The Economics of E-commerce and Technology

Platform Markets

1 1/4/2016

Platform markets

- ▶ A platform brings together groups of users.
- Examples:
 - Real world: Credit cards, HMOs, Shopping malls
 - ▶ Technology: operating systems, video games, DVDs
 - Online: Web search, Amazon marketplace, iTunes.
- Same-side network effects
 - Negative: An Xbox developer prefers less competition.
 - Positive: An Xbox user prefers more users.
- Cross-side network effects
 - An Xbox user prefers more developers.

Platform markets

- Platforms differ from traditional retailers
 - Pays for goods up-front, eliminating coordination problem.
 - Assume platform has all bargaining power (but Intel, EA)
- Three-sided network
 - YouTube: consumers, advertisers, content providers.
- Platforms may be
 - Proprietary (XBox)
 - Open (e.g. DVD standard or Android)
- Platforms have varying degrees of compatibility
 - Windows vs MAC in 1980s vs 2010s

Monopoly Pricing

Pricing

- ▶ There are 2 groups of agents, k=1,2
- Let n_k be population size, n_k^e be expected population size
 - ▶ Demand curve for group k is $p_k(n_k; n_1^e, n_2^e)$.
 - Fulfilled expectations demand is $p_k(n_k; n_1, n_2)$, where $n_k = n_k^e$.
 - ightharpoonup Cost c(n₁,n₂)
- Firm chooses (n_1,n_2) to maximize profits,

$$\pi = n_1 p_1(n_1; n_1, n_2) + n_2 p_2(n_2; n_1, n_2) - c(n_1, n_2)$$

- Ignoring problem of multiple equilibria
- ▶ First order condition for n₁:

$$p_{1}(n_{1};n_{1},n_{2}) + n_{1}\frac{\partial p_{1}(n_{1};n_{1},n_{2})}{\partial n_{1}} + n_{1}\frac{\partial p_{1}(n_{1};n_{1},n_{2})}{\partial n_{1}^{e}} + n_{2}\frac{\partial p_{2}(n_{2};n_{1},n_{2})}{\partial n_{1}^{e}} = \frac{\partial c(n_{1},n_{2})}{\partial n_{1}}$$

Pricing

First order condition:

$$p_{1}(n_{1};n_{1},n_{2}) + n_{1} \frac{\partial p_{1}(n_{1};n_{1},n_{2})}{\partial n_{1}} + n_{1} \frac{\partial p_{1}(n_{1};n_{1},n_{2})}{\partial n_{1}^{e}} + n_{2} \frac{\partial p_{2}(n_{2};n_{1},n_{2})}{\partial n_{1}^{e}} = \frac{\partial c(n_{1},n_{2})}{\partial n_{1}}$$

- Marginal benefit consists of four terms:
- ▶ First and second same as standard MR curve
 - Marginal and inframarginal effects of increasing quantity.
- ▶ Third same side network effects
 - ▶ How increasing n₁ raises value of marginal type-I agent.
- Fourth cross side network effects
 - ▶ How increasing n₁ raises value of marginal type-2 agent.

Pricing: Lessons

- Subsidize those who create value for others
 - Search engines subsidize users with free search and email.
- Typically platform have "money side" and "subsidy side".
 - Example: Adobe gives pdf readers away free.
- Same side vs. cross side network effects
 - Ladies night on Thursday but not Friday.
- Other considerations
 - Attract marquee users (Macy's pays lowest rents in mall)
 - Adverse selection (Westside rentals, TheLadders, eHarmony)
 - Long run effect of prices (Mac vs. Windows)
 - Mobilization (Charge zero to select equilibrium).

Details of fee structure

- The details of the fee structure varies across websites:
 - Subscription fees (Westside rentals)
 - Fee per posting (Craigslist)
 - Fee per click (Price shopper)
 - Sales commission (eBay)
- Choice depends on details. E.g. job postings
 - What can platform observe?
 - How much heterogeneity is there?
 - Can system be gamed? Is there adverse selection?
- General idea: charge in units that agents care about.
 - E.g. charge "per click" for display ad.

Competing

Competing

- Will there be unique winner?
 - Multi-homing cost
 - Strength of network effects
 - Desire for variety of platform
- Could you win a battle?
 - First-mover advantage
 - High expectations
 - Technology or cost advantage
- Should you share?
 - Network size bigger
 - Compete within market rather than for market.

Threat of envelopment

- Biggest threat may come from business vanishing
 - Rival offers new functionality (e.g. gmail vs hotmail)
 - Convergence of technology (e.g. iPhone vs iPod)
- Change business model
 - Real lost server business to Windows
 - Formed Rhapsody, charging customers for songs
- Form partnerships with other firms
 - Become part of bigger bundle of services
- Sue
 - Real sued Windows for \$760m

Mobilizing a Platform Market

Barriers to Mobilization

- Standing risk (e.g. Zune)
 - Users may not make platform specific investments
- Holdup risk (e.g. Intel)
 - Concern platform increases prices after specific investments
- Integration risk (e.g. Nintendo)
 - Suppliers worries platform will start producing complements.
- Favoritism risk (e.g. Covisint)
 - Users worry platform will skew competition
- Relationship risk (e.g. Autobytel)
 - Suppliers don't want to lose control of customer relationship
- Competitive risk (e.g. B2B exchanges)
 - Suppliers don't want more intense competition

Penguin Problem

- Same strategies as with one-sided networks
 - Product announcements
 - Introductory discounts
 - Start with small networks
 - Obtain marquee users (exclusively?)
- Permanently subsidize one side
 - The subsidy side then turns up with high probability.
 - Examples: Westside Rentals; Monster.
 - Subsidy needs to overcome homing cost.
- Start as vendor or merchant and transition into platform

Transition: Vendor to Platform

- Firm starts as traditional vendor
 - Makes and sells some product
 - Shanda (online games), CNET (reviews)
- "More of the same" strategy (e.g. Schwab, mutual funds)
 - Vendor supplements own product with 3rd parties
- "Something different" strategy (e.g. Google, AdSense)
 - Add new functionality for second side of market
- Which side to start with?
 - Start with side with weaker need for other side
 - LinkedIn found employees before employers.
 - YouTube (customers) vs. Brightcove (website support)

Transition: Merchant to Platform

Firm starts as merchant

- Devolves control of inventory, pricing and merchandising
- Amazon (marketplace), iTunes

Merchants have advantages over platform

- Overcome penguin problem
- Scale means that have lower costs on inputs
- ▶ Retains control, e.g. combine complements to increase values
- Sustain reputation for quality

But a platform

- Offers greater variety
- ▶ Has much lowers costs, and no risk
- Can be scaled quickly