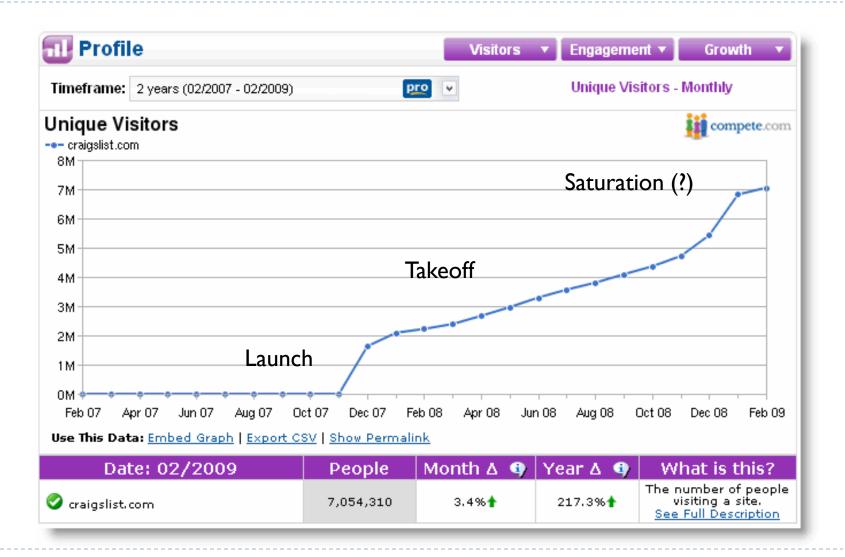
The Information Economy

Network Effects

Network Effects

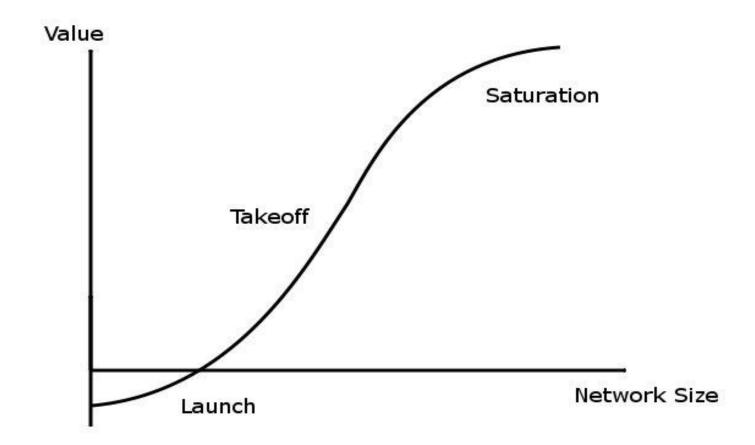

Network

- Set of interconnected nodes
- Real network (faxes) and virtual networks (Word users)
- Network effect (or network externality)
 - A's value depends on number of other users (and identity)
 - Positive network effects: email, videoconferencing
 - Negative network effects: congestion

Scale economies

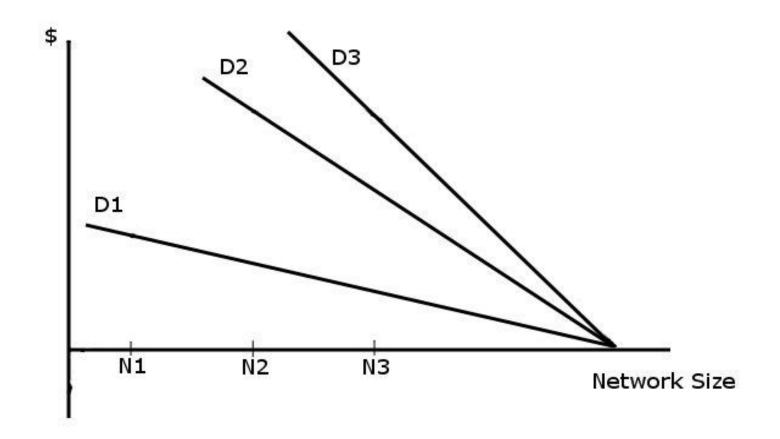
- Network effects = demand-side scale economies
- Different from supply-side scale economies (i.e. falling MC)
- Consider the following examples:
 - Electric cars, Gchat, Gmail.

