Competitive Strategy: Week 10 Vertical Relations

Simon Board

Introduction

- Selling to other firms is different from mass consumer markets

1. Large customers have bargaining power.
2. Customers compete with each other.

- We suppose the value chain consists of three levels:
- Upstream firms
- Downstream firms
- Final customers

Double Marginalisation

- Model
- Upstream firm, U. Cost 0 , charges p^{U} per unit.
- Downstream firm, D. Cost p^{U}, charges p^{D}.
- Customers demand $q(p)=a-p^{D}$.
- Profit of downstream firm is

$$
\pi^{D}=\left(p^{D}-p^{U}\right)\left(a-p^{D}\right)
$$

- Differentiating, optimal price is $p^{D}=\left(a+p^{U}\right) / 2$.
- Optimal quantity is $q^{D}=\left(a-p^{U}\right) / 2$.
- Hence U faces demand curve $q=\left(a-p^{U}\right) / 2$. U 's profit,

$$
\pi^{U}=p^{U}\left(a-p^{U}\right) / 2
$$

- Differentiating, at optimum, $p^{U}=a / 2$ and $q^{U}=a / 4$.

Double Marginalisation cont.

- Summary
- Prices: $p^{U}=a / 2$ and $p^{D}=3 a / 4$.
- Quantity sold: $q^{U}=q^{D}=a / 4$.
- What if U and D vertically integrated?
- Charge price p^{I}. Joint profit,

$$
\pi=p^{I}\left(a-p^{I}\right)
$$

- Differentiating, at optimum, $p^{I}=a / 2$ and $q^{I}=a / 2$.
- Double marginalisation problem:
- When one firm raises price, they exert negative externality on other firm.
- Profit less under vertical separation than vertical integration.

Case Study: Porsche

- In 1984 Porsches sold through VW-Audi dealership
- Dealers pay low price for car: less than "invoice"
- 90% sales sold close to suggested retail price.
- Dealers hold inventory and contribute to national advertising.
- Setup due to Alfred Sloan: dealerships build loyalty.
- Porsche's suggested scheme:
- Dealers book orders. Get 8% commission.
- PorscheUSA sets prices and holds inventory.
- Huge resistance from dealers (who made 18% margins before).
- Dealers and VW filed legal suits using franchise laws.
- Porsche backed down although defended legal position.

Double Marginalisation: Two-Part Tariff

- Suppose U uses two-part tariff

$$
p^{U}=F+x^{U} q
$$

- Firms can produce same quantity as when integrated.
- Set x^{U} equal to U 's MC (zero in this case). D 's profits:

$$
\begin{aligned}
\pi^{D} & =\left(p^{D}-x^{U}\right)\left(a-p^{D}\right)-F \\
& =p^{D}\left(a-p^{D}\right)-F
\end{aligned}
$$

Hence D chooses $p^{D}=p^{I}$ and $q^{D}=q^{I}$.

- How choose F ?
- $F=0$ then D gets all profit. $F=\pi^{I}$ then U gets all profit.
- Depends on bargaining power.
- Analogy: First degree price discrimination.

Double Marginalisation: RPM

- Maximum resale price
- U names maximum price, p^{M}, that D can charge
- Firms can produce same quantity as when integrated.
- U sets $p^{M}=a / 2$, so D sells $a / 2$.
- U sets p^{U} equal to p^{M} minus D 's MC (zero in this case).
- Idea: U chooses upstream and downstream price.
- Internalise externality.
- Just make sure D gets positive profits.
- So there are contractual solutions to double marginalisation
- But many supply chains still suffer.
- For example, we assumed U knows D 's costs.

Two-part Tariffs with Downstream Competition

- Model
- One upstream firm U with cost 0 .
- Two downstream firms D_{1} and D_{2} have cost 0 .
- Two-part tariff: U sells q_{i} to D_{i} for fee t_{i}.
- D_{1} and D_{2} Cournot competitors. Demand $p(q)=1-q$.
- Contracts publicly observable.
- U chooses $\left(q_{1}, t_{1}, q_{2}, t_{2}\right)$ to maximise

$$
\pi_{U}=t_{1}+t_{2} \quad \text { s.t. } \quad\left(1-q_{1}-q_{2}\right) q_{i}-t_{i} \geq 0 \quad i \in\{1,2\}
$$

- Thus U chooses $\left(q_{1}, q_{2}\right)$ to maximise

$$
\left(1-q_{1}-q_{2}\right) q_{1}+\left(1-q_{1}-q_{2}\right) q_{2}
$$

- Solution: $q_{1}^{*}+q_{2}^{*}=1 / 2$ That is, U provides monopoly qty.

Two-part Tariffs with Downstream Competition

- Contracts privately observable.
- Problem: U has incentive to supply too much to downstream firms. Problem of secret price cuts.
- D_{1} anticipates U has contract $\left(\hat{q}_{2}, \hat{t}_{2}\right)$ with D_{2}.
- U chooses $\left(q_{1}, t_{1}, q_{2}, t_{2}\right)$ to maximise

$$
\pi_{U}=t_{1}+t_{2} \quad \text { s.t. } \quad\left(1-q_{1}-\hat{q}_{2}\right) q_{1}-t_{1} \geq 0 \quad \text { and } \quad\left(1-\hat{q}_{1}-q_{2}\right) q_{2}-t_{2} \geq 0
$$

- Substituting, U chooses $\left(q_{1}, q_{2}\right)$ to maximise

$$
\left(1-q_{1}-\hat{q}_{2}\right) q_{1}+\left(1-\hat{q}_{1}-q_{2}\right) q_{2}
$$

- Solution: $q_{1}^{*}=\left(1-\hat{q_{2}}\right) / 2$ and $q_{2}^{*}=\left(1-\hat{q_{1}}\right) / 2$.
- In equilibrium expectations correct: $\hat{q}_{1}=q_{1}^{*}$ and $\hat{q}_{2}=q_{2}^{*}$.
- Hence $q_{1}^{*}=q_{2}^{*}=1 / 3$. That is, U provides Cournot qty.

Investment Externalities

- Suppose two downstream firms D_{1} and D_{2}.
- D_{1} can invest in product to increase consumers' values.
- Advertising
- Free samples
- Expertise
- Problem: D_{2} free-rides on investments and undercuts D_{1}.
- Solutions
- Resale price maintenance (minimum resale price), e.g. Books in UK. But RPM is illegal in the US.
- Exclusive territories, e.g. Cars.
- U pays D for investment, e.g. supermarket shelves.

Assignment

- Read "Face Value: The Man with Two Daggers", The Economist, August 27th, 2005.
- What is the upstream business of BenQ?
- What is BenQ's big strategy?
- How did Motorola react to this move?
- How is the strategy working out so far?
- What do you think will happen over the next ten years?

