Impact of Innovation

- **Enhance competitive advantage of incumbent.**
 - PlayStation3 (Sony)
 - Laserjet printer (Hewlett Packard)

- **Destroy the incumbent (creative destruction).**
 - MP3 player (Sony vs. Apple)
 - Computers (Microsoft and Intel vs. IBM)
 - Digital cameras (Kodak vs. Sony)

- **Create new markets.**
 - Children’s TV (Disney vs. Nickelodian)
 - Light motorbikes (Triumph vs. Honda)
Types of Innovations

- **Value enhancement**
 - Pneumatic tyres (1845)
 - Cotton replaced by rayon (1938)
 - Run flat tyres (1974)

- **Cost reductions**
 - Banbury mixing (1916)
 - Rayon replaced by nylon (1958)

- **Gradual vs. Drastic**
 - Drastic can put competitor completely out of business.
 - Not the same as “disruptive technology”.
The Lifecycle of Innovation
The Lifecycle of Innovation

- Questions
 - How does industry structure changes product life?
 - When does entry occur?
 - When are profits made?

- Difficulties:
 - Products are all different.
 - Analyze successful products, but most not successful.
 - What’s a new product?

- Four phases: Introduction, Growth, Maturity and Decline.
Phase 1: Introduction

- Begins with few firms
 - If successful, rapid entry.
 - Firms make loss.
 - 99% of ideas die.

- Market is small
 - First adopting customers are not typical.

- Heavy promotion
 - Market education. Free samples.
 - Low pricing.

- Insure customers against product risk
 - Money back guarantees.
 - Help implementation and servicing.
Phase 2: Growth

- Market
 - Growth keeps competition down
 - Falling costs
 - High cost and poor quality firms will die
 - Others make large profits

- Product
 - Products improve over time
 - Standardization: handful of major designs

- Strategy
 - Distribution becomes important
 - Cultivate brand name
 - Prepare for shakeout
Phase 3: Maturity

- **Market**
 - Demand stabilizes. Seek growth abroad.
 - Shakeout

- **Cost Strategy**
 - Minimize costs. Efficient Distribution
 - Basic model becomes a commodity (e.g. VCRs)

- **Value Strategy**
 - Focus on niche
 - Differentiate product
Phase 4: Decline and Replacement

- **Reasons for declines**
 - Technological progress (e.g. B&W TVs)
 - Changing tastes and new info (e.g. fashion or CFCs)

- **Strategy 1: Focus on profitable segments**
 - Market changes (e.g. B&W TVs as security monitors).

- **Strategy 2: Harvesting.**
 - Don’t replace capital. Exit when \(p \leq MC \).

- **Strategy 3: Industry consolidation**
 - Importance of coordination
 - Excess capacity leads to ruinous price wars.
 - Strategies 1–3 compliment each other.

- Complain to government.
Product Diffusion
Roger’s Diffusion Model

- Diffusion is process through which new idea or product spreads.

- Questions:
 - How fast will product be adopted?
 - What factors affect technology adoption?
 - What strategies can we adopt?

- We can broadly divide people into
 - Innovators – who experiment with product
 - Imitators – who learn from experience of others
"The Chasm"
CONSUMPTION SPREADS FASTER TODAY

PERCENT OF U.S. HOUSEHOLDS

ELECTRICITY

COLOR TV

COMPUTER

TELEPHONE

AIR-CONDITIONING

CELLPHONE

REFRIGERATOR

CLOTHES WASHER

STOVE

CLOTHES DRYER

AUTO

DISHWASHER

RADIO

MICROWAVE

VCR

INTERNET

10/22/2013
Innovators (Techies)

- Technology enthusiasts
- Willing to learn
- Appreciate technology for its own sake
- Motivated by idea of being change agent
- Willing to tolerate initial problems
- Venturesome, educated

How to sell to these

- Product should be technologically interesting
- Product should be novel in some dimension
- Advertise in specialist outlets
Early Adopters (Visionaries)

- Want new technology to improve function.
- Want discontinuous breakthrough improvement
- Social leaders
- Attracted by high-risk, high-reward
- Anxious, champions