Growth of a Network

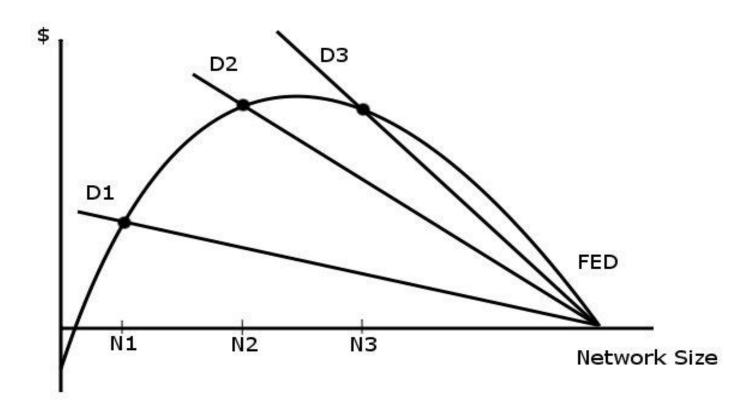

Demand Side

Strength of Network Effects

- How does V(N) vary? (Probably S-shaped)
 - Metcalfe's law:V(N)=k(N-1)
 - At start, growth may be quicker: care if friends are linked
 - Satiation if care about some links more than others
 - Continual growth if network becomes standard
- Demand for variety within network
 - Homebuying (MLS listings) vs. mortgage quotes (lending tree)
 - Examples: Mobility (credit cards), Novelty (DVDs)
- Demand for variety across networks
 - Standardization leads to loss of variety.
 - Example: People buy different cars despite network effects.
- Interconnection between users (Word vs. LaTeX)


Agent's Values

▶ An agent's value rises as the network size grows


Demand Curves

Demand curves corresponding to three network sizes

Fulfilled Expectations Demand Curve

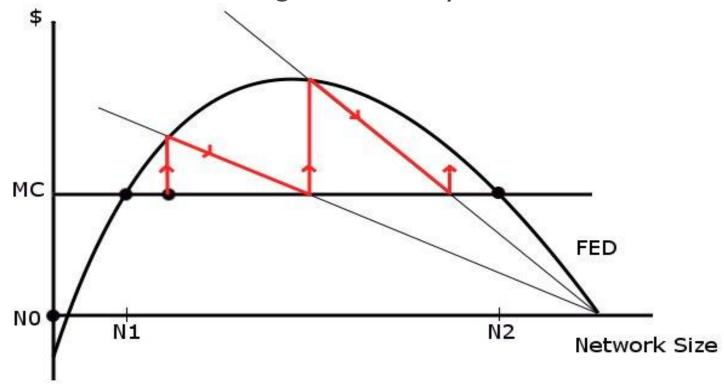
- Values where expected demand equals realized demand
 - ▶ Intercept negative positive homing cost, e.g. training, capital.

Perfect Competition (e.g. email, faxes)

▶ Marginal cost pricing yields three equilibria: N0, N1, N2.

Role of Expectations

Expectations are crucial

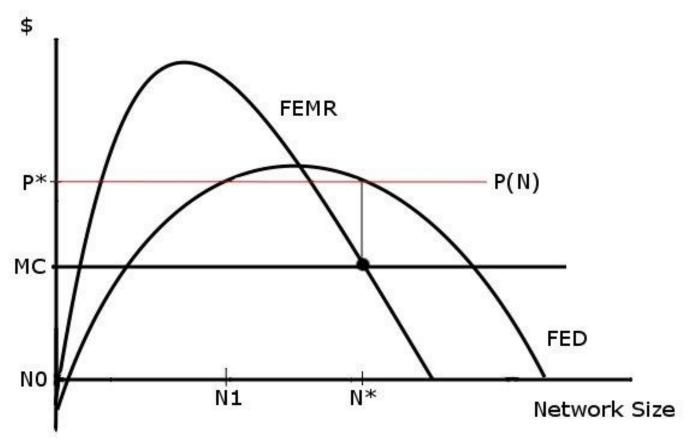

- ▶ Homing cost and P>0 mean don't want to buy if N low.
- Care about current base and expected future base.
- Product will succeed if it is expected to succeed!

