the agreed upon actions depend only the current state and payments

depend on the observed transition. The relational contract discourages free-riding by imposing ter-

mination to jointly punish the firms following a transition associated with poor performance. We

show how process visibility can improve system performance by reducing the need for termination.

A key question is to what extent optimal relational contracts nonetheless require termination.

One of our main insights is that dynamics and the need for termination are tightly inter-

linked. If the buyer does not influence the dynamics, then an optimal relational contract does not

require termination. If the buyer does influence the dynamics, termination may be required. We

consider an application of our model to collaborative product development, where the actions of

both firms influence the dynamics. The optimal relational contract requires termination following

the failure to produce a successful end product if and only if the product design technology is suf-

ficiently poor. Without the threat of termination, incentives to invest in product development are

weak. When the design technology is poor, the expected gain from the stronger incentives imposed

by termination outweighs the expected loss from discontinued cooperation.

The framework we provide for addressing dynamic, joint economic activity is quite general.

For example, the framework applies to progressive investment by a manufacturer in technology or

capacity. Such relationship-specific investments may have the effect of making opportunism less

attractive to the investor, but more attractive to the other firm. More generally, the framework

applies to any action that affects the value of output from joint economic activity. An example

is a buyer or manufacturer’s investment in branding a manufacturer’s component in the end con-

sumer market, such as in the “Intel Inside” advertising campaign for personal computers. We are

optimistic that the framework can be applied to a number of specific problem contexts (e.g., in

operations or at the operations/marketing interface) to obtain sharper insights about dynamics

and relationships, and we hope that future work will follow.
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Technical Appendix to Partnership in a Dynamic Production Sys-
tem
Lemma 1 is useful in the proofs of Propositions 1 and 2. Define ρ(v1, v2) ≡ sup

x∈X
|v1(x)− v2(x)|.

Lemma 1 The operator T is isotone. Further,

if v1 ≥ v2, then ρ(Tv1, Tv2) ≤ δρ(v1, v2). (40)

Proof of Lemma 1: First we establish that T is isotone: if v1 ≥ v2 then

C(am, ab, v1, x) ≤ C(am, ab, v2, x) for every x ∈ X , am ∈ Am(x), ab ∈ Ab(x),

and therefore
Tv1 ≥ Tv2.

It remains to establish (40). We have shown that v1 ≥ v2 implies Tv1 ≥ Tv2. Define

(âb, âm) = argmax
(ab,am)∈Ab(x)×Am(x)

½
−C(ab, am, v1, x) + Σ

z∈X
Pxz(am, ab)[Y (x, z) + δv1(z)]

¾
.

Suppose that

δ Σ
z∈X

Pxz(0, 0)v1(z) ≤ −C(âb, âm, v1, x) + Σ
z∈X

Pxz(âb, âm)[Y (x, z) + δv1(z)]. (41)

This implies

0 ≤ Tv1(x)− Tv2(x) ≤ −C(âb, âm, v1, x) + Σ
z∈X

Pxz(âb, âm)[Y (x, z) + δv1(z)]

+C(âb, âm, v2, x)− Σ
z∈X

Pxz(âb, âm)[Y (x, z) + δv2(z)]

= C(âb, âm, v2, x)−C(âb, âm, v1, x) + δ Σ
z∈X

Pxz(âb, âm)[v1(z)− v2(z)]

≤ δ Σ
z∈X

Pxz(âb, âm)[v1(z)− v2(z)]

≤ δ sup
z∈X

[v1(z)− v2(z)]. (42)
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A similar argument establishes that (42) holds if the inequality in (41) is reversed. Thus,

|Tv1(x)− Tv2(x)| = Tv1(x)− Tv2(x) ≤ δ sup
z∈X

[v1(z)− v2(z)] = δ sup
z∈X

|v1(z)− v2(z)|.

Taking the supremum over x in the expression above yields (40).

Proof of Proposition 1: As defined in (9), V (x) is the maximum discounted expected profit

starting from state x. Therefore, for any v ∈ [0, V (x1)]× ...× [0, V (xn)]

Tv ∈ [0, V (x1)]× ...× [0, V (xN)].

