Introduction

• Selling to other firms is different from mass consumer markets
 1. Large customers have bargaining power.
 2. Customers compete with each other.
• We suppose the value chain consists of three levels:
 – Upstream firms
 – Downstream firms
 – Final customers
Double Marginalisation

- Model
 - Upstream firm, U. Cost 0, charges p^U per unit.
 - Customers demand $q(p) = a - p^D$.
- Profit of downstream firm is
 \[\pi^D = (p^D - p^U)(a - p^D) \]
 - Differentiating, optimal price is $p^D = (a + p^U)/2$.
 - Optimal quantity is $q^D = (a - p^U)/2$.
- Hence U faces demand curve $q = (a - p^U)/2$. U’s profit,
 \[\pi^U = p^U(a - p^U)/2 \]
 - Differentiating, at optimum, $p^U = a/2$ and $q^U = a/4$.

Double Marginalisation cont.

- Summary
 - Prices: $p^U = a/2$ and $p^D = 3a/4$.
 - Quantity sold: $q^U = q^D = a/4$.
- What if U and D vertically integrated?
 - Charge price p^I. Joint profit,
 \[\pi = p^I(a - p^I) \]
 - Differentiating, at optimum, $p^I = a/2$ and $q^I = a/2$.
- Double marginalisation problem:
 - When one firm raises price, they exert negative externality on other firm.
 - Profit less under vertical separation than vertical integration.
Case Study: Porsche

- In 1984 Porsches sold through VW-Audi dealership
 - Dealers pay low price for car: less than “invoice”
 - 90% sales sold close to suggested retail price.
 - Dealers hold inventory and contribute to national advertising.
 - Setup due to Alfred Sloan: dealerships build loyalty.

- Porsche’s suggested scheme:
 - Dealers book orders. Get 8% commission.
 - PorscheUSA sets prices and holds inventory.

- Huge resistance from dealers (who made 18% margins before).
 - Dealers and VW filed legal suits using franchise laws.
 - Porsche backed down although defended legal position.

Double Marginalisation: Two–Part Tariff

- Suppose U uses two–part tariff
 \[p^U = F + x^U q \]

- Firms can produce same quantity as when integrated.
 - Set x^U equal to U’s MC (zero in this case). D’s profits:
 \[\pi^D = (p^D - x^U)(a - p^D) - F \]
 \[= p^D(a - p^D) - F \]

 Hence D chooses $p^D = p^I$ and $q^D = q^I$.

- How choose F?
 - $F = 0$ then D gets all profit. $F = \pi^I$ then U gets all profit.
 - Depends on bargaining power.

- Analogy: First degree price discrimination.
Double Marginalisation: RPM

- **Maximum resale price**
 - U names maximum price, p^M, that D can charge

- Firms can produce same quantity as when integrated.
 - U sets $p^M = a/2$, so D sells $a/2$.
 - U sets p^U equal to p^M minus D’s MC (zero in this case).

- **Idea:** U chooses upstream and downstream price.
 - Internalise externality.
 - Just make sure D gets positive profits.

- So there are contractual solutions to double marginalisation
 - But many supply chains still suffer.
 - For example, we assumed U knows D’s costs.

Two–part Tariffs with Downstream Competition

- **Model**
 - One upstream firm U with cost 0.
 - Two downstream firms D_1 and D_2 have cost 0.
 - Two–part tariff: U sells q_i to D_i for fee t_i.
 - D_1 and D_2 Cournot competitors. Demand $p(q) = 1 - q$.

- **Contracts publicly observable.**
 - U chooses (q_1, t_1, q_2, t_2) to maximise
 \[
 \pi_U = t_1 + t_2 \quad \text{s.t.} \quad (1 - q_1 - q_2)q_i - t_i \geq 0 \quad i \in \{1, 2\}
 \]
 - Thus U chooses (q_1, q_2) to maximise
 \[
 (1 - q_1 - q_2)q_1 + (1 - q_1 - q_2)q_2
 \]
 - Solution: $q_1^* + q_2^* = 1/2$ That is, U provides monopoly qty.
Two-part Tariffs with Downstream Competition

- Contracts privately observable.
 - Problem: U has incentive to supply too much to downstream firms. Problem of secret price cuts.
 - D_1 anticipates U has contract (\hat{q}_2, \hat{t}_2) with D_2.
- U chooses (q_1, t_1, q_2, t_2) to maximise
 $$\pi_U = t_1 + t_2 \text{ s.t. } (1 - q_1 - \hat{q}_2)q_1 - t_1 \geq 0 \text{ and } (1 - \hat{q}_1 - q_2)q_2 - t_2 \geq 0$$
- Substituting, U chooses (q_1, q_2) to maximise
 $$\pi_U = (1 - q_1 - \hat{q}_2)q_1 + (1 - \hat{q}_1 - q_2)q_2$$
- Solution: $q_1^* = (1 - \hat{q}_2)/2$ and $q_2^* = (1 - \hat{q}_1)/2$.
 - In equilibrium expectations correct: $\hat{q}_1 = q_1^*$ and $\hat{q}_2 = q_2^*$.
 - Hence $q_1^* = q_2^* = 1/3$. That is, U provides Cournot qty.

Investment Externalities

- Suppose two downstream firms D_1 and D_2.
- D_1 can invest in product to increase consumers’ values.
 - Advertising
 - Free samples
 - Expertise
- Problem: D_2 free-rides on investments and undercuts D_1.
- Solutions
 - Resale price maintenance (minimum resale price), e.g. Books in UK. But RPM is illegal in the US.
 - Exclusive territories, e.g. Cars.
 - U pays D for investment, e.g. supermarket shelves.
Assignment

- What is the upstream business of BenQ?
- What is BenQ’s big strategy?
- How did Motorola react to this move?
- How is the strategy working out so far?
- What do you think will happen over the next ten years?