Penguin problem

- Consumer faces uncertainty about technology and future N.
- No-one wants to adopt first.

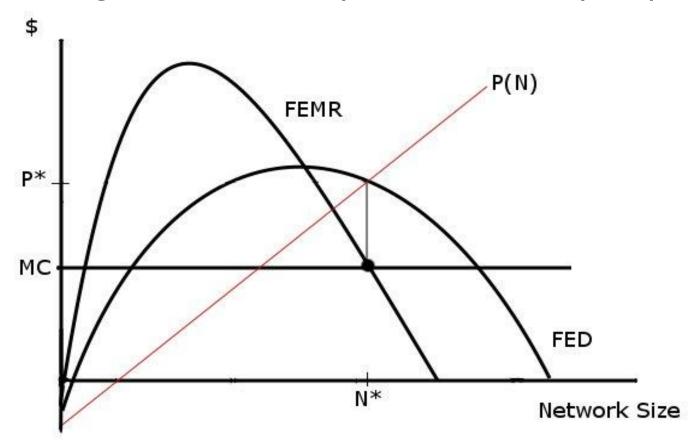
Role of Expectations

- ▶ Equilibrium NI is unstable (called "tipping point")
 - ▶ If start with N>N1, get virtuous cycle: $N \rightarrow N2$.


Exercise: What happens if start with N<N1?</p>

What to do about Expectations?

- Manage expectations directly
 - Product announcements (vaporware)
- Enable users to internalize externality
 - Encourage children to buy grandmother mobile phone.
- Give introductory discounts
 - Need network "sponsor" to have market power to overcome free-riding (unless all industry commits)
 - Risk of adverse selection (e.g. Xbox as DVD player)
- Have people sign contracts
 - "I'll adopt if at least N people do"
- Start with small networks (e.g. eHarmony)
 - Local vs. global network effects


Monopoly Pricing (e.g. Word, eBay)

- ▶ At optimal quantity N*, MR=MC. Yields price P*.
 - ▶ But if charge price P*, there are three equilibria: N0, N1, N*

Monopoly: Unique Implementation

- ▶ By charging P(N) the firm can pick N^* as only equilibrium
 - Analogous to introductory discounts for early adopters.

Monopoly Pricing: Formal Analysis

- Let n be market size, ne be expected market size
 - Demand curve is p(n;ne).
 - Fulfilled expectations demand is p(n;n), where $n=n^e$.
 - Cost c(n)
- Firm chooses n to maximize $\pi = np(n;n)-c(n)$.
 - Ignoring problem of multiple equilibria.
- The first order condition is

$$p(n;n) + n\frac{\partial p(n;n)}{\partial n} + n\frac{\partial p(n;n)}{\partial n^e} = \frac{\partial c(n)}{\partial n}$$

- ▶ First and second terms standard marginal revenue.
- ► Third term network effect, i.e. how increasing 'n' increases value of marginal user. Like an increase in marginal revenue.

How to Launch: Facebook

Started at Harvard in February 2004

- Built on existing social networks (75% of Harvard within month)
- Easy to find friends (using course register)
- Can invite friends (internalizing externalities)
- Used influential people (Phoenix club)

Expansion

- Expanded through Universities (use existing social structure)
- Surrounded holdout University to conquer (network effect)

Ultimately successful because

- Innovative (news feed, photos, Inbox, applications)
- Privacy controls (people share more information)
- Reliable