Because T is isotone (by Lemma 1), from Tarski’s fixed point theorem, the operator T has a greatest

fixed point. We next establish that the fixed point is unique. Suppose T has more than one fixed

point. Let v1 denote the greatest fixed point and v2 denote another fixed point, so v1 ≥ v2. From

Lemma 1,

ρ(v1, v2) = ρ(Tv1, Tv2) ≤ δρ(v1, v2).

Because δ ∈ (0, 1), this implies that ρ(v1, v2) = 0, which implies the result.
Proof of Proposition 2: By induction, because the operator T is isotone (from Lemma 1),

TnV ≤ Tn−1V for n = 1, 2, ... (43)

By induction on (43) and (40),

ρ(Tn+1V , TnV ) ≤ δρ(TnV , Tn−1V )

≤ δnρ(TV , V )

≤ δn
°°V °°

→ 0 as n→∞,

so
©
TnV

ª
forms a Cauchy sequence, which has a limit

V̂ = lim
n→∞T

nV

2



satisfying

V̂ ≤ TnV . (44)

To see that V̂ is a fixed point of T , choose � > 0 and select N ≥ 0 such that n ≥ N implies

ρ(TnV , V̂ ) < �/2. Then for any n ≥ N,

ρ(V̂ , T V̂ ) ≤ ρ(V̂ , Tn+1V ) + ρ(Tn+1V , T V̂ )

≤ �

2
+ ρ(Tn+1V , T V̂ )

≤ �

2
+ δρ(TnV , V̂ )

≤ �

2
+ δ

�

2

≤ �

where the third inequality follows from (40) and (44). Therefore we conclude that

V̂ = T V̂ .

Because V ∗ is the unique fixed point of T (by Proposition 1), V̂ = V ∗.

Proof of Proposition 3: Consider an optimal relational contract with the structure described

in Theorem 1. If the associated termination function satisfies Q∗(x, z) = 0 for all x ∈ X with

V ∗(x) > δ Σ
z∈X

Pxz(0, 0)V
∗(z) and z ∈ X then (24) is satisfied, trivially. Suppose not. Fix a state

x ∈ X with V ∗(x) > δ Σ
z∈X

Pxz(0, 0)V
∗(z) and Q∗(x, z) > 0 for some z ∈ X . The termination

function Q∗(x, z) satisfies

Q∗(x, z) = [V ∗(z)− V ∗m(z)− V ∗b (z)]/V
∗(z)

where (V ∗m, V ∗b ) is a solution to the linear program:

max
Vm,Vb

Σ
z∈X

Pxz [Vm(z) + Vb(z)] (45)

subject to: V ∗(z)− Vm(z)− Vb(z) ≥ 0, Vm(z) ≥ 0, Vb(z) ≥ 0 for every z ∈ X
Σ
z∈X

∂Pxz
∂am

δVm(z)− ∂cm
∂am

= 0

Σ
z∈X

∂Pxz
∂ab

δVb(z)− ∂cb
∂ab

= 0,

3



in which, for brevity, we have suppressed the optimal actions: Pxz denotes Pxz(a∗m(x), a∗b(x)); cm
denotes cm(a∗m(x), x); and cb denotes cb(a∗b(x), x). The two constraints are the first order conditions

corresponding to the incentive compatibility constraints in (11). Assumptions (19)-(22) guarantee

that these first order conditions are necessary and sufficient. Note that any optimal solution to

(45) has V ∗m(z) and V ∗b (z) increasing in z, so that each firm’s objective function ((5)-(6)) under the

corresponding optimal relational contract is concave.

