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Y. Introduction.

In a previous paper [2] a method was proposed for estimating
the parameters of dynamic simultaneous equations models by single
equation methods. Its objective was to offer a practicable
alternative to the single equatfon estimator proposed by Fair [5]
end one whose properties are easily established.

In the present paper we present a full information estimator whose
computation requirements are nct exccssive. We also show’its relation
to the maximum likelihood estimator; this relationship easily
establishes that if we iterate and the iteration converges, then
we obtain the maximum likelihood estimator. ZEarlier discussions of
the problem, notably tﬁe important initial paper by Sargan [7] have
left the impression of enormous complexity and pointed out the
problem of multiple maxima. Subsequently, including a recent
implementation by Hendry [6], the objective had been to obtain
computer algorithms for the solution of a highly nonlinear set of

equations. If the earlier papers had, perhaps, overemphasized the

degree of complexity of the problem the presert paper will probably

*
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tend in the other direction. It would rather emphasize the simplicity

of the problem and its formal similarities with the scalar model
Vi = Ot Wy g U Up T My g B

Iﬁdeed, the full information estimator to be developed below is the
natural extension of the two step (Aitken) estimator of the parameters
of the model above whose properties were extensively examined in [31.
When we examine the single equation analog of the éstimator
developed here we should be led not to the estimator proposed in [2]
but rather to a slight modification thereof which is efficient relative

to that in [2].

2. Notation, Assumptions, Conventions and Preliminaries.

The standard structural dynamic simultaneous equations model may

be written as

= * =

(1) Y. = Y. B+ Ve 4. B +w,, C+u. t =1,2,...,T
where Yy, is the row vector of observations on the m current endo-
geneous variables of the*system at time t; similarly LA is the
observation’ vector on the s exogenous varisbles and Uy, the

m-component vector of errors which are assumed to be generated by a

first order autoregression.

Remark 1: As the argument proceeds it will become apparent that the
approach will readily accommodate additional lags in the endogenous

variables and higher order autoregression in the error process.-



The following conventions are observed.

C.1. Identities have beén substituted.out of the systen,

C.2. The system is identified by exclusion restrictions, so
that some elements of B, BX, C are known & priori to

. be zero.

€.3. T >max(2m + 2s,K) K being the number of unknown

elements in B, B*, C.

We may write the error vector as
(2) ut. = ut_l. R + £ » R = (I‘ .) i,j = 1,2,...,111

where

(a.1) {8% :t =0, +1, +2,...} is a sequence of mutually independent

jdentically distributed (i.i.d.) random vectors obeying

SHI N(0, =)

and ¥ is positive definite.

(A.2) The matrix R is stable, i.e., its roots are less than unity

in modulus. .

(A.3) I - B is nonsingular so that the reduced form is uniquely

defined.

(A.L) The matrix 13*(1-}3)'l is stable.
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(A.5) plim % Q'Q exists as a nonstochastic, nonsingular matrix,

T >

where

Q, = (W,W—l, Y—l,Y—2), Y = (yti)’ W - (wtj), i = 1,2,...,111,
° ) j=l’2,cac,s .

(A.6) The exogenous variables are nonstochastic and bounded.

Remark 2: Assumption (A.6) is not required for the derivation of the
estimator or for its comsistency. It would be convenieﬁt, in dealing
with asymptotic distribution aspects. However, this problem is not
considered in the discussion below.

We now establish the covariance properties of the.error process
itc clear the similarities (and differences) between the

vector and scalar autoregressions.

Temma 1: The error process in (2) is covariance stationary and

its second moment matrix is given by

3) Cov(ué.) = Q, all t, Q= 24 »R':.L SR .

Proof: Introducing.the lag operator L, we may write, in view

of (A.2),

©0

(%) Ug. = z R'™ &¢_3.

i=0




The proof follows immediately because of (A.1l).

Temma 2: The relation between © and X 1is given, explicitly,

by
(5) ° S=0-R'OR .
Proof: From
t -
(6) ul, = Ruf 4, + &g,

we have, in virtue of Lemma 1,
(7 Cov(u%') =0=R'QR +2 .

Lemma 3: If we put

(8) u¥ = (ul"u2-""’uT')
then
Q R R ... QR ]
R'Q Q R ... RCC
(9) Cov(u*') = = .
R‘ZQ R'Q O ... QRT’3
.RlT"l R!T-zg .00




Proof: Follows immediately from the representation in (k).

