Competitive Strategy: Week 7

Dynamic Pricing

Simon Board

Capacity Choice

- Consider building a stadium for the Olympics.
- Demand is given by \(p(q) = a - q \).
- Firm chooses capacity \(K \).
 - Capacity costs \(c \) per unit.
 - After capacity built the marginal cost is zero
- Profit maximisation problem

\[
\max_{q,K} p(q)q - cK \quad \text{s.t.} \quad q \leq K
\]

- Set capacity equal to quantity, \(K = q \). Hence \(\max_q (p(q) - c)q \).
 - Standard monopoly problem: set \(MR(q) = c \),
 - With linear demand \(q = (a - c)/2 \) and \(p = (a + c)/2 \).
Peak–Load Pricing

• Suppose there are two periods: High and Low demand
 – Demand given by \(a_i - q \) where \(a_i \in \{a_L, a_H\} \)

• Profit maximisation problem:

\[
\max_{q_1, q_2, K} (a_L - q_L)q_L + (a_H - q_H)q_H - cK \quad \text{s.t.} \quad q_L, q_H \leq K
\]

• Case 1: Suppose capacity binds in high period only.
 – Solution: \(q_L = a_L/2 \) and \(K = q_H = (a_H - c)/2 \).
 – Prices: \(p_L = a_L/2 \) and \(p_H = (a_H + c)/2 \)
 – Requires \(q_L \leq K \), i.e. \(a_H - a_L \geq c \).

• Key idea: Charge capacity when capacity constraint binds.

Example:
- Discounted electricity prices at midnight
- Happy hours at bars
- $1 baseball tickets on Wednesday
- Cheap seaside hotel rooms in March.
- Matinees at cinemas
- Cheap cell phone calls in the afternoon

Peak–Load Pricing cont.

• Case 2: Suppose capacity binds in both periods.
 – Solution: \(K = q_L = q_H = (a_H + a_L - c)/4 \).
 – Prices: \(p_L = (3a_L - a_H - c)/4 \) and \(p_H = (3a_H - a_L - c)/4 \).
 – Requires \(q_L \leq a_L/2 \), i.e. \(a_H - a_L \leq c \)

• Examples
 – Discounted electricity prices at midnight
 – Happy hours at bars
 – $1 baseball tickets on Wednesday
 – Cheap seaside hotel rooms in March.
 – Matinees at cinemas
 – Cheap cell phone calls in the afternoon
Yield Management

- Assumptions:
 - Customers are arriving over time
 - Have capacity constraint for total number who are served.
- Examples: airlines, hotels, the superbowl, package holidays.
- Tradeoff:
 - Sell cheap seat today
 - Retain option value of seat.

Yield Management cont.

- Two types of customers
 - Some willing to pay full fare p_F
 - Some only willing to pay discounted prices p_D
- There are q seats left on the plane.
- Baseline: charge full price p_F to all customers.
 - Let s be probability plane sells out.
 - Let n be probability next customer is low value.
- If charge next customer p_D what happens?
 - Gain revenue p_D.
 - Lose revenue $(ns + (1 - n))p_F$.
- Each period s rises (falls) if do (do not) make sale.
Durable Goods Monopoly and Declining Prices

- Consider the problem of Xerox
- There is a demand for Xerox copiers
 - Initially sell to high valuation customers
 - Next year sell to customers with lower valuations
- Problem: Customers anticipate prices will fall
 - Customer delay purchases until price falls
 - Monopolist competes with future selves
- The Coase Conjecture
 - When the good is infinitely durable the monopolist will have no market power
 - Price instantly falls to marginal cost

Eco380, Competitive Strategy

Durable Goods: Two-Period Model

- Agents have values $\theta \sim U[0, 1]$. Zero cost. Discount rate δ.
- Suppose sell to $[\theta_1, 1]$ in period 1.
 - Profit in period 2 is $\pi_2 = (\theta_1 - p_2)p_2$
 - Optimal price $p^*_2 = \theta_1/2$
- Type θ_1 is indifferent between buying in periods 1 and 2. Hence
 $$ (\theta_1 - p_1) = \delta(\theta_1 - p_2) $$
 Rearranging, $p_1 = (1 - \delta/2)\theta_1$
- Total profit from both periods,
 $$ \pi = (1 - \theta_1)(1 - \frac{\delta}{2})\theta_1 + \delta \left(\frac{\theta^*_1}{4}\right)^2 $$

Eco380, Competitive Strategy
Durable Goods: Two-Period Model

- The firm chooses θ_1 to maximise π. The FOC yields

$$\theta_1^* = \left(\frac{1 - \delta/2}{2 - \delta/2} \right)$$

Thus θ_1^* decreases in δ.

- Substituting and rearranging, total profit is

$$\pi = \frac{(2 - \delta)^2}{4(4 - \delta)}$$

Profit decreases in δ. If $\delta = 1$, then $\pi = 1/12$. If $\delta = 0$ then $\pi = 1/4$ as in static monopoly.

- Key: firm can’t commit not to reduce price.

- General result: if firm can commit to any price path, the best they can do is $p_1 = p_2 = 1/2$ (static monopoly).

Durable Goods Monopoly: Solutions

- What does this model apply to?
 - Classic durable goods (e.g. cars)
 - Durable goods with resale (e.g. prams)
 - Durable services (e.g. movies)

- Solution 1: Reputation (e.g. record companies).

- Solution 2: Renting (e.g. Xerox)
 - Each period sell static monopoly quantity.

- Solution 3: Best-price provision (e.g. Chrysler)
 - If firm lowers price then customers get rebate.
 - Firm never any incentive to lower price below monopoly price since lose money in rebates.
Durable Goods and Holdup

- Durable goods firms face two types of commitment problems:
 - They wish to lower prices to keep making sales (see above)
 - They can holdup their customers.
- Example 1: Servicing and supplying accessories.
 - After buy car owner still needs parts if it breaks.
 - Customers usually don’t sign contract over part prices.
 - Firm has holdup customers and increase parts prices.
 - Solution: licence manufacturing of parts, or use standard parts, to keep prices competitive.
- Example 2: New models
 - When Apple launches iPod nano, value of iPod falls.
 - Firm has excessive incentive to introduce new products.

Experimentation

- Firm wishes to sell a unique good (e.g. one of a kind dress).
 - At time t charge $p(t)$
- Each period a buyer chooses to buy or not.
 - Each buyer has the same value v
 - Firm does not know the valuation.
- Optimal policy: start price high and lower slowly.
 - Solve through backwards induction.
- What if have good each period to sell?
 - Price may go up or down.
 - But should move prices around to experiment.
Inventories

- Why need inventories?
- Input inventories: ordering has fixed costs.
 - Fix prices. A random number of sales, q_t, occur in period t.
 - Firm should adopt (S,s) rule. When inventories, I_t, fall below s then put in order to bring I_t back to S.
 - If order only possible once a month then use yield management within the month.
- Output inventories: smoothing production.
 - Suppose firm likes to keep production constant (e.g. convex costs)
 - Transitory demand increase: build up inventories and raise prices.
 - Permanent demand increase: increase production.

Assignment

- Read “Hooked on Discounts”, The Economist, 9th July 2005.
- Why did GM slashed prices?
- What was the immediate impact on sales?
- What do you think will happen to sales next quarter? Will GM’s market share be less than 41%? Will it be less than 33%?
- Is GM’s strategy a good idea?