Let zn be the largest state z ∈ X such that Q∗(x, z) > 0. Equivalently, choose n so that

Q∗(x, zn) > 0 and Q∗(x, zi) = 0 for all i > n. Suppose that Q∗(x, zi) < 1 for some i < n. This

implies V ∗m(zi) > 0 or V ∗b (zi) > 0. Suppose V ∗b (zi) > 0 and V ∗m(zi) = 0. Then there exists ∆ > 0

such that

eVb(zi) ≡ V ∗b (zi)−∆ ≥ 0eVb(zn) ≡ V ∗b (zn) +∆
∂Pxzi
∂ab

/
∂Pxzn
∂ab

≤ V ∗(zn)− V ∗m(zn)

and at least one of the following two equalities is satisfied:

eVb(zi) = 0eVb(zn) + V ∗m(zn) = V ∗(zn).

By construction,

Σ
z∈X\{zi,zn}

∂Pxz
∂ab

δV ∗b (z) +
∂Pxzi
∂ab

δeVb(zi) + ∂Pxzn
∂ab

δeVb(zn)− ∂cb
∂ab

= 0,

and assumption (22) guarantees that

Pxzi
eVb(zi) + Pxzn eVb(zn) ≥ Pxzi V

∗
b (zi) + Pxzn V ∗b (zn),

so replacing (V ∗b (zi), V
∗
b (zn)) with (eVb(zi), eVb(zn)) leads to a larger objective value in (45). Thus,

reducing V ∗b (zi) to eVb(zi) and increasing V ∗b (zn) to eVb(zn) yields a solution to (45) (and hence an
alternative optimal relational contract) with a termination function eQ that satisfies at least one of
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the following two inequalities:

eQ(x, zn) = 0 (46)eQ(x, zi) = 1. (47)

Analogous arguments establish (46) or (47) when V ∗m(zn) > 0.

By substituting eQ for Q∗ and recursively repeating the above sequence of arguments (at

most n times), we obtain an optimal relational contract with the structure described in Theorem

1 and

Q∗(x, zi) =

(
1 for zi < zk

0 for zi > zk

for some threshold state zk ∈ X . Iterating the preceding arguments over all states x ∈ X with

V ∗(x) > δ Σ
z∈X

Pxz(0, 0)V
∗(z) establishes (24).

Proof of Proposition 4: (a) Because the signal is informative about the manufacturer’s action

Σ
si≥bsm(am,x)

∂

∂am
Px(z,si)(am, ab) > 0.

Recall that X ⊂ X and {am(x), ab(x): x ∈ X} denote the first best transaction states and actions,
obtained by solving (9). For every state Xt ∈ X , set the court-enforced contract

pt(smt) = cm(am(Xt),Xt)− Σ
si≥bsm(am(Xt),Xt)

PXt(z,si)(am(Xt), ab(Xt))×·
Σ

si≥bsm(am(Xt),Xt)

∂

∂am
PXt(z,si)(am(Xt), ab(Xt))

¸−1 ∂

∂am
cm(am(Xt),Xt)

+


·

Σ
si≥bsm(am(Xt),Xt)

∂
∂am

PXt(z,si)(am(Xt), ab(Xt))

¸−1
∂

∂am
cm(am(Xt),Xt) if smt ≥ bsm(am(Xt),Xt)

0 if smt < bsm(am(Xt),Xt),

and discretionary transfer payment: dt = 0. Assuming that the buyer chooses his first best ac-

tion abt = ab(Xt), the manufacturer’s first best action am(Xt) solves the first order condition

corresponding to his incentive compatibility constraint (5). Assumptions (20)-(22) imply that the

manufacturer’s objective is concave, so this is necessary and sufficient. The payment scheme gives

the manufacturer zero expected profit in every period, so the manufacturer is willing to transact.

The signal smt is invariant to the buyer’s action, so the buyer will indeed choose the first best action
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ab(Xt). (b) We provide an explicit example with an independent signal for the manufacturer where

the optimal relational contract requires termination. See Figure 2 and the text immediately before

it in §5. In this example, the buyer’s choice of action influences the ongoing expected discounted

profit.

Proof of Proposition 5: Let a∗b(am;x) denote an action for the buyer which maximizes total

expected discounted profit, given that the manufacturer takes action am:

a∗b(am;x) ∈ argmax
a∈Ab(x)

½
−cb(a, x) + Σ

z∈X
Pxz(am, a)[Y (x, z) + δV ∗(z)]

¾
.