Selling to these
- Sell “dreams” that are clearly defined
- Relate directly to objective
- Demand personalized solutions
- Reference other visionaries
- Price is secondary; they want it right, complete, quickly, on time
The Early Majority

- Want incremental improvement
- Evolutionary, not revolutionary products
- Want proven, established products
- Don’t sell dreams; sell reality
- Deliberate; less risk seeking

Selling to these

- Proven product
- They want to know many satisfied customers
- Buy whole products
- Want lower prices
Finally…

- Late majority (conservatives)
 - Skeptical, traditional
 - Price sensitive
 - Want product mature, preassembled, with clear solutions
 - Don’t like change

- Laggards (skeptics)
 - Only buy technology if necessary
 - Only now thinking about buying a cell phone
 - A hard sell
Moore’s Chasm

- **Visionaries**
 - Willing to take risks to obtain radical improvements
 - Change agents

- **Pragmatists**
 - Want incremental improvements
 - Want comparisons, and solid references
 - Price sensitive; more steps in sales strategy

- **The chasm**
 - Tech firms must first sell to visionaries; then need to change
 - Requires significant changes in marketing/sales strategy
 - Many firms never overcome this leap
What Determines Speed of Diffusion?

- Relative Advantage
 - Improvement over old products
- Switching costs
 - Compatibility with previous systems and skills.
 - Complexity of learning new product
- Network effects
 - Degree to which my value depends on no. of users.
- Trialability
 - Ease of experimentation (cell phone vs. fridge)
- Observability
 - Visibility to others (iPhone vs. home computer)
Bass Model of Diffusion

- Let $f(t)$ be the probability an agent first adopts at time t.
- Suppose hazard obeys
 \[f(t) /[1 - F(t)] = p + qF(t) \]
 so the no. of new adopters is linear in the no. of users.
- Solving this differential equation,
 \[f(t) = \frac{(p+q)^2 e^{(p+q)t}}{q e^{(p+q)t} + p^2} \]
- Bass (1969) estimated parameters p (no. of innovators) and q (importance of imitation) for different products.
Adoption Incentives

- Firms have different ideal times in adoption
 - Expect to be S–shaped, as with consumers.
- Firms may be substitutes
 - When MRI scanners first adopted, only one hospital needed one
- Preemption in adoption
 - Adopt early in order to steal market
 - e.g. if firms Bertrand competitors, race to be first to adopt
- Delayed adoption.
 - Suppose duopolists make positive profits.
 - If A adopts, B may adopt to regain market share.
 - Anticipating firm B’s reaction, A refuses to adopt.
Innovation Incentives
Incentive to Innovate: Replacement Effect

- Who innovates more: Incumbant or Entrant?
 - Innovation reduces costs to c_L
 - Let i’s profit with costs (c_i, c_j) be $\Pi(c_i, c_j)$
 - Suppose opponent innovates (worst case scenario)
 - Suppose entrant enters if and only if she innovates.

- WTP of incumbent, $V_I = \Pi(c_L, c_L) - \Pi(c_H, c_L)$.
- WTP of entrant, $V_E = \Pi(c_L, c_L) - \Pi(\infty, c_L) > V_I$.
- Entrant has higher willingness to pay.
 - Incumbent cannibalizes herself (e.g. Nintendo vs. Sega).
Incentive to Innovate: Efficiency Effect

- Who innovates more: Incumbant or Entrant?
 - Suppose 3rd party sells patent.
 - Suppose entrant enters if and only if she innovates.
- WTP of incumbent, $V_I = \Pi(c_L, \infty) - \Pi(c_H, c_L)$.
- WTP of entrant, $V_E = \Pi(c_L, c_H) - \Pi(\infty, c_L) < V_I$
- Incumbent usually has higher willingness to pay
 - Monopolist makes more profits than two duopolists
- Key: If I innovates, then E does not. For example,
 - I and E compete in patent race.
 - E only enters if strictly more efficient.
Patenting Strategy

- Patents vs. Trade Secrets
 - Obtain 17 yrs protection, but disclose details of innovation.
- Which is better?
 - Can the competition use information in patent disclosure?
 - Can they get around the patent?
 - Can they see through trade secrets?
 - Do you wish to license or sell the idea?
 - Do you wish others to improve on the idea?
 - How quickly will returns come?
- Computer industry
 - IBM invests $5bn in R&D, while MS invests $6bn.
 - IBM obtained 3250 patents in 2004; licenses many.
 - MS obtained 650. Relies on trade secrets.
Growth in patents
More Patenting Strategy

- **Protective patents**
 - Patent all substitutes, including inferior technology.
 - Analogy: spatial preemption.

