Competitive Strategy: Week 7

Dynamic Pricing

Simon Board

Eco380, Competitive Strategy

Capacity Choice

- Consider building a stadium for the olympics.
- Demand is given by p(q) = a q.
- Firm chooses capacity K.
 - Capacity costs c per unit.
 - After capacity built the marginal cost is zero
- Profit maximisation problem

$$\max_{q,K} p(q)q - cK$$
 s.t. $q \le K$

- Set capacity equal to quantity, K = q. Hence $\max_{q} (p(q) c)q$.
 - Standard monopoly problem: set MR(q) = c,
 - With linear demand q = (a c)/2 and p = (a + c)/2.

1

Peak-Load Pricing

- Suppose there are two periods: High and Low demand
 - Demand given by $a_i q$ where $a_i \in \{a_L, a_H\}$
- Profit maximisation problem:

$$\max_{q_1, q_2, K} (a_L - q_L)q_L + (a_H - q_H)q_H - cK \quad \text{s.t.} \quad q_L, q_H \le K$$

- Case 1: Suppose capacity binds in high period only.
 - Solution: $q_L = a_L/2$ and $K = q_H = (a_H c)/2$.
 - Prices: $p_L = a_L/2$ and $p_H = (a_H + c)/2$
 - Requires $q_L \leq K$, i.e. $a_H a_L \geq c$.
- Key idea: Charge capacity when capacity constraint binds.

Eco380, Competitive Strategy

3

Peak-Load Pricing cont.

- Case 2: Suppose capacity binds in both periods.
 - Solution: $K = q_L = q_H = (a_H + a_L c)/4$.
 - Prices: $p_L = (3a_L a_H c)/4$ and $p_H = (3a_H a_L c)/4$.
 - Requires $q_L \leq a_L/2$, i.e. $a_H a_L \leq c$
- Examples
 - Discounted electricity prices at midnight
 - Happy hours at bars
 - \$1 baseball tickets on Wednesday
 - Cheap seaside hotel rooms in March.
 - Matinee pricing at cinemas
 - Cheap cell phone calls in the afternoon

Yield Management

- Assumptions:
 - Customers are arriving over time
 - Have capacity constraint for total number who are served.
- Examples: airlines, hotels, the superbowl, package holidays.
- Tradeoff:
 - Sell cheap seat today
 - Retain option value of seat.

Eco380, Competitive Strategy

Yield Management cont.

- Two types of customers
 - Some willing to pay full fare p_F
 - Some only willing to pay discounted prices p_D
- There are q seats left on the plane.
- Baseline: charge full price p_F to all customers.
 - Let s be probability plane sells out.
 - Let n be probability next customer is low value.
- If charge next customer p_D what happens?
 - Gain revenue p_D .
 - Lose revenue $(ns + (1-n))p_F$.
- Each period s rises (falls) if do (do not) make sale.

5

Durable Goods Monopoly and Declining Prices

- Consider the problem of Xerox
- There is a demand for Xerox copiers
 - Initially sell to high valuation customers
 - Next year sell to customers with lower valuations
- Problem: Customers anticipate prices will fall
 - Customer delay purchases until price falls
 - Monopolist competes with future selves
- The Coase Conjecture
 - When the good is infinitely durable the monopolist will have no market power
 - Price instantly falls to marginal cost

Eco380, Competitive Strategy

Durable Goods: Two-Period Model

- Agents have values $\theta \sim U[0,1]$. Zero cost. Discount rate δ .
- Suppose sell to $[\theta_1, 1]$ in period 1.
 - Profit in period 2 is $\pi_2 = (\theta_1 p_2)p_2$
 - Optimal price $p_2^* = \theta_1/2$
- Type θ_1 is indifferent between buying in periods 1 and 2. Hence

$$(\theta_1 - p_1) = \delta(\theta_1 - p_2)$$

Rearranging, $p_1 = (1 - \delta/2)\theta_1$

• Total profit from both periods,

$$\pi = (1 - \theta_1)(1 - \frac{\delta}{2})\theta_1 + \delta\left(\frac{\theta_1^*}{4}\right)^2$$

7

Durable Goods: Two-Period Model

• The firm chooses θ_1 to maximise π . The FOC yields

$$\theta_1^* = \left(\frac{1 - \delta/2}{2 - \delta/2}\right)$$

Thus θ_1^* decreases in δ .

• Substituting and rearranging, total profit is

$$\pi = \frac{(2-\delta)^2}{4(4-\delta)}$$

Profit decreases in δ . If $\delta = 1$, then $\pi = 1/12$. If $\delta = 0$ then $\pi = 1/4$ as in static monopoly.

- Key: firm can't commit not to reduce price.
- General result: if firm can commit to any price path, the best they can do is $p_1 = p_2 = 1/2$ (static monopoly).

Eco380, Competitive Strategy

9

Durable Goods Monopoly: Solutions

- What does this model apply to?
 - Classic durable goods (e.g. cars)
 - Durable goods with resale (e.g. prams)
 - Durable services (e.g. movies)
- Solution 1: Reputation (e.g. record companies).
- Solution 2: Renting (e.g. Xerox)
 - Each period sell static monopoly quantity.
- Solution 3: Best-price provision (e.g. Chrysler)
 - If firm lowers price then customers get rebate.
 - Firm never any incentive to lower price below monopoly price since lose money in rebates.

Durable Goods and Holdup

- Durable goods firms face two types of commitment problems:
 - They wish to lower prices to keep making sales (see above)
 - They can holdup their customers.
- Example 1: Servicing and supplying accessories.
 - After buy car owner still needs parts if it breaks.
 - Customers usually don't sign contract over part prices.
 - Firm has holdup customers and increase parts prices.
 - Solution: licence manufacturing of parts, or use standard parts, to keep prices competitive.
- Example 2: New models
 - When Apple launches iPod nano, value of iPod falls.
 - Firm has excessive incentive to introduce new products.

Eco380, Competitive Strategy

11

Experimentation

- Firm wishes to sell a unique good (e.g. one of a kind dress).
 - At time t charge p(t)
- Each period a buyer chooses to buy or not.
 - Each buyer has the *same* value v
 - Firm does not know the valuation.
- Optimal policy: start price high and lower slowly.
 - Solve through backwards induction.
- What if have good each period to sell?
 - Price may go up or down.
 - But should move prices around to experiment.

Inventories

- Why need inventories?
- Input inventories: ordering has fixed costs.
 - Fix prices. A random number of sales, q_t , occur in period t.
 - Firm should adopt (S,s) rule. When inventories, I_t , fall below s then put in order to bring I_t back to S.
 - If order only possible once a month then use yield management within the month.
- Output inventories: smoothing production.
 - Suppose firm likes to keep production constant (e.g. convex costs)
 - Transitory demand increase: build up inventories and raise prices.
 - Permanent demand increase: increase production.

Eco380, Competitive Strategy

13

Assignment

- Read "Hooked on Discounts", The Economist, 9th July 2005.
- Why did GM slashed prices?
- What was the immediate impact on sales?
- What do you think will happen to sales next quarter? Will GM's market share be less than 41%? Will it be less than 33%?
- Is GM's strategy a good idea?