Competitive Strategy: Week 13

Innovation

Simon Board

The Origins of Competitive Advantage

• So far, in this course, we have talked about…

• How firms can exploit their competitive advantage
 – Price discrimination
 – Vertical relationships

• How firms can sustain their competitive advantage
 – Product differentiation
 – Blocking entry

• But where does this competitive advantage come from?
Competitive Advantage

- For a firm to have a competitive advantage, its strategy must be imitation proof.

- Firm may have first-mover advantage
 - Lock in customers (e.g. switching costs or network effects)
 - Lock in inputs (e.g. SoftSoap case)
 - Nature of post-entry competition (e.g. Bertrand)

- Firm may have capabilities not possessed by rivals
 - Superior products
 - Superior processes
 - Patents

New Technology

- New technology can enhance competitive advantage of incumbent.
 - PlayStation3 (Sony)
 - Laserjet printer (Hewlett Packard)

- New technology can destroy the incumbent (creative destruction).
 - MP3 player (Sony vs. Apple)
 - Computers (Microsoft and Intel vs. IBM)

- New technology can create new markets. But who benefits?
 - Children’s TV (Disney vs. Nickelodian)
 - Light motorbikes (Triumph vs. Honda)
Characteristics of New Technology

- Value enhancement
 - Pneumatic tyres (1845)
 - Cotton replaced by rayon (1938)
 - Run flat tyres (1974)

- Cost reductions
 - Banbury mixing (1916)
 - Rayon replaced by nylon (1958)

- Gradual vs. Drastic
 - Drastic can put competitor completely out of business.
 - Also called “disruptive technologies”.

Incentive to Innovate: Replacement Effect

- Who innovates more: Incumbant or Entrant?
 - Innovation reduces costs to c_L
 - Let i’s profit with costs (c_i, c_j) by $\Pi(c_i, c_j)$
 - Suppose opponent innovates (worst case scenario)
 - Suppose entrant enters if and only if she innovates.

- WTP of incumbent, $V^I = \Pi(c_L, c_L) - \Pi(c_H, c_L)$.

- WTP of entrant, $V^E = \Pi(c_L, c_L) - \Pi(\infty, c_L) > V^I$.

- Entrant has higher willingness to pay.
 - Incumbent cannibalises herself (e.g. Nintendo vs. Sega).
Incentive to Innovate: Efficiency Effect

- Who innovates more: Incumbant or Entrant?
 - Suppose 3rd party sells patent.
 - Suppose entrant enters if and only if she innovates.
- WTP of incumbent, $V^I = \Pi(c_L, \infty) - \Pi(c_H, c_L)$.
- WTP of entrant, $V^E = \Pi(c_L, c_H) - \Pi(\infty, c_L)$.
- Incumbent usually has higher willingness to pay
 - Monopolist makes more profits than sum of two duopolists (e.g. Cournot or Bertrand).
 - Assumes no product differentiation.
- Key: If I innovates, then E does not. Other applications:
 - I and E compete in patent race.
 - E only enters if strictly more efficient.

Innovation Competition

- History of telephone
 - A. G. Bell and Elisha Gray developed telephone simultaneously.
 - Bell filed patent two hours before Gray.
 - Bell protected patent in court.
 - Gave 17 years of protection. Worth billions of dollars.
- Race to innovation
 - File patent.
 - First mover advantage in market.
Unidimensional Innovation Strategy

• Suppose firms choose research intensity. Key features:
 – Returns to scale.
 – Strategic substitutes or compliments.

• Joint ventures
 – Important if increasing returns to scale.
 – Examples: pharmaceutical firms, oil firms.

• Disclosure of research results
 – Disclose successes if research strategic substitutes.

Multidimensional Innovation Strategy

• Riskiness of Strategy
 – Approach A: definitely innovate in three years.
 – Approach B: innovate in 1-5 years.
 – Monopolist: indifferent between approaches.
 – With competition: prefer approach B.

