The Information Economy

Switching Costs and Lock-in

Switching costs

- Switching costs are ubiquitous
 - Between brands (e.g. credit card companies)
 - Between technologies (e.g. operating systems)
- Example: Bell Atlantic and AT&T
 - In mid-1980s Bell invest in \$3bn of AT&T switches
 - Proprietary technology, so needed AT&T for upgrades and fixes
 - Introducing'888' numbers cost Bell \$8m for software
 - Annual upgrades cost \$100m/year plus peripheral sales

Other examples

- Changing cell phone providers
- Changing server software
- Changing email address, internet service provider, phone company...

On switching costs

Switching costs are two-sided

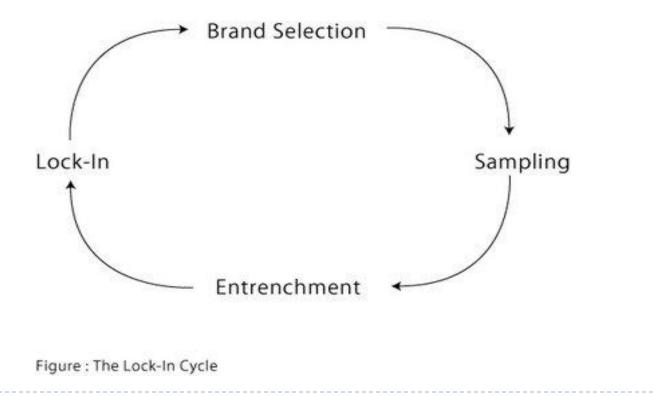
- Customer switching costs: searching for new firm, learning new system, losing complementary investments etc.
- Firm switching costs: setting up new account, hiring personnel
- Total switching cost matters.
- Switching costs can be endogenous
 - > Depend on compatibility decisions (e.g. number portability).
 - Can impose costs on departing customers (e.g. disruption)
 - Depends on users actions (e.g. queue in Netflix).
- Lock-in also faced by suppliers
 - Supplier lock-in: iPhone app maker and Apple.
 - Two-sided lock-in: coal mine and electricity plant

Why switching costs matter I

- The Valuation Principle:
 - In homogenous good market, the discounted present value of a customer to firm = customers total switching costs.

Model

- ▶ Competitive market has price p^m=c
- Firm A has N loyal customers with one-off switching cost k
- Time $t \in \{1, 2, ...\}$ with discount rate δ .
- Customer willing to pay $p=c+k(I-\delta)$, otherwise will quit.
- This means profits equal $\pi = kN$.
- Hence switching costs tell you how much firm is worth
 - Ignoring differentiation and costs differences.


Why switching costs matter II

- How much should you invest in installed customer base?
 - Promotions to acquire customers
 - Bribing customers to join you (e.g. credit cards)
- Idea: Firm A is trying to lure a new customer
 - Verizon makes profit \$20/user/month.
 - > Retain p=98% of customers per month. Discount rate δ =0.99
 - Lifetime Value (LTV) of customer is $20/(1-p\delta) = 671/user$.
 - Switching cost for customer is \$300; cost to firm is \$50, so total customer acquisition cost (CAC) is \$350.
 - Can buy customer \$400 iPhone and make profit.
 - What about Sprint, where profit \$15 and p=96%?
- Other decisions affect levels of switching costs
 - Product design, compatibility.

Lock-in cycle

Four stages of lock-in

- Important to anticipate entire lock-in cycle from the start
- Holds true for both buyers and sellers.

Classifying Switching Costs

Classifying switching costs I

- I. Contractual commitments
 - Examples: Employments contracts, Cell-phone contracts
 - Anticipate switching costs after contract terminates
- 2. Complimentary Investments
 - Durable purchases (e.g. Xbox, printers),
 - Brand specific training (e.g. learning software, fixing airplane),
 - Complimentary purchases (e.g. Intel and IBM)
 - Make money from complements (e.g. games, ink)
 - SC determined by: durability of assets/training, ease of resale, scale of investments, ease of leasing.

Classifying switching costs II

3. Transactions costs

- Time and effort to make changes
- Changing bank account or web browser.

4. Search Costs

- Examples: Credits cards, online blogs
- Consumer search costs: time and effort to find good deal, evaluating product, risk of new seller (experience good)
- Seller side: promotion, adverse selection (e.g. credit cards)

5. Loyalty Programs

- Examples: Frequent flyer miles, supermarket cards, iDine
- Loyalty benefits may increase (e.g. "gold" status)
- Cooperate with other firms (e.g. win miles with credit card)

What type of switching costs?

Google search

- Change settings in computer (complimentary investment)
- Unknown quality of other engines (search costs)
- Learning how to search effectively (training)

Facebook

- List of friends (complimentary investment)
- Learning the interface (training)

Apple iPhone

- Durable equipment (software)
- Learning the interface (training)
- Mac sales (complementary investment)

Buyers Strategy

10/27/2011

Bargain Before Being Locked In

- Look for introductory offers
 - Sign-up bonus, extended warranties, support in switching over
- Increase ex-ante bargaining power
 - "My current system is fine"
 - "I'll make lots of follow-on purchases"
- Beware of being held-up after committing
 - Have price and quality carefully specified
 - Seek long-term protection: service guarantees, free upgrades, most favored customer treatment
 - Beware of non-contractible elements
- Be wary of vague commitments to being "fair" and "open"

A Little Bargaining Theory

Firm 0 want to do deal with firm A

- Value of relationship: $V(x_A)$, where 0 invests x_A in relationship
- Firm 0 has outside option to do deal with B
 - Value of outside option: $W(x_B)$, where 0 invests x_B in option
- Socially optimal investment, assuming V>W
 - Investment in A:V'(x_A)=c'(x_A), where c(.) is cost of investment.
 - Investment in B:W'(x_B)=0

Negotiation: suppose firms A and 0 split gains 50:50

- Profits: $\pi_0 = \frac{1}{2} [V(x_A) W(x_B)] + W(x_B), \pi_A = \frac{1}{2} [V(x_A) + W(x_B)]$
- Under invest in A: $\frac{1}{2}V'(x_A) = c'(x_A)$.
- Over invest in B: $\frac{1}{2}W'(x_B)=c'(x_B)$.

