Why is Reputation Useful?

• Cooperation between competitors
 – Prices.
 – New product design, standards, market development, lobbying, advertising.

• Complementors.
 – New products.

• Suppliers
 – Reputation not to hold up suppliers.

• Buyers
 – Reputation for high quality product

• Entrants
 – Reputation for toughness to fight entry.
Tacit Cooperation over Prices

- Tacit cooperation
 - Cooperation without explicit agreements.
 - Agreements not enforceable by court.

- Key ingredients
 - Shared interest as basis for cooperation.
 - Mechanism for punishment.
 - Mechanism for recovering from mistakes.

- Warning: price fixing is illegal!
 - Cooperation on R&D or advertising is not.

Cases

- American Airlines circa 1990
 - After deregulation there were frequent price wars
 - Interpretation: AA was trying to teaching rivals how to cooperate.
 - But bankrupt rivals had no interest in playing along.

- 1955 Automobile Price War
 - 45% more cars were produced in 1955 than 1954 or 1956.

- Joint Executive Committee
 - Classic railroad cartel from 1880s
 - Involved in price war 1/3 of the time
Punishment

• Is punishment severe enough to deter defection?
 – Price war may need to be very long.
 – AA couldn’t punish bankrupt airlines sufficiently.

• Is punishment credible?
 – Punishment is costly, but must be optimal after defection.
 – Idea: get punished for not punishing.
 – Problem: must avoid renegotiation.

• When to punish?
 – Is deviation deliberate or by mistake?
 – Threshold rule: market share cannot rise above 20%.
 – Ambiguous rule: prob of price war rises with market share.

Recovery

• How do you recover from mistakes?

• Could punish for fixed time

• Make punishment fit the crime
 – Deeper and longer price war for larger transgression.
A Mathematical Example

- Market
 - Two firms A and B
 - Costs zero
 - Demand $p = a - q$.

- Bertrand competition
 - Prices $p_A = p_B = 0$ and profits $\pi_A = \pi_B = 0$.

- Joint profit maximisation
 - Prices $p_A = p_B = a/2$ and both industry profits $\pi_M = a^2/4$.

Example II

- Suppose both firms agree to set $p_A = p_B = a/2$.
 - Problem: incentive to deviate.

- Punishment
 - If cheat then we revert to Bertrand competition.

- Grim strategy for $i \in \{A, B\}$
 - If no-one has ever defected \rightarrow set $p_i = a/2$.
 - If someone has defected \rightarrow set $p_i = 0$.

- Is this a subgame perfect equilibrium? Will any firm defect?
Example III

- Game
 - Each round firms choose p_i
 - Discount rate δ.
- Suppose no-one has defected.
 - If don’t defect get $\pi_M/2$ forever.
 - If defect get π_M today, but get punished for rest of time.
 - Hence defect if
 \[
 \pi_M > \frac{\pi_M}{2} + \delta \frac{\pi_M}{2} + \delta^2 \frac{\pi_M}{2} + \delta^3 \frac{\pi_M}{2} + \ldots
 \]
 \[
 = \frac{1}{1 - \delta} \frac{\pi_M}{2}
 \]
 - Defect if $\delta < 1/2$.

Example IV: Some Questions

- What are the shared interests of firms A and B?
- When do firms enter punishment phase?
- How is defection punished?
- Is “Nash reversion” punishment credible?
- Can firms recover from punishment phase?
- What if firms could renegotiate in punishment phase? Would this increase payoffs?
Problems with Tacit Collusion

• Lots of firms
 – More reason to deviate.
 – If there are N firms in Bertrand model, need $\delta \geq (N - 1)/N$.
 – Harder to detect defection.
 – Harder to coordinate punishment.

• Small or failing firms
 – If firms differ they may have different incentives to defect.
 – Design punishments to stop those most likely to deviate.
 – Or ignore these firms.

• Entry
 – Successful cooperation promotes entry and free-riding.

