Competitive Strategy: Week 6 Dynamic Pricing

Simon Board

Capacity Choice

- Consider a building a stadium for the olympics.
- Demand is given by $p(q)=a-q$.
- Firm chooses capacity K.
- Capacity costs c per unit.
- After capacity built the marginal cost is zero
- Profit maximisation problem

$$
\max _{q, K} p(q) q-c K \quad \text { s.t. } \quad q \leq K
$$

- Set capacity equal to quantity, $K=q$. Hence $\max _{q}(p(q)-c) q$.
- Standard monopoly problem: set $M R(q)=c$,
- With linear demand $q=(a-c) / 2$ and $p=(a+c) / 2$.

Peak-Load Pricing

- Suppose there are two periods: High and Low demand
- Demand given by $a_{i}-q$ where $a_{i} \in\left\{a_{L}, a_{H}\right\}$
- Profit maximisation problem:

$$
\max _{q_{1}, q_{2}, K}\left(a_{L}-q_{L}\right) q_{L}+\left(a_{H}-q_{H}\right) q_{H}-c K \quad \text { s.t. } \quad q_{L}, q_{H} \leq K
$$

- Case 1: Suppose capacity binds in high period only.
- Solution: $q_{L}=a_{L} / 2$ and $K=q_{H}=\left(a_{H}-c\right) / 2$.
- Prices: $p_{L}=a_{L} / 2$ and $p_{H}=\left(a_{H}+c\right) / 2$
- Requires $q_{L} \leq K$, i.e. $a_{H}-a_{L} \geq c$.
- Key idea: Charge capacity when capacity constraint binds.

Peak-Load Pricing cont.

- Case 2: Suppose capacity binds in both periods.
- Solution: $K=q_{L}=q_{H}=\left(a_{H}+a_{L}-c\right) / 4$.
- Prices: $p_{L}=\left(3 a_{L}-a_{H}-c\right) / 4$ and $p_{H}=\left(3 a_{H}-a_{L}-c\right) / 4$.
- Requires $q_{L} \leq a_{L} / 2$, i.e. $a_{H}-a_{L} \leq c$
- Examples
- Discounted electricity prices at midnight
- Happy hours at bars
- $\$ 1$ baseball tickets on Wednesday
- Cheap seaside hotel rooms in March.
- Matinee pricing at cinemas
- Cheap cell phone calls in the afternoon

Yield Management

- Assumptions:
- Customers are arriving over time
- Have capacity constraint for total number who are served.
- Examples: airlines, hotels, the superbowl, package holidays.
- Tradeoff:
- Sell cheap seat today
- Retain option value of seat.

Yield Management cont.

- Two types of customers
- Some willing to pay full fare p_{F}
- Some only willing to pay discounted prices p_{D}
- There are q seats left on the plane.
- Baseline: charge full price p_{F} to all customers.
- Let s be probability plane sells out.
- Let n be probability next customer is low value.
- If charge next customer p_{D} what happens?
- Gain revenue p_{D}.
- Lose revenue $(n s+(1-n)) p_{F}$.
- Each period s rises (falls) if do (do not) make sale.

Durable Goods Monopoly and Declining Prices

- Consider the problem of Xerox
- There is a demand for Xerox copiers
- Initially sell to high valuation customers
- Next year sell to customers with lower valuations
- Problem: Customers anticipate prices will fall
- Customer delay purchases until price falls
- Monopolist competes with future selves
- The Coase Conjecture
- When the good is infinitely durable the monopolist will have no market power
- Price instantly falls to marginal cost

Durable Goods Monopoly cont.

- Key feature
- Used good is perfect substitute for new good
- Hence durable goods susceptible
- Also applies to durable services (e.g. movies)
- Solutions:
- Renting (e.g. Xerox)
- Most-favoured customer clauses (e.g. Chrysler)
- Reputation (e.g. record companies)

Experimentation

- Suppose you wish to sell a unique good
- At time t charge $p(t)$
- Each period a buyer chooses to buy or not.
- Each buyer has the same value v
- You do not know the valuation.
- Optimal policy: start price high and lower slowly.
- Solve through backwards induction.
- What if have good each period to sell?
- Price may go up or down.

Hold-Up

- You supply 100 crankshafts to GM.
- A crankshaft is worth $\$ 200$ to GM
- The cost is $\$ 100$ to you.
- Consider new investment
- Reduce production price by $\$ 50$ per crankshaft
- Cost is $\$ 3000$
- Should you invest?
- Problem: Hold-Up after investment is sunk
- Fast Food Franchises
- A franchise costs $\$ 50-250 \mathrm{k}$.
- Company can raise price of inputs
- Company can sell more franchises (see durable-goods, above)
- Electric Utilities
- Electric power plants are often built next to coal mines
- But then the coal mine can increase its prices.
- When is this a problem?
- Whenever investment is specialised
- For whom is this a problem?
- Supplier, buyers and complimentors

Hold-Up: Solutions

- Integration
- Long term contracts signed before investment (e.g. electric utilities)
- Reputation
- Make other firm invest (but now they get held up?)
- Second sourcing and licensing (e.g. VHS, Intel 8086)
- Exclusive contracts (e.g. GM and exclusive territories)
- Most Favoured Customer Clauses (e.g. selling franchises)