If the optimal relational contract employs action am, an upper bound on the value function in state

x is given by:

V ∗(x) ≤ −cm(am, x)− cb(a
∗
b(am;x), x) + Σ

z∈X
Pxz(am, a

∗
b(am;x))[Y (x, z) + δV ∗(z)]. (48)

We will show that this upper bound is tight. That is, there exists an optimal relational contract

that does not involve termination which implements (am, a∗b(am;x)).

We begin by establishing that V ∗(Xt+1) is invariant with respect to the buyer’s action abt.

By inspection of (10), any two states x1, x2 ∈ X with D(x1) = D(x2) have the same ongoing total

expected discounted profit under an optimal relational contract: V ∗(x1) = V ∗(x2). The desired

result follows from the assumption that D(Xt+1) is invariant with respect to the buyer’s action abt.

Let S denote {s1, ..., sN}.
Assumptions (20)-(22) generalized for the signal allow us to substitute a first order condition

for the manufacturer’s incentive compatibility constraint. Hence (11) evaluated at V ∗ reduces to

C(am, ab, V
∗, x) = cm(am, x) + cb(ab, x) (49)

+min
Vm,Vb

Σ
s∈S

Σ
z∈X

Px(z,s)(am, ab)Q(x, z, s)δV
∗(z)

subject to:

Vm(x, z, s) ≥ 0, Vb(x, z, s) ≥ 0, Vm(x, z, s) + Vb(x, z, s) ≤ V ∗(z)
for z ∈ X , s ∈ S

Σ
s∈S

Σ
z∈X

∂
∂am

Px(z,s)(am, ab)δVm(x, z, s) =
∂

∂am
cm(am, x)

ab ∈ argmax
a∈Ab(x)

½
−cb(a, x) + Σ

s∈S
Σ
z∈X

Px(z,s)(am, a)[Y (x, z) + δVb(x, z, s)]

¾
Q(x, z, s) = [V ∗(z)− Vm(x, z, s)− Vb(x, z, s)]/V

∗(z).

6



Observe that there exists a feasible solution Vm to constraints

Vm(x, z, s) ∈ [0, V ∗(z)] for z ∈ X and s ∈ S (50)

Σ
s∈S

Σ
z∈X

∂

∂am
Px(z,s)(am, ab)δVm(x, z, s) =

∂

∂am
cm(am, x) (51)

if and only if

Σ
s≥bsm(am,x)

Σ
z∈X

∂

∂am
Px(z,s)(am, ab)δV

∗(z) ≥ ∂

∂am
cm(am, x). (52)

Because V ∗(Xt+1) is invariant with respect to the buyers buyer’s action abt, whether (52) holds

depends only on am and not on ab. Thus, C(am, ab, V ∗, x) <∞ and the optimal relational contract

employs action am only if (52) is satisfied. For the remainder of the proof, we restrict attention to

the action am that is employed in the optimal relational contract. Because (52) is satisfied, there

exists a constant β ∈ [0, 1] such that

Vm(x, z, s) =

(
βV ∗(z) if s ≥ bsm(am, x)
0 if s < bsm(am, x) (53)

satisfies constraints (50)-(51). Because V ∗(Xt+1) is invariant with respect to the buyer’s action abt,

a∗b(am;x) ∈ argmax
a∈Ab(x)

½
−cb(a, x) + Σ

z∈X
Pxz(am, a)Y (x, z)

¾
.

Therefore, setting

Q(x, z, s) = 0

Vb(x, z, s) = V ∗(z)
£
1− β1{s≥bsm(am,x)}

¤
for all s ∈ S and z ∈ X (54)

will induce action a∗b(am;x):

a∗b(am;x) ∈ argmax
a∈Ab(x)

½
−cb(a, x) + Σ

s∈S
Σ
z∈X

Px(z,s)(am, a)[Y (x, z) + δVb(x, z, s)]

¾
.

