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1. Introduction.

The relationship between full informstion meximum likelihood
(FIML) end three stage least squares (3S1S) estimators has received
considerable attention in the literature. In pé:ticular, Madansky
[5], Sargen [7] end Rothenberg and leenders [6] have shown thst,
asymptotically, the two procedures are equivalent in the sense of
having the same asymptotic distribution undef a given set of
sssumntions. ‘Chow -[1] examines such relations by comparing the
minimands of the two procedures but his derivétion of the 38IS
estimator appears to be in error. The present -author- (2], [3] has
shown fhat the maximand of the FIML procedure can be decomposed into
two components; one of which converges to zero in probability upon
division by the ssmple size. It.is then shown that 3S1S may bé
viewed as maximizing the first component given a prior consistent

estimate of the convariance matrix of the system's structural errors.
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Hence, it was argued, iterating 3SIS until'convergence'is obtained
will not yield the FIML estimator, because we.disregard the second
component. On the other hand, this approach makes clear the
asymptotic equivalence of the two procedures. An objection may be
raised - an unfounded one as it turns out - that in such arguments
one ought to be dealing with the estimators themselves, not with
their associated maximands. |

In this paper we establish tbe nature'of the small sample
difference between 3SIS and FIML estimators, which makes it absolutely
transparent why the two estimators have the same asymptotic distri-
bution. The difference of the two estimators reduces eésentially to
the menner in which the explanatory current endogenous variables are
"purged”" of their stochastic component. We also point out how the Chow
[1] derivation of the 3SLS estimator is in error and indeed we obtain
e "linearized" FIML estimator similar in motivation to the one given
in Chow [2]. This "Jinearized" estimator requires little additional
computatibn over what is required for 3SILS and‘has the same asymptotic
distribution as FIML and 3SLS. Indeed, 3S1S mey be viewed as a kind

of "linearized" FIML.

2. Specifications, Assumptions and Notation;
The standard simultaneous equations,model may be written in the

notetion and conventions of [4] as
(1) Y =YB +XC+U
where

(2) Y = (y.l)y_g)"')y.m)) X = (x.lJX.z)"')X.G)) U= (u-l’u-Q""’

u
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the ¥ 40 X 40 U4 being, respectively the T element ( column)
vectors of observations on the iEE jointly dependent variable, jEE
predetermined variable and structural error of the iEE equation. It
is assumed that all identities have been substituted out and that all
equations obey the rank condition for identifiebility. If lagged
endogenous are included among the predetermined varieables the system
is, in aﬁdition, assumed to be stable. Moreover, the second order
moment metrix of the current endogenous and predetermined variables

is assumed to have a well defined nonsingular probability limit.

The £ observation on the system in (1) may be written as
(3) yt‘ = yt'B + xt'c + ut" t = 1’2,-..,'1‘

where

yt‘ =, (y.tliy.tei"',ytm), xt'= (th’x‘bE""’xtG)’ ut' = (utl’ut2J""utm)

it being implied that the system containé m jointly dependent and
G predetermined variables.

Concerning the error structure we assume that the vectors

4.

and moreover

fu@ 1 t= 1,2,...} are mutually independent jdentically distributed

(1) uy ~ N0, 3)

S being a positive definite matrix. No restrictions are imposed on 2.

The identifiability conditions exclude some variasbles from each equation

so that we may write, for example,



= + + i = ces
(5) y'i YiB'i Xi’y'i u. i) 1 l’ 2’ Py

the vectors B ., Y.5 containing, respectively, m, and Gi elements

not known a priori to be zero.

3. Chow's Derivation.

In his interesting paper, [1], Chow claims that 3S1S is obtained

by minimizing
(6) |s*| = o224

where

~ L. ~ ‘,‘_l_ B
(7) z=(Y,X), A=[I-B,C]" Z=(%X) ¥=Xxx%x) =~ XY.
Unfortunately, however, this is false and moreover if one does follow
such procedure one would obtain either adegenerate estimator or an
inconsistent one. This may be shown quite easily as follows:
From equation (7.10) in [1] we easily see that the estimator obtained

by minimizing (6) obeys

(8) (3% e 1B - 2 (3% 8 1y
where
7% = atag(Zy,lyye-or2y) ¥ = (¥ 0¥ pree ¥ ) 25 T (¥;%)

il

(9) 5 (5'.1’5'.2:---15' )" 8 .i'i (5'.1:7',1)'

-In
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and Yi is an appropriate submatrix of Y 4in (7). But in (8) the
matrix Zﬁ—l contains the unknown parameters 6-i and in the
derivation of 3SLS one utilizes & prior consistent estimate for them,

typically the two stage least squares (2SIS) one. If we do so -

jndeed if we substitute any consistent estimator for B_i - We see
that
. ~ N'N‘NN )
(10) plim %— g o AZIZA g4 % [C'X'XC - C'X'XC] = O.
T —00 . T 00

Consequently, this estimator is not well defined in the limit.