Two Technologies

- We have so far considered one technology
 - Two stable equilibria: N0 and N2
- If two technologies, A and B, there are three equilibria
 - A becomes dominant
 - **B** becomes dominant
 - Neither become dominant
- Multiple technologies might make "neither" more likely
 - Customers don't know who will win, and so wait.
 - Examples: AM stereo radio, Satellite radio, Cell phone standards

Strategy

Collective Switching Costs

- Network effects act like collective switching costs
 - Small switching costs are magnified.
- Entrant comes into industry (e.g. Gchat)
 - Need people to switch in coordinated way.
 - Problem where there are positive homing costs.
- Example: QWERTY vs. Dvorak
 - Dvorak is better layout typing is quicker.
 - Costly to train on new system.
 - Typing interface has network effects.
- Sometimes new format work; sometimes not
 - Examples: CDs, DAT, DCC, Minidisc.

Compatibility Choices

- Backwards compatible new technology reads old input
 - Word 07 reads .doc files
 - PS3 plays PS2 games
- ▶ Forwards compatible old technology reads new input
 - Word 2003 converter for .docx files
 - But cannot save .docx files.

Tradeoffs

- Compatibility may cause loss of performance
- Compatibility increases network effects
- Lack of compatibility can force people to upgrade because of network effects

Closed Systems: Standards Wars

- Winner takes all competition? (e.g. Electricity, VCR)
 - Is multi-homing possible?
 - Strength of network effects
 - Demand for variety across networks.
- Pre-emption
 - First-mover advantage
 - Penetration pricing
 - Win over influential customers (early adopters)
- Expectations management
 - Vaporware MS operating system, Apple devices
 - Make claims about network size, e.g. "world's largest"
- Vibrant market for complements

Example: Penetration Pricing

- Suppose N₁ early adopters and N₂ late adopters
 - ▶ All consumers have value v(N) from network size N
 - Ignore coordination problem among users
- ▶ Stage 2: Firm W has N_1 customers, L has none.
 - Equilibrium prices: $p_W = v(N_1 + N_2) v(N_2)$ and $p_L = 0$.
 - Profits: $\pi_W = N_2 [v(N_1 + N_2) v(N_2)], \pi_L = 0.$
- Stage I: Neither customer has any customers.
 - Both firms lower prices until winner's profit=0
 - ► That is, $\pi = p_1 N_1 + \pi_W = 0$. This yields:

$$p_1 = -\frac{N_1}{N_2} [v(N_1 + N_2) - v(N_2)]$$

Open vs. Closed

- Closed system proprietary
 - Examples: iPhone, Betamax, IM, Mac, Windows
 - Competing for market
- Open interface/specifications open to others
 - Examples: Android, VHS, email, PC, UNIX
 - Can be set by private firm (e.g. IBM and VGA) or by standard setting committee (e.g. ITU and telecoms)
 - Competing within market
- Compatibility decision may be one-sided or two-sided
 - Two-sided: Need permission of both parties.
 - One-sided: One sided can use adapter (e.g. WP open .doc files)
- Partial compatibility
 - MS and Netscape cooperated on secure transactions.

Why use Open?

- Is Open system crazy?
 - Potential for cut-throat competition after takes off (e.g. IBM)
 - ▶ Give IP away make entry easier; lose competitive advantage.
- Advantages of Open
 - Increase network size and probability of takeoff (e.g. IBM)
 - Avoid market confusion (AM Stereo, Cell phone standards)
 - Customers avoid lock-in, which again helps takeoff
 - Harness creativity of other firms
- Making money from Open
 - Sell complements such as service (e.g. MySQL and Sun)
 - Sell enhancements (e.g. pdf and Adobe)
- Prefer open if weak (e.g. Netscape, T-Mobile)

Standard Setting

Standards set by committees:

- Examples: Safety standards (UL) or Telecoms (IYU)
- Government (NIST) of Industry (IEEE)

Establishing a standard

- Pools patents and overcomes coordination problems
- Forces firms in pool to charge "fair" prices
- Commitment to be open

But

- Process lengthy
- Process may fail (e.g. DVD "read" agreed before DVD "write")
- Incentive to stay out of patent pool
- Give up right to charge license fees