Economics 2102: Homework 2

3 November, 2004

Question 1 (Hidden savings and CARA utility)

There are two periods. In period 1 the agent (privately) chooses to consume c. In period 2 they choose effect $a \in\{L, H\}$ at monetary cost $\{0, g\}$ respectively. Output is binomial, $q \in\{0,1\}$, where the probability that $q=1$ given action $a \in\{L, H\}$ is p_{a} and $p_{H} \geq p_{L}$. The principal chooses wages $\left(w_{1}, w_{0}\right)$.

The two-period (IC) constraint says that

$$
\begin{align*}
u\left(c_{H}\right)+p_{H} u\left(w_{1}-\right. & \left.c_{H}-g(H)\right)+\left(1-p_{H}\right) u\left(w_{0}-c_{H}-g(H)\right) \tag{1}\\
& \geq u\left(c_{L}\right)+p_{L} u\left(w_{1}-c_{L}-g(L)\right)+\left(1-p_{L}\right) u\left(w_{0}-c_{L}-g(L)\right)
\end{align*}
$$

where c_{a} is the optimal consumption when the agent plans to choose a.

Show that under CARA utility, $u(c)=-\exp (-r c)$, we have $c_{H}=c_{L}$ when the (IC) constraint binds. Why is this important?

Question 2 (Normal learning model)

Suppose that $z_{t}=\theta+\epsilon_{t}$, where $\theta \sim N\left(m_{0}, 1 / h_{0}\right)$ and $\epsilon_{t} \sim N\left(0,1 / h_{\epsilon}\right)$ are IID. Show that

$$
E\left[\theta \mid z_{1}\right]=\frac{h_{0} m_{0}+h_{\epsilon} z_{1}}{h_{0}+h_{\epsilon}}
$$

and that

$$
E\left[\theta \mid z_{1}, \ldots, z_{t}\right]=\frac{h_{0} m_{0}+h_{\epsilon} \sum_{s \leq t} z_{s}}{h_{0}+t h_{\epsilon}}
$$

Question 3 (Short-term and long-term contracts)

Suppose there are three periods, $t \in\{1,2,3\}$. Each period a principal and an agent must share a good; let $x_{t} \in \mathbb{R}$ be the share obtained by the agent. The principal gets $\sum_{t} \pi_{t}\left(x_{t}\right)$ and the
agent gets $\sum_{t} u_{t}\left(x_{t}\right)$, where $\pi_{t}\left(x_{t}\right)$ is decreasing in x_{t} and $u_{t}\left(x_{t}\right)$ is increasing in x_{t}. The agents's outside option is a share of the assets $\left(\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right)$.
(a) Suppose the principal can write a long term contract. Write down the program of maximising profit subject to individual rationality.
(b) Now suppose the principal offered a spot contract each period. Using backwards induction derive the optimal sequence of spot contracts. Explain why this may differ from the long-term contract.
(c) Suppose the principal offers two-period contracts. In the first period they offer $\left({ }_{1} x_{1},{ }_{1} x_{2}\right)$. If it is rejected the agent gets \underline{x}_{1}. At the start of the second period the a new contract $\left({ }_{2} x_{2},{ }_{2} x_{3}\right)$ may be proposed by the principal. If this is rejected the agent gets ${ }_{1} x_{2}$ if they accepted the first contract or \underline{x}_{2} otherwise. In the third period the a spot contract is offered to the agent. If this is rejected the agent gets ${ }_{2} x_{3}$ if they accepted the second contract or \underline{x}_{3} otherwise. Show that if $\lim _{x \rightarrow-\infty} u_{t}(x)=-\infty$ and $\lim _{x \rightarrow \infty} u_{t}(x)=\infty$ then this can implement the optimal long term contract.
(d) Provide an example where the two-period contracts cannot implement the long-term contract.

Question 4 (Teamwork)

A firm employs two workers $i \in\{1,2\}$. The agents simultaneously choose actions $a_{i}\{L, H\}$ at cost $\{0, c\}$ respectively. Their actions induce verifiable signals $x_{i} \in\{0,1\}$. With probability σ there is a common shock and $x_{i}=1$. With probability $1-\sigma, x_{i}=1$ with probability p_{a}, where $p_{H} \geq p_{L}$. Assume that the principal wishes to induce high effort.

The contract consists of four wages $\left(w_{11}, w_{10}, w_{01}, w_{00}\right)$, where w_{10} is $i^{\prime} s$ wage if i succeeds and j fails. Agents are risk neutral but have limited liability, so that the wage must be nonnegative. If i picks action k and j picks l then i 's utility is
$u(k, l)=\left[\sigma+(1-\sigma) p_{k} p_{l}\right] w_{11}+(1-\sigma) p_{k}\left(1-p_{l}\right) w_{10}+(1-\sigma)\left(1-p_{k}\right) p_{l} w_{01}+(1-\sigma)\left(1-p_{k}\right)\left(1-p_{l}\right) w_{00}$
(a) The principal minimises expected wages subject incentive compatibility. Write down this program. Derive the optimal contract $\left(w_{11}, w_{10}, w_{01}, w_{00}\right)$. In particular, show that it exhibits an extreme form of relative performance evaluation (where i doing well hurts j).

Now consider the repeated version of the same game. Each period the principal offers the same contract ($w_{11}, w_{10}, w_{01}, w_{00}$). Everyone has discount factor δ.

Assume agents can observe each others actions (but cannot directly report them to the principal). A necessary condition for (H, H) to be implementable is

$$
\begin{equation*}
u(H, H)-c \geq(1-\delta) u(L, H)+\delta \min \{u(L, L), u(L, H)\} \tag{IC}
\end{equation*}
$$

(b) Consider the principal's problem of minimising expected wages subject to (IC). Show the optimal program is of the form $\left(w_{11}, 0,0,0\right)$ when $\delta \geq \hat{\delta}:=\frac{\sigma}{(1-\sigma) p_{H} p_{L}}$, where you should assume that $\hat{\delta}<1$.
[I suggest you have a bash at the problem in your own way first. However, the following steps may prove useful. First, break the problem into two cases depending upon $u(L, L)$ and $u(L, H)$. Observe that one these cases is easy. For the other case consider which wage is positive: there are only four alternatives. Then compare across the two cases.]
(c) Under the optimal contract in (b) show the following trigger strategy is subgame perfect: play H until someone plays L and then play L thereafter.
(d) Compare the contracts in (a) and (b). Intuitively what's going on? Should I curve the final in the light of this result?