On the other hend if (8) is solved iteratively until convergence is
obtained then either the resulting estimator is inconsistent, or else
the seme indeterminacy noted in (10) will prevail. ¥inally, if any
of the equations of the system obey the rank conditions for just
identifiability and for 5 ., 1in z*'l,' of (8) we substitute its

2SIS estimator, say O 57 an appropriate row and column of S* wild

become zero. This is so since

¥y . -2Z8 IY(y.-2Z58,
(y i .1) (y_J 3 .J)

*
(1) o35 .1

]

If for © , Wwe substitute its 2SIS estimator then (11) becomes

S =0 X(X'X)TX'u = - 2.5 ..
(12) 5ty u.i(xx)lXu.j,_ SRR

o) (v 2,8 )1 KED K (v, 528, )] £,5 = 1,3

- ’m-
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If the iEE equetion is just identified then it may be shown, [4, ». 1981,
that the 2SIS residuals are orthogonal to the predetermined variables

of the system. Consequently

(13) ;?{j =0 j=12...n

and the inverse S?'l does not exist.

In fact, BSIS estimators are obtained by minimizing

tr a2 Za

while 2SLS estimators are obtained by ﬁinﬁnizing
tr A'Z'ZA

as the reader may readily verify.

4. The Relation Between FIML and 3S8IS estimators.

Given the assumptions in (L4) we can write the likelihood function

of the sample as

(14) L(A, 3;Y,X) = - %T-ln(%r) - 'g-lanl +'g‘ln|(1 - B)(I - B)]
- %tr{z'l a B2y,

Partially maximizing the function with respect to the elements of X -

which are assumed to be unrestricted - we find

A'Z'ZA
(15) X(A) = —5—



and concentrating the likelihood function we have

mT T , 2'Z
(16) L(A;Y,X) = - = [In(2r) +1] - 3 In|a" = A|

+-2T-1n|(1_- B)'(I - B)| .

Defining
(17) N = X(X'X)T X, V=(1I-NY
we can rewrite (16) more suggestively as

mT T V'V T A'Z'Z'A
(18) LAY,X) = - = [In(2r) +1] -3 |l =1 -3 In| —=—|

1

T

1<
j<?

m){I - B} (1 - B)|

WV |

+
Differentiating successively with respect to the columns of 4, after

a priori restrictions-have been imposed, we find

(19) X' (=7t e 1)7* -y (st @ 1 )V*1B

-z e ry-v (s e Ipv

where

~

(20) V* = diag(v*l‘,vz,...ﬁ;) v = (x?'_l,?r"_g,...,v'.m)', V= (\71,0) .

v& being a submatrix of ¥ and bearing the same relationship to the

latter as Y, bears to Y; the ;-i are the columns of V.
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In addition

(22) s=(1-8) Ll(r.m

Since | £ in (19) is as defined in (15) and S as-defined in (21)
it follows that (19) is a highly nonlinear function of & and can
only be solved by iteration. On the other hand the preceding dis-
cussion affords.a particularly simple method of "linearizing" the
FIML estimator. .

let g, S be the matrices resulting when for the unknown
parameter © we substitute its 25IS estimator § in S and S
respectively. The "linearized" FIML estimator of © ié then easily

obtained ag

(22) &= [z*'(5te IT)z*.v*'('sT'l ® I)V* iz 5le IT)y-v*'('é'l@ I)v]
It is now simple to verify that the estimetor above has the same

asymptotic distribution as the FIML estimator. Since the distribution

of the latter is well known we shall confine ourselves to a very brief
demonstration. To this effect define

(23) A =.(I-N)Yi, Y:*_: = (Yi,o), Y* =;diag(Y§,Y’2‘,...,Y;)

and note that

(2k) v o= (1, ® (I - N) Y, v = (I, ®(I-Mly



Consequently, (22) may be written as

"~

(25) & = [z*'(§'1®1T)z*-Y*'[§'1®(1-N) ]Y*]'l[z*'(§'1® Ip)

LR (1-mly |

€

"

Since y =2¥8 +u, u-= (u'.l,u' ,...,u'.m)' it follows that

-2

(26) -8 = [2*'(Freryzt v §le(r-m itz (5rer,)

Y Ele(1-Nh

The desired result is then immediate if we note that, asymptotically,

o [(z*-v9) (s @ 1,)(2* - v) -1
(21) ~T(6-8) ~ | 5 ]

1z vyste I)lu .
T

which yields exactly the asymptotic distribution of the 3S1S estimator;

and hence that of the FIML estimator.