Lemma L4: The inverse of @ ~is given by

[ oL ke -ret o . . .
' Rt ce VRS
10y ol - 0 sk sterslre re?
: . . . . s~ i moR!
0 o -z g

Proof: This is easily verified by multiplication.

Iemma 5: There exists an upper triangular matrix ¢ such that
(11) ot o .
Proof: Take
aY/2 re1/2 . . 0
0 s-1/2 _R2-1/2
(12) v = 0 o ‘2'1/2 rs7/2
0 o /2
L ,

where Ql/ 2, Zl/ 2 are the "square roots" of the positive definite

matrices , ¥ respectively. Verify by multiplication.




Lemma 6: The determinant of @~ is given by
-1 -1 -1T-1
(13) o7 = Jo7 =L

.Proof: The result follows immediately from ‘the decomposition of

Lemma 5.

Lemma 7: The log likelihood function of the observations is,

neglecting the problem of initial conditions,

T-1

In
2 2

(14) L(A,R,Z;Y,W) = - n(2r) - 3 inlal - 1n|3|

+ %ml(I-B)'(I-B)l - -;- 2% o7l g%

where

o _ I-B
(15) 2, = (yt-’yt-l-;wt-)’ Z¥ = (Zl-A’ZZ-A""’ZT-A)’ A= ( :]g*) .

Proof: Immediate from Lemmas 3, 6 and the fact that the Jacobian
of the transformation - neglecting the problem of initial conditions -

: . 2,T/2
from u* to y* = (yl.,yz.,...,yT.) is {]1-B|°} / .

Now, observe that in view of Lemma 5 we have
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T
(16) zxd Lzwts 2 A YArzr 4 }: (z, A-z AR)Z-l(z A-z_ . AR)'
1. 1- t- t-1- te. t-1-
t=2 ‘

-1 ' -1
= zl.AQ A'Zl- + tr(ZA - Z_lAR)Z (ZA - Z_IAR)'
where

(17) Z = (yt.’yt_l_’wt.), Z—l = (yt-l" t—2',wt—l')’ t = 2,3,...,T .

Since upon division by the sample size (T) the terms 1n|9|,

zl.An-lA’zi. vanish, at least in probability, as T — o . we shall

neglect them in subsequent discussions.

3. Full Information Dynamic Autoregressive (FIDA) Estimators.

In dealing with FIDA estimators we shall essentially give the
natural generalization of the three stage least squares (35L8)

-

procedure and minimize, with respect to A,
tr 51 - Z_AR)' (%A - Z_,AR)

given prior estimates of Z. and R3; inithe above Z_l is as
defined in (17) and 7 #%ill be defined momentarily. If we iterate
the procedu}e, i.e., if given the new estimate of A we reestimate
5, R and then minimize the trace above with respect to A and the
procedure converges, then the resulting estimator will have the same

asymptotic distribution as the maximum likelihood estimator. However,

the estimates yielded by the two procedures will differ generally, for




finite samples. This is perfectly analogous to the result obtained

when the structural error vectorséare i.i.d. normal variables and we
compare FIML and iterated 3SLS procedures. -See for example [L].
If we project Yy, on the space spanned by yt-l"yt-2'fwt-’w£-l-

we obtain the relation
~ ~s -l
(18) Y=Y +V, Y= Q(Q'Q) Q'Y, Q = (W’W-l’Y-l’Y-Z) .

This verifies that

(19) Vi¥=0.
Define
(20) Z = (?‘,Y_l,w)

and note that

v

|-

[« e R o]
ooo

Nl
(21) 2'Z = 2% + [ 0
' 0

Consequentl&

(22) tr S(zA - Z_AR)'(ZA - 7 AR) = tr =@ -7 mR) (2~ 2_)AR)

+tr Y1 -B)'VHI-B) .

Since



(23) plim tr S Y(1-B)

T —o0

we see that we are neglecting an asymptotically negligible component

when we deal with

tr Y%A - 2 lAR)'(ZA - Z_,AR) .