(Recall that the signal s is also invariant with respect to the buyer’s action.) From (Vm, Vb) in

(53) and (54), we conclude that there exists a relational contract that does not involve termination
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which implements (am, a∗b(am;x)). From (48), this is an optimal relational contract.

Applying these arguments to the special case that am = am(x) and a∗b(am;x) = ab(x) (the

first best actions) establishes that the first best is achieved if and only if (27) holds.

Proof of Proposition 6: Wemust verify that conditions (3)-(8) are satisfied when, in every period,

the firms transact if and only if Xt ∈ X , and, when they transact, adopt the first best actions and
execute the payments (29)-(31). Because ∂

∂am
cm(am(x), x) andmin

z∈X
V (z) are non-negative, condition

(28) guarantees that for every state x ∈ X

d(x) ∈
·
0,min

z∈X
V (z)

¸
. (55)

Therefore the manufacturer is willing to execute the discretionary payment and the buyer, assuming

that he will capture the ongoing total expected discounted profit V (Xt+1), is also willing to execute

the discretionary payment: (7) and (8) are satisfied. The discretionary payment is constructed so

that for every state x ∈ X , the manufacturer’s first order condition is satisfied at the first best
action:

Σ
s≥bsm(am(x),x) Σz∈X

∂

∂am
Px(z,s)(am(x), ab(x))d(x)−

∂

∂am
cm(am(x), x) = 0. (56)

Assumptions (20)-(22) imply that the manufacturer’s objective is concave, so this is necessary and

sufficient. It follows immediately from (56) that the first best action is optimal for the manufacturer:

am(x) ∈ argmax
am∈Am(x)

½
Σ

s≥bsm(am(x)) Σz∈XPx(z,s)(am, ab(x))d(x)− cm(am)

¾
, (57)

so (5) is satisfied. The court-enforced payment (31) is chosen so that if, in period t+ 1 and every

subsequent period that begins in state x ∈ X , the firms transact, adopt the first best actions and
execute the transfer payments (29)-(31), then (3) and (4) is satisfied. In particular, the buyer

captures the total ongoing expected discounted profit:

E[Πm(t+1)|Xt+1] = 0. (58)

E[Πb(t+1)|Xt+1] = V (Xt+1). (59)

Because the signal smt is invariant with respect to the buyer’s action abt, the discretionary transfer

payment dt is also invariant with respect to abt. Hence, in period t, the buyer maximizes his own

discounted expected profit by adopting the first best action ab(Xt) and executing the discretionary

8



transfer payment: (6) is satisfied.

Any relational contract which terminates with strictly positive probability on the equilibrium

path generates strictly lower expected discounted profit than the first best. Therefore we conclude

that every optimal relational contract is non-terminating: Q∗ = 0.

Proof of Proposition 7: Let Π(Nm, Nb) denote the quantity in (32). First, we show that the

optimal solution is symmetric. Note that

(∂/∂β)(Π(βN, (1− β)N) =
(−p̄βN + p̄(1−β)N )δN [(1− δ)G+ cN ] log(p̄)

[1 + δ(p̄N − p̄βN − p̄(1−β)N )]2
.

The first order necessary condition holds only if β = 1/2. Note that

(∂/∂N)Π(N,N) = 2Λ(N)/[1− δp̄N(2− p̄N)]2,

where

Λ(N) = −[1− δp̄N(2− p̄N)]c− δp̄N (1− p̄N )[(1− δ)G+ 2cN ] log(p̄).