REAMRK 1: The expression in (25) would appear to be particularly
convenient for computatiopal.purposes. Note that, in iterating, we
need only recompute the m X m matrices 5(6), S(8). Moreover, it
is known that under suitable regularity conditions the normal equations
of the maximum likelihood procedure have at most one consistent root
and this corresponds‘to the one that gives the global maximum of the
likelihood function; thus, it would appear that if we begin the

jteration with, say, the 25LS estimator of 5 and the iteration
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converges we would indeed have found the FIML estimator since we are
assured of the consistency of the convergent iterate.

Now, what is the small sample relation between FIML and 3SIS
estimators? The answer is readily determined from (25). First we
note that the 3SLS estimator mey be written as

(28)  Bygrq = [z*'(§;1'® IT)z*..Y*'[Egl ®-(1..N)]Y*]’l[z*'(§;1 ® Ip)

Syt e (1ol

where

(29) £, =3

and A has been obtained by 2SIS methods. If we iterate 3S1S, and

the iteration converges, we shall obtain an estimator obeyiggr(28)

but in this case §3 of (29) will be computed with X as obtained

by 3SLS methods.

On the other hand if we iterate (25) and the iteration converges

then the FIML estimator will obey (25) but with

(30) 5. ML _UE oy o (- §) T (r- By

In general, a converging iteration of 3SIS will not produce the
FIML estimator. Intuitively, the essential difference between the

two estimators is that FIML employs the quantities
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Fyry, - ¥R, Fviy L - SRV
i™j i ive] - TR

while the 3SIS estimator operates with the quantities

~ij - ~o 1 _ ~ gij _ ~s ' - ~ )
S CAER ANCAER AP (4, - V) (v =¥y
The "reason" why asymptotically the two estimators are equivalent in

terms of their asymptotic distribution is that

(31) plim 3= plim § =3

T o T o

where 5, § "are defined as in (30) in the case of the FIML estimator,
and 3 dis defined as in (29) in the case of the 3SLS estimator. Notice

that § is the estimator of 3 obtained from the residuals of the

unreétricted reduced form, as modified in (30). On the other hand,

5 in (30) and §3 in (29) are estimators of 3 obtained from the
residuals of the restricted reduced‘form; the former as induced by the
FIML estimator of ©, the latter as induced by the 28IS estimator of ©O.
Are there any conditions under which, for every sample size, FIML

and 3SIS estimators will coincide? The- answer appears to be-yes, and

the condition is that all equations of the system obey the rank (and order)
condition for just identifiability. If in (25) we commence the

iteration with 82818’ then S and i, thus computed, would be
jdentical, since indirect least squares and 281S estimated structural

parameters will coincide. Consequently, the first iterate would be



simply the 3SIS estimate. But under just identifiability conditions
3515 and 2SIS estimators coincide. Thus, nothing will be gained by

further iteration. Indeed under conditions of just identifisbility

(for all equations of the system)it would appear that 281S, 3SLS and

FIML estimators are identical for every sample size.

The preceding discussion has therefore established

THEOREM: Consider the model in (3) and (L) together with the

conditions customarily assumed for such simultaneous equations models.

Then
i. The "linearized" FIML estimator exhibited in (25) has the same
asymptotic distribution as the FIML estimator
ji. Iterating 3SILS until convergence is obtained does not yield the

FIML estimator

iii. Under conditions of Just identifisbility for all the equations

-12-

of the system, FIML and 3SLS estimators coincide for every sample

size.

5. Conclusion.

In this paper we have elucidated the small sample relation between

3SIS and FIML estimators. Moreover, we.have'established that iteration

of 3SIS does not yield FIML estimates. An intereéting byproduct of this

approach is the result that under just identifiability conditions for

all the equations of the system FIML and 3SLS estimators coincide for

every sample size. Since it is known that 251S and 3SLS also coincide

under such conditions, it is therefore established that in such a case

211 commonly employed limited and full information estimators yield

jdentical estimates - apart from roundoff errors.
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