Problems cont.

• Competition on other dimensions
 – If cooperate on advertising, then price competition may increase.

• Demand Variation
 – When demand unusually high, have large incentive to deviate.
 – Could increase punishments.
 – Could create exemptions and not risk price war.

• Differentiated Products
 – Makes price comparisons harder.
 – Also changes nature of competition.

• Reaction Time
 – Long reaction time like low δ, so cooperation harder to sustain.
Problems cont.

- Environmental Randomness
 - Suppose market price of oil falls.
 - Is this random, or did OPEC country defect?
- Communications problems
 - How specify exactly what type of adverts are allowed?
- Need infinite period game.
 - Suppose game lasts for 10 periods.
 - Then cheat in period 10 for sure.
 - Thus cheat in period 9 for sure.
 - Thus cooperation cannot be sustained!
- When fixing prices: Confessions

Problem: Allocating Production in a Cartel

- Two firms A and B with costs $c_A(q) = 0$ and $c_B(q) = 1$.
 - Linear demand, $q(p) = a - p$, where $a \geq 2$
- Bertrand production
 - A prices at $p_A = 1$. Profits: $\pi_A = (a - 1)$ and $\pi_B = 0$.
- Joint profit maximising problem
 - A prices at $p_A = a/2$. Profits: $\pi_A = a^2/4$ and $\pi_B = 0$.
- If transfers are possible
 - Nash bargaining: A pays B half of gain from cooperation.
 - Problem: Firm may misrepresent costs.
- If transfers not possible
 - B gets some production, although this is inefficient.
Aiding Tacit Cooperation

• Industry associations
 – Lobby government, help advertising, provide information to consumers.

• Published price lists
 – Makes pricing more transparent.
 – Example: General Electric’s electric turbines.

• Most–Favoured Customer clauses
 – Commit not to make secret price cut to an individual.

• Exclusive territories
 – Make market sharing rule transparent.

Aiding Tacit Cooperation cont.

• Preannouncing future price increases
 – Reduces lag time.
 – Example: because of fuel prices, prices will rise by 10%

• Incremental Steps
 – If don’t trust rivals take small steps.

• Multi-market contact
 – Easy to trust if interact in many markets: more possibilities for punishment.

• Unused capacity
 – Increases threat of punishment.
Reputation for Quality

- A firm chooses quality $q \in \{q_L, q_H\}$ at cost $\{c_L, c_H\}$.
 - Utility of buyer equals $q - p$.
 - Buyer only sees quality after they purchase good.

- One shot game
 - Firm produces $q = q_L$ and charge price $p = q_L$.

- Repeated game.
 - Buyer: pays q_H if firm chosen q_H in past, else pays q_L.
 - Firm chooses high quality if
 \[
 \frac{1}{1 - \delta} (q_H - c_H) \geq (q_H - c_L) + \frac{\delta}{1 - \delta} (q_L - c_L)
 \]

Reputation to Fight Entry

- Entry Game
 1. Entrant E chooses to enter or not.
 2. If E enters, incumbent I chooses to fight or not.
 \[
 (u_I, u_E) = (200, 0) \quad \text{if } E \text{ doesn't enter}
 \]
 \[
 = (75, 75) \quad \text{if } E \text{ enters and } I \text{ acquiesces}
 \]
 \[
 = (-50, -50) \quad \text{if } E \text{ enters and } I \text{ fights}
 \]

- One period game: E enters and I acquiesces.

- Repeated game ("chain store game")
 - E's strategy: enter if I has ever acquiesced.
 - I can credibly fight if
 \[
 -50 + 200 \frac{\delta}{1 - \delta} \geq \frac{75}{1 - \delta}
 \]
Assignment

• Read “The Real Lesson of Enron’s Implosion” by McAfee (on website).

• Why is Enron’s collapse puzzling?

• What was Enron’s role in the gas market?

• Why is trust important in this market?

• Can you think of other firms in the trust business?