Because Λ(0) < 0, Λ(∞) < 0, and

(∂/∂N)Λ(N) > 0⇐⇒ N < − log(2)/ log(p̄),

the first order condition

Λ(N) = 0

has at most two solutions. Because Π(0, 0) = 0, (∂/∂N)Π(N,N)|N=0 < 0, and the integrated

system profit under the optimal number of product designs is strictly positive, (33) follows. Because

(∂/∂c)Λ(N)|N=N = δ(1− δ)p̄N(1− p̄N)G log(p̄)/c < 0,

N is decreasing in c. Because

(∂/∂G)Λ(N) = −δ(1− δ)p̄N (1− p̄N ) log(p̄) > 0,

N is increasing in G.
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Proof of Proposition 8: In constructing a relational contract, one only need consider the initial

state of 0. For ease of notation, we omit the first argument in the state transition (e.g., Vm(1)

denotes Vm(0, 1)). Further, let V denote V (0), so that V ≤ δG. Consider the optimization problem

TV = max
Vm(1), Vm(0), Vb(1), Vb(0), Nm, Nb

{δ(P0,1(Nm, Nb)[Vm(1) + Vb(1)] (60)

+ P0,0(Nm, Nb)[Vm(0) + Vb(0)])− c(Nm +Nb)}
subject to

Vm(1) ≥ 0, Vm(0) ≥ 0, Vb(1) ≥ 0, Vb(0) ≥ 0, Vm(1) + Vb(1) ≤ G, Vm(0) + Vb(0) ≤ V,

Nm ∈ argmax
N≥0

{δ[P0,1(N,Nb)Vm(1) + P0,0(N,Nb)Vm(0)]− cN} (61)

Nb ∈ argmax
N≥0

{δ[P0,1(Nm, N)Vb(1) + P0,0(Nm, N)Vb(0)]− cN} . (62)

First we characterize from (61)-(62) the Nash equilibria in the number of designs. We exclude the

equilibrium Nm = Nb = 0 because a relational contract that calls for these actions will result in

zero system profit, and by assumption, the optimal relational contract results in strictly positive

profit. The manufacturer’s objective function in (61) is concave in N, and the first order condition

implies that the manufacturer’s best response is

Nm = [log(c)− log(Vm(1)− Vm(0))− log(−δ(1− p̄Nb) log(p̄))]/ log(p̄). (63)

Similarly, the buyer’s best response is

Nb = [log(c)− log(Vb(1)− Vb(0))− log(−δ(1− p̄Nm) log(p̄))]/ log(p̄), (64)

so (Nm,Nb) is a Nash equilibrium if and only if it satisfies (63)-(64).

Recall that the relational contract must satisfy Vm(1) + Vb(1) ≤ G. Let us assume that

Vm(1) + Vb(1) = G. At the conclusion of this proof we will verify that discounted expected profit

under the optimal relational contract is strictly increasing in G, so this assumption is without loss

of generality in constructing an optimal relational contract. (Intuitively, Vm(1) + Vb(1) = G in the

optimal relational contract because destroying value in state 1 weakens the firms’ incentives for
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effort in state 0.) With Vm(1) + Vb(1) = G, the optimization problem (60) simplifies to

TV = max
v∈[0,V ], α∈[0,1], Nm, Nb

{δ[P0,1(Nm, Nb)G+ P0,0(Nm, Nb)v]− c(Nm +Nb)} (65)

subject to: gm(α,Nm, Nb) = 0

gb(α,Nm, Nb) = 0,

where

gm(α,Nm,Nb) = Nm − [log(c)− log(α(G− v))− log(−δ(1− p̄Nb) log(p̄))]/ log(p̄)

gb(α,Nm,Nb) = Nb − [log(c)− log((1− α)(G− v))− log(−δ(1− p̄Nm) log(p̄))]/ log(p̄).

We will now prove that any solution to (65) is symmetric, that is, α = 1/2 and Nm = Nb. Fix

v in the feasible set. For each (α,v), the equality constraints in (65) are the firms’ first order

conditions in a supermodular game. Because the game is supermodular, it has a largest Nash

equilibrium and the expected profit for each firm (and hence the objective in (65)) is maximized at

the largest equilibrium (see Milgrom and Roberts 1990, Theorem 7). The total number of designs

(Nm +Nb) at the largest Nash equilibrium is maximized by setting α = 1/2. To see this, consider

the optimization problem

max
α∈[0,1/2], Nm, Nb

{Nm +Nb} (66)

subject to: gm(α,Nm, Nb) = 0

gb(α,Nm, Nb) = 0.