If we now impose the a priori restrictions on the system in (1) we

may write the ith equation as

i

- + v¥a¥ .
(2k) v, = L3P v YR Woy, *uy i

where Y; is the submatrix of Y _,

variables not known to be excluded from the ith equation. It is now

convenient to write (1) in one column. Moreover, for reasons that

will become apparent below, it will be convenient to write the

(column) vector of all the unknown structural parameters as

(25) & = (fy:l,'vjz,..-,v:m,sﬂ,ai‘é,....,B?];,B:l,ﬁ',z,...,a:m)'

instead of the customary

(26) = (81,081,501 )" B = (81387371 -

To this effect define the matrices

1,2,...,m

-10-

corresponding to lagged endogenous



]
(]

(27) W = dieg(Wy W, . W), Y** diag(y’l*,Y;,...,Y;)

=5
x
[

= diag (Yl, Trees¥)s Y* = dieg(¥),Y .- >Y )

(W*: Y**: ?*) ) Zfl = (Wfl’ Yﬁ, Yfl)

where §i is the appropriate submatrix of Y in (18) and a -1
subscript indicates that the time subscripts of the corresponding

matrix have been reduced by one. A simple rearrangement yields

(28) tr = V(%A - z_AR)' (%A - Z_AR)
S (F-R @I, gy - (- S IT_l)z*_‘l]s*}v(z'l ® Iy )

F-® @1, )y - [Z*-rOT, 187}

Dropping, for convenience, the subscript, T-1, of the identity

matrix in (28), we obtain the first order conditions as

(29) [Z¥'-Z (R ® 1IE e 1)[Z*- (R 8 1)z, 15

= [Z* -ZX(R® I)](z'1® Dy- R ® I)y_l] .
In (29)
Y = (y:l’YIZ’YIB"“’y:m)‘ ’ ;;—' (5117;:2:---:37:31)' 3

the quantities y.i, §‘, are, respectively, the ith columns of Y

and ?.

Suppose now we have initial conét%nt estimates of R and =

-

say ﬁb, io. We may define the FIDA estimator as



(30) %’(‘l) = {[Z*" -2¥)(R, ® 1)][2(‘)1 ® I][i*. - (ﬁ(') ® I)Zfll}'l

@ -2 ® DIE 8 11y - (Fy @ Dy, -

-12-

The substitution of y for ; in (30) 1is justified in view of the

orthogonality of V with ?, Y-l’ Y_2, W, W;l. We may now prove:

lLemma 8: The estimator in (30) is consistent.

Proof: Since we may write

= Z*k4* = * *
(31) Yy =2%* +u, vy, z_lé +u_,

we have

(32) y-® ® 1)y = [2"- (R ® 1)z* 18% +u - (§y® Du, .

Consequently

. _ ¥ Myt %1 N a1 ~¥% ~y *
(33) ® 8 + (2 - 2R @ DIEy @ DIZ - Ry ® D2,

(1) -

N PRI ' -1 . ~t
[z* - z_l(R0 ® 1')][2o Q I] - [u - (Ro ® Iu_,

}-1

1.

It may be verified that the conditions given earlier are sufficient to

guarantee the nonsingularity of
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. 1 [iey I ~. ~y . ~
GV plim F (2 -Z¥ R, ® DI(Z;” ® 1)[2"°- (R; ® )27, ] = plin M

T —e T o

M being simply a convenient representation of the matrix in the left

member. Consequently, we need only establish that

(35) puim % [Z* -z & @ DIE® - ®® Du -0,

T -0

To this effect we observe that
(36) u=(R'"®Iu_, +€, € = (811,812,...,s:m)'

the €. being the vectors of observations on the ith component of €.

in (2) and R being the "true" parameter matrix. Thus
. Ingl | — gl | H
(37) u- (R, ® I)u_l e- [(Ry - R ) ® I]u_l
and it is apparent that we can show consistency if we can show

(38) pum I (3% - 2@ ® DIET@ DUE - RH® Th, = 0.

T e
Let us deal first with the component

1 ~yr =1 ~y t _ }_ ~yt =l R
-T- Z (ZO & I)[(RO - R )® I]u_l =T Z [20 (RO R ) ®I]u_l .
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From (26) we see that

xt D=1, t '
W [zo (RO—R ) ® I]u_l
}- ~ayt ~_l ~y _ t _ }. %31 ~_1 ~y t
(39) T A [20 (R0 R) ®I]u_l =5 Y [ZO (RO-R ) ® I]u_l