- **Defensive patents**
 - Patent holes in competitors process.

- **Timing of Patents**
 - Suppose two ideas are complements.
 - Then can wait to patent idea 2, extending effective patent.
 - Danger: someone patents before you do.
Technology Transfer

- Innovator may not have comparative advantage in using idea.

- Licensing
 - Buyer receives right to exploit innovation.
 - Receives technical assistance and pays fixed fee or royalty.
 - Example: In 2004, IBM earned $1.2bn by licensing.

- Acquisition of patent
 - Seller forgoes independent commercialization.
 - Give away control rights (future sales, agreements)
 - Buyer can assemble complimentary patents.

- Acquisition of innovator
 - Buyer purchases idea and innovator’s capabilities.
Motivating Innovation

- How should a firm provide incentives to innovate?
 - WHO provides incentive to develop AIDS drug.
 - DARPA provides incentives to develop cheap spaceship.
 - Large firms need to provide incentives internally

- Push strategies - fund R&D directly.
 - Who to fund?
 - What are their objectives?

- Pull strategies - award winners.
 - Give one prize or many? Prizes for incremental steps?
 - How define success?
 - Example: Lockheed–Martin makes divisions compete.
Disruptive Innovation
The problem of repeating success

- Main frames – IBM
- Minicomputers – Digital Equip, Data General
- Desktop computers – Apple, Commodore, Tandy, IBM
- Engineering workstations - Apollo, Sun Microsystems
- Portable computers – Compaq, Zenith, Toshiba, Sharp
- Netbooks – Asus, Acer
- Tablets – Apple, Samsung
Types of innovations

- **Sustaining innovations**
 - Vertical improvements
 - Doing the same, but better
 - e.g. Thin film disks in Hard Drive industry.

- **Disruptive innovations**
 - Different package of performance attributes
 - e.g. Architectural innovations - 14”, 8”, 5.25” and 3.5” drives
 - Low end disruptions – least profitable market segments
 - New market disruptions – emerging market

- The disruptive innovation can ultimately takeover
Customer demand rises slower than technical progress
Disruptive technology takes over (2)

- S-curves mean decreasing speed of innovation

At the forefront of innovation through 2G, 3G and 4G cycles

Source: Inter-generational transitions in socio-technical systems: The case of mobile communications
Leadership and Innovation

(a) Numbers of established and entrant firms introducing models employing selected trajectory-sustaining technologies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin-film heads</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
<tr>
<td>RLL codes</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
<tr>
<td>Winchester architecture</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
</tbody>
</table>

(b) Numbers of established and entrant firms introducing models based upon disruptive architectural technologies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8-inch</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
<tr>
<td>5.25-inch</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
<tr>
<td>3.5-inch</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
</tbody>
</table>

- **Sustaining innovations**
 - Leaders continued to dominate across generations

- **Disruptive innovation,**
 - \(\frac{1}{2} \) to \(\frac{3}{4} \) of manufacturers failed to introduce new models
 - New wave of entrants
Why?

- **Incumbent's dilemma**
 - Managers listen to what *current* customers want.
 - Do what worked in the past.
 - Overcome bureaucratic hurdles to launch new product.
 - Don’t want to go down-market.

- **Example: Seagate**
 - Pioneered 5.25” drive, used by IBM for desktops.
 - Developed 3.5” by 1985, but main customers not interested.
 - Former employees founded Conner.
 - New customers, e.g. Compaq, making small desktops
 - Rapid improvement in technology.
 - Seagate entered market in 1987, but then too late.