• Correlation of Strategies
 – Two approaches, A and B, succeed with prob 1/2.
 – Success in A and B uncorrelated.
 – If everyone else chooses A, you should choose B.

• Sunk cost effect
 – Incumbents tend to be more conservative
 – They have already sunk costs into traditional approaches.
Patenting Strategy 1

- Patents vs. Trade Secrets
 - Obtain 17 yrs protection, but disclose details of innovation.
- Which is better?
 - Can the competition use information in patent disclosure?
 - Can they get around the patent?
 - Can they see through trade secrets?
 - Do you wish to licence or sell the idea?
 - Do you wish others to improve on the idea?
 - How quickly will returns come?
- Computer industry
 - IBM invests $5bn in R&D, while MS invests $6bn.
 - IBM obtained 3250 patents in 2004. Licences many of these.
 - MS obtained 650. Relies on trade secrets.

Patenting Strategy 2

- Protective patents
 - Patent all substitutes, including inferior technology.
 - Analogy: spatial preemption.
- Defensive patents
 - Patent holes in competitors process.
- Timing of Patents
 - Suppose two ideas are complements.
 - Then can wait to patent idea 2, extending effective patent.
 - Danger: someone patents before you do.
Transfer of Technology

- Innovator may not have comparative advantage in exploiting idea.
- Licensing
 - Buyer receives right to exploit innovation.
 - Receives technical assistance and pays fixed fee or royalty.
 - Example: In 2004, IBM earned $1.2bn by licensing.
- Acquisition of patent
 - Seller forgoes independent commercialisation.
 - Allows firms to specialise in innovation.
 - Buyer can assemble complimentary patents.
- Acquisition of innovator
 - Buyer purchases idea and innovator’s capabilities.

Licensing

- Consider a drastic innovation between two firms.
- Auctioning one licence
 - Firms bid $\Pi(c_L, c_H) - \Pi(c_H, c_L)$
- Fixed Fee, f.
 - Both firms buy if $f \leq f_2 := \Pi(c_L, c_L) - \Pi(c_H, c_L)$.
 - One firm buys if fee $f_2 \leq f \leq f_1 := \Pi(c_L, c_H) - \Pi(c_H, c_H)$.
- Auction always outperforms fixed fee.
 - In auction, if don’t buy licence then competitor wins it.
 - Hence bid to obtain licence and to deny opponent.
- Royalty rate
 - Charge fee per unit sold. This raises firm’s costs.
 - Not optimal because of double markup problem.
Motivating Innovation

- How should a firm provide incentives to innovate?
 - WHO provides incentive to develop AIDS drug.
 - DARPA provides incentives to develop cheap spaceship.
 - This is important if market for final product is monopolised.
- Push strategies, whereby fund R&D directly.
- Pull strategies, whereby award winners.
 - Give one prize or many?
 - Give prizes for incremental steps?
 - Problem: definition of success.
 - Use within firm: Lockheed–Martin makes divisions compete.

Technological Adoption

- Technological progress depends on adoption of new technology.
- Adoption rarely simultaneous: usually S–shaped pattern.
- Consider cost reducing innovation.
 - Cost of adoption $c(t)$ falls over time.
- Preemption in adoption.
 - Suppose firms are Bertrand competitors.
 - After firm 1 adopts, firm 2 will refuse.
 - Firms race to be first to adopt.
- Delayed adoption.
 - Suppose duopolists make positive profits.
 - If firm 1 adopts, firm 2 may adopt to regain market share.
 - Anticipating firm 2’s reaction, firm 1 refuses to adopt.
Assignment

- Read “Heartburn”, Economist (17/08/2006).
- Why is the market for generics so large?
- Why did Apotex enter the market early?
- How are incumbents responding to the rise of generics?
- Does Senator Schumer’s criticism of Merck’s pricing policy make any sense?

Reading

- McAfee, p. 78–85.
- Cabral, chapter 16.
- Carlton and Perloff, chapter 16.
- Tirole, chapter 16.