Txr =1 v »
Y2, 7Ry -R ) ® Il
Tn view of assumptions (A.1), (A.5) and (A.6) it is trivial that the

first component vanishes. The ith subvector of the second and third

components consist of

l__ ' 2N Nad ' x1 l z e e . ~1
T (30 Ry -R)5 Y505 T (5 Ry =R 155 ¥5Bh.5
=T 51
. . z=1,51 ' .
where uq.5 1s the jth subvector of wu_, and (2, (R, -R )]ij is

the (i,j) element of glal(ﬁ(')-R'); we note that

Ylw. .  Y.Q -1 Qu 4.,

~ iay-tAr i=-1+3 _ 1 Q'Q J
o) ¥, = a@Tey, =g = g (T) T

and it is clear from the definition of Q in (A.5) and assumptions

(A.1), (A.2) and (A.L4) that

. 1 o
plim = Y.u_, .
T o0 T i =-1l.]

is a vector with finite nonstochastic elements. Since Y?.L‘ is a sub-

matrix of Y_1 the same considerations imply that
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is also a vector with finite nonstochastic elements. 1In view of the

~

consistencey of R, as an estimator of R it follows

0
(41) plin = Z*' [T R - R')® Tlu_, = 0 |
: T 0 T 0 0 -1 )

Since Zfl contains only appropfiate'submatrices of Q the argument

sbove also establishes that

. 1 % [ ~=] 1 ' _
(42) g{ii 7 25 Ry 2 T(Ry - R)® Il =0.

Consequently, we have

i o im &% = &% .
(43) _ . gl m B
q.e.d.

~

Corollary 1: The consistency property of 80 does not require
that %0 be a consistent estimator of . It only requires that its
probability limit be nonsingular and that the probability limit in

~

(34) be similarly nonsingular. It does require, however, that R,

be a consistent estimator of R. Morebver, all subsequent iterates,

say %?k)’ are consistent as well.
Proof: Obvious from the proof of Lemma 8.

The preceeding suggest
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~

Lemma 9: Provided ZO is a consistent estimator of X, the
asymptotic distrubition of T (%3 - 8%) depends on the properties of

the asymptotic distribution of the elements of J& (ﬁé - R').

Proof: We make use of the following result, which may be found,
e.g., in [1, Ch. 3]. If gn, Cn are two sequences of random variables

and if -

(4) plin (£, - &) =0

n - n

then, provided Cn converges in distribution to the random variable
t, so does §n.

We note

1

4 Jo (3% - o%)=pt
() 1 By - -F 2

0 B - 2% (R, @ DIE ® 1)

{e- [Ry-R)®TII_ ).
Since as T — o, ﬁ-l converges to a well defined nonstochastic matrix
the asymptotic distribution of N (%g'--S*j (provided it is well
defined) is determined by that of the vector in the right member of (45).
Iet il be any other consistéﬂ:estimator of Z; If ﬁ is defined
with il instead of EO its probability limit is not altered. Now
let the vector in the right member of (45) be defined with respect to

il and consider the difference of the two. We have
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(46) glim —;—- 2% -2} ® I)]'[('igl-iil) ® IR -R") ® Thu_}=0 .

The validity of (46) may be seen as follows. Since Eal - iil is a
consistent estimator of the zero matrix, the result would follow

immediately if the vector

=

Nt

[Z*' - X (R, ® D)1[p® I}{e - [(R, - R') ® I]u ;]

converges in distribution with T, for somebnonstochastic well defined
finite dimensional matrix D. But this must be so if ~T (8} - &%)
has a well défined asymptotic distribution - which we assume. This
proves the first part of the Lemma. The proof of the second part is
immediate from the expression in (38) and the discussion following.

To complete this particular phase of the estimation problem it is
neceésary to produce an initial estimatoi of R and 3. Observing

that
(47) U=U.,R+E U= (y,) E=(g;,), i=1,2,...,m
Qe see that a natural estimator of R is

(48) R=(U.U

Unfortunately, observations on U and U-l are not directly available.

On the other hand from each strﬁctural~§quation
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*
i

Wify-i +u.i’ i 112)---,m.

_ *
()49) Y,i - YiB'l + Ylﬁ
it is possible, say, by instrumental variables (I.V.) methods, to
obtain cbnsistent estimators for the columns of B, B¥ and C. Let

KO be the matrix of structural parameters so estimated. Consequently,

we may take

(50) U=2A, U = Z A,
and define the initial estimator

~ ~t ~ =1 ~y ~
(51) ) RQ = (AOZ-lz-lAO) AOZ_lZA0 .

From the residuals of the regression we mey also define
B e T O R v
(52) 5,- & BE E-m-0,00,) g, 1®

and thus we complete the initial phase of estimation.