Clearly, α = 0 cannot be optimal. Suppose in an optimal solution α < 1/2; then the Lagrangian

multiplier is zero for the constraint α ≤ 1/2. The Lagrangian is

L = Nm +Nb + λmgm(α,Nm, Nb) + λbgb(α,Nm,Nb),
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and any solution must satisfy

λm(∂/∂α)gm(α,Nm,Nb) + λb(∂/∂α)gb(α,Nm,Nb) = 0 (67)

1 + λm(∂/∂Nm)gm(α,Nm, Nb) + λb(∂/∂Nm)gb(α,Nm,Nb) = 0 (68)

1 + λm(∂/∂Nb)gm(α,Nm, Nb) + λb(∂/∂Nb)gb(α,Nm,Nb) = 0. (69)

Note that (67) holds if and only if
λm
λb

=
α

1− α
; (70)

(68) and (69) together imply
λm
λb

=
1− p̄Nb

1− p̄Nm
. (71)

Further, (68) and (69) together imply

1− p̄Nb

α
=
1− p̄Nm

1− α
. (72)

In any equilibrium with α < 1/2, Nm < Nb, and, hence,

1− p̄Nb

α
>
1− p̄Nm

1− α
,

which contradicts (72). Hence, we conclude that the solution to (66) has α = 1/2. At α = 1/2, the

game is symmetric so the largest Nash equilibrium is symmetric (see the last corollary to Theorem

5 in Milgrom and Roberts 1990). Let N(v) denote the number of designs per firm in the largest

Nash equilibrium at α = 1/2. Then N(v) is the largest positive solution to

N = [log(c)− log((G− v)/2)− log(−δ(1− p̄N) log(p̄))]/ log(p̄), (73)

if a positive solution exists; otherwise N(v) = 0. It is straightforward to establish that

N(v) =

(
0 for c > −δ(G− v) log(p̄)/8

log
³h
1−p1 + 8c/[δ(G− v) log(p̄)]

i
/2
´
/ log(p̄) for c ≤ −δ(G− v) log(p̄)/8.
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Finally, consider the optimization problem

max
v∈[0,V ], Nm, Nb

{δ[P0,1(Nm,Nb)G+ P0,0(Nm, Nb)v]− c(Nm +Nb)} (74)

subject to: Nm +Nb ≤ 2N(v).

This is a relaxation of the optimization problem (65), because any solution to the equality con-

straints in (65) has Nm + Nb ≤ 2N(v). We next show that in the region of interest, V ≤ δG,

any solution to (74) satisfies Nm = Nb = N(v). This is immediate if c > −δ(G − v) log(p̄)/8. To

see this when c ≤ −δ(G − v) log(p̄)/8, let π(Nm,Nb) denote the objective function in (65). It is

straightforward to verify that for β ∈ [0, 1],

π(2βN, 2(1− β)N) ≤ π(N,N). (75)

Further, because π(N,N) is convex onN ∈ [0,− log(2)/ log(p̄)] and concave onN ∈ (− log(2)/ log(p̄),∞),
(∂/∂N)π(N,N)|N=0 = −2c < 0, (∂/∂N)π(N,N)|N=N(v) = 2c > 0, and π(0, 0) < π(N(v), N(v)),

π(N,N) ≤ π(N(v), N(v)), (76)

for all N ≤ N(v). (75) and (76) together imply that any solution to (74) satisfies Nm = Nb = N(v).

This completes the proof that every solution to (65) has α = 1/2 and Nm = Nb = N(v).

For the region of interest, V ≤ δG, we have simplified the optimization problem (65) to

TV = max
v∈[0,V ]

F (v),

where

F (v) = δ[P0,1(N(v), N(v))G+ P0,0(N(v),N(v))v]− 2cN(v).