After Lock-in

Dual sourcing

- Use two companies to reduce hold-up (i.e. ex-post opportunism)
- Toyota policy of two suppliers
- AMD creation benefited both IBM and Intel.
- Beware of creeping lock-in from complementary purchases
 - Try to avoid completely committing
- Acquire information to help ex-post bargaining
 - Seller's suppliers.
 - Seller's cost information.
 - Details of production process.
- Use bond to help ex-post bargaining
 - E.g. "getting the factory knocked up" when outsourcing.

Seller Strategy

Investing in Installed Base I

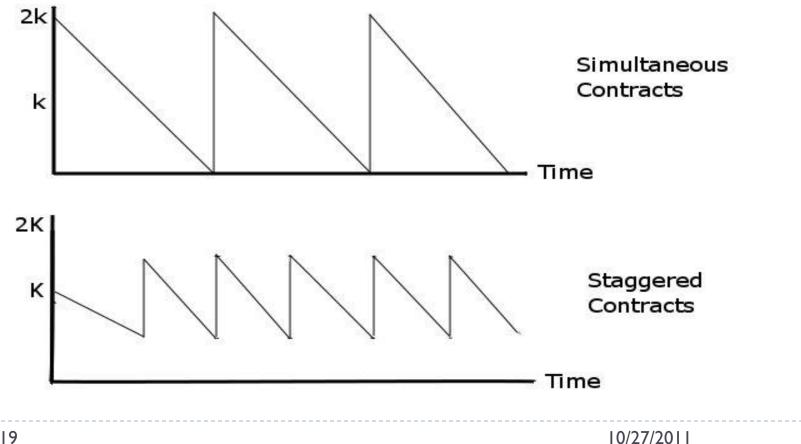
- May have to fight hard for "free" customers.
- Consider model from earlier
 - Competitive market with marginal cost c.
 - N free customers at time t=0. Switching costs k after join firm.
 - Discounted profits: if win customers $\pi_1 = kN$; if lose $\pi_1 = 0$.
- What is the equilibrium price in period 0?
 - Each firm will price $p_0=c-\delta k$ and make profits $\pi_0=0$.
 - Called "rent dissipation postulate".
 - Examples: fewer ads at starts of movie, student discounts for computers, low profits on bottom line cars.
- Profits ultimately determined by
 - Costs, differentiation and first-mover advantages.

Investing II: Sell to Influential Customers

Gladwell's classification of key customers:

- Connector people who have lots of "weak ties"
- Maven people who accumulate knowledge
- Salesmen people who can persuade others
- Selling to A may lead to sales from B
 - Network effects (e.g. selling to division A within firm)
 - A has reputation for being informed (e.g.Walmart)
 - A may provide industry contacts (e.g. importer into the US)

Agency problems


- Professor, publisher and students
- Businessman, airline and employer
- Doctors, pharma firms and insurance company

Encourage Entrenchment

- Design products to entrench
 - Open vs. closed system.
 - Mixed: basic version is free; advanced version is not.
- Loyalty programs
- Stagger contracts/sales
 - Minimal lock-in: when most contracts/equipment near end
 - Stagger contracts to strengthen weak link.
 - Example: Pitch product B when A halfway through life.
 - Example: Offer new phone contract after 20 months.
- Forward sales
 - Sell customer stock of black toner (but not color)

Minimal lock-in

- With single contract switching cost falls from 'k' to 0.
- With two contracts:

Leveraging Installed Base I: Pricing

Two firms (not competitive market, as before)

Some consumers locked-in, others are free.

Lowering price...

- reduces profits from loyal customers.
- increases profits from free agents.
- increases installed base and increases future profits.

Expect switching costs to raise prices and profits

- Fattening effect: If A lowers price, then B's market share falls and B's prices falls, increasing competition.
- Skeptical consumer effect: if A lowers price expect A's market share to rise and A's future prices to rise, reducing elasticity.

Leveraging Installed Base II: General

- Have full range of products
 - Means consumers can stay within brand (e.g. car range)
- Sell complementary products
 - Increases lock-in (e.g. MS Office) and is money-spinner (e.g. ink)
- Early contract renewal
 - Keep agent locked in (e.g. football contracts, phone contracts)
- Sell access to installed base
 - Adverts (e.g. Google) or endorsement (e.g. AAA)
- Price discriminate between "free" and "loyal"
 - Lower price to free (e.g. magazines). Version to reduce arbitrage.
 - Higher price to free (e.g. software upgrades)

Leveraging Installed Base III: Entry

Limit pricing

- Build up market share to avoid entry.
- Creating switching costs
 - Benefits incumbents but harms entrants.

Beware overestimating switching costs (and customer value)

- New entrants try to reduce SC
- Example: MS Word mimicked WordPerfect controls.
- Example: can honor other firms loyalty points.

Search Costs

Search costs can be especially insidious

Can destroy the entire market system

Diamond Paradox

- Suppose all firms changing price p.
- Cost k to visiting new firm.
- Then firm A could raise price to p+k/2 and lose no customers.
- Ultimately, prices rise to monopoly levels