Because

(∂/∂v)F (v) =
δp̄N(v)

1− 2p̄N(v)
Ã

2c

δ(G− v) log(p̄)
+

s
1 +

8c

δ(G− v) log(p̄)]

!
,

F (v) is maximized at

v∗ =

"
G+

(4 + 2
√
5)c

δ log(p̄)

#+
,
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is strictly increasing on v ∈ [0, v∗] and is strictly decreasing on v ∈ [v∗,∞).
If F (v∗) > v∗, then TF (v∗) = F (v∗); thus, V ∗ = F (v∗) and the optimal relational contract

requires Q∗(0) = 1−v∗/F (v∗) and N∗ = N(v∗). If F (v∗) ≤ v∗, then V ∗ = F (v̂), where v̂ = max{v :
F (v) = v}. Further, the optimal relational contract requires Q∗(0) = 0 and N∗ = N2(v̂). To see

this, observe that F (v∗) ≤ v∗ implies that for any v, TF (v) = F (F (v)). Let F (ṽ) = max{F (v) :
F (F (v)) = F (v)}; note v̂ = F (ṽ). Clearly, TF (v̂) = F (v̂), so V ∗ = F (v̂). Because

F (v∗) > v∗ ⇔ G < G

v∗ = 0⇔ G ≤ G,

(34)-(37) follow. If G ≥ G, then the optimal contract must satisfy v = v̂, which holds only if

Λ∗(N) = 0,

where

Λ∗(N) = −2[1− δp̄N(2− p̄N )]c− δp̄N (1− p̄N )[(1− δ)G+ 2cN ] log(p̄).

Because N(v) > − log(2)/ log(p̄), because (∂/∂N)Λ∗(N) < 0 on N > − log(2)/ log(p̄), and because
the profit under the optimal relational contract is strictly positive, (39) follows.

We have assumed that the optimal relational contract satisfies Vm(1) + Vb(1) = G. We now

verify that this assumption is without loss of generality in that the discounted expected profit under

the optimal relational contract, V ∗, is strictly increasing in G. If G < G, then the optimal profit

is given in closed form, V ∗ = F (v∗), and it is straightforward to verify that (∂/∂G)F (v∗) > 0. If

G ≥ G, then F (v∗) ≤ v∗ and V ∗ = v̂. Thus, (∂/∂G)F (v) > 0 implies (∂/∂G)v̂ > 0.

That Q∗(0, 0) is decreasing in G and p and increasing in c is immediate from (34), (36)

and (38). Because N∗ is continuous in G, to establish that N∗ is increasing in G and decreasing

in c it is sufficient to establish this result for N∗ as given in (34), (36) and (38). The result is

immediate for (34) and (36). For (38), the result follows by argument analogous to that in the

proof of Proposition 7.

Proof of Proposition 9: From Proposition 8, N∗ > − log(2)/ log(p̄). Further, (∂/∂N)Λ(N) < 0
for N > − log(2)/ log(p̄), where

Λ(N) = −[1− δp̄N(2− p̄N)]c− δp̄N (1− p̄N )[(1− δ)G+ 2cN ] log(p̄).
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Therefore, it is sufficient to show that

Λ(N∗) > 0 (77)

From Proposition 8, G ≤ G implies (35), so

(∂/∂G)Λ(N∗) = −4c2N∗/G2 < 0

Λ(N∗)|G=G = {1− δ[5−
√
5 + (4

√
5− 8) log((3−

√
5)/2)]/2} > 0, (78)

which together imply (77). From Proposition 8, G ∈ ¡G,G¢ implies (37), so
(∂/∂G)Λ(N∗) = −(3−

√
5)(
√
5− 1)δ(1− δ) log(p̄)/4 > 0.

This, together with (78) and the fact that Λ(N∗) is continuous in G, implies that for G ∈ ¡G,G¢ ,
(77). From Proposition 8, if G ≥ G, then (39). Because Λ∗(N) < Λ(N), where

Λ∗(N) = −2[1− δp̄N(2− p̄N )]c− δp̄N (1− p̄N )[(1− δ)G+ 2cN ] log(p̄),

Λ∗(N∗) = 0 implies (77).
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