The FIDA estimator described_abdve is a very close analog

IS

Remark 3:
to the 3SLS procé&urel. Conceptually, it involves three steps

i. Project Y on W, W ,, Y ., Y , and obtain the residual

matrix V.

ii. By single equation (1.V.) methods obtain consistent estimates

of the structural parameters and hence of © and R as in

(52) and (51) respectively.

lPerhaps, for the reasons given below, it should be termed 3S5LS

dynamic autoregressive, 3SLSDA.
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jii. Obtain the FIDA estimator of the structural parameters
after "purging” Y of its "stochastic" component, V,
which is correlated with the error of the equations with

which we operate.

The difference between FIDA and 3SLS lies in the secend step, where
estimation cannot be carried out by least squares methods after

substitution in the ith equation of ¥, - Vi for Y.

Remark 4: The asymptotic distribution aspects of the FIDA estimator
above are, apart from complications induced by simultaneity,
entirely analogous to those of the two step Aitken estimator in the

context of the scalar model
(53) Ve = 0t Wy g F W Up = U g B

This.asymptotic distribution was studied extensively in [3] and was
compared with.that of the maximum likelihood estimator. Monte Carlo
results (also in [3]) for certain emﬁiriéally interesting parametric
configuxations show the two step estimator to perform quite well
relative to the maximum likelihood estimator - in fact almost as well.
Comparisons of asymptotic distributions show the efficiéncy of
the two step estimator to depend only on the difference'so - 5 where
sy 1is the asymptotic variance of the I.V. estimator of A and
S is the asymptotic variance of the maximum likelihood estimator of

A. This, therefore, suggests that if after we obtain the two step

estimator of « and A we iterate the procedure the efficiency of
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successive iterates is improved. This is so since if S01 is the

asymptotic variance of the (initial) two step estimator of A then

Indeed if we iterate until convergence is obtained we would obtain a
solution to the equations defining the maximum likelihood estimator.
Motivated by these considerations we therefore examine the:

properties of iterated FIDA estimators.

i, Maximum Likelihood and Iterated FIDA Estimators.

The (k + l)St iterate of the iterated FIDA estimator obeys
the following conditions
-1

(5,4_) ¥ _ {[Z*l - Zf:'l_(R(k) ® I)][Z(k)

-1
(k+1) J

® 11(Z" - Rpyy ® D20

Txt v ~-1 !
[(Z¥' - zfl(R(k) ® 1)1Z 5 ® 1] [y - Ry ®I)y_,!

i §

g ~t 1 ~ (=1 v 1 ~ = 1 ~
(59) R = GloZa%ahd ™ AP 2 7 T Fmfm)

The converging iterate of the process above (CIFIDA) is therefore a
fix-point of the equation in (54). We shall not investizate here the
conditions under which convergence is obtained. Rather, we shall show

that asymptotically the maximum likelihood estimator satisfies an

equivalent set of .equations and consequently that the asymptotic

distributions of CIFIDA and FIML estimators coincide. Unfortunately,
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the asymptotic distribution of the FIML estimator in this context has
not been explicitly established. One suspects, however, as in the
scalar cases investigated in [3] that by using an appropriate central
1imit theorem for m-dependent variables one can establish asymptotic
normality with covariance matrix obtained from the expected value of
the Hessian of the likelihood function, after we have concentrated
the.latter with respect to all other parameters except &%,

The likelihood function of the observations has begn obtained in

l 'y

Lemma 7. Neglecting terms like -% lnIQl -3 24 AQ which are

asymptotically insignificant we may write the likelihood function

R 2
conveniently as

) v ~'~ TR e ~ e~
(56) L(A,R,Z;Y,W) = - i R Y A A R o P DA Iin (I-B) —= v V (1- B)
2. 2 T 2 2
. 1
T, (za-2_ AR)' (ZA-Z_,AR)
T2 T
The term 1n TV depends only on the data - as is obvious from (18) -

and its introduction does not affect the maximization process.

Differentiating with respect to 571 we obtain
. .
(57) =7 (Za Z_ AR)' (ZA - Z_ AR) .
Differentiating with respect to R we find

| At et . R T
(58) R= (A'22' )7 A"z 7.

2If one wished one could be more careful whether one should use T, T-1

or T-2. Asymptotically, however, such matters are inconsequential.
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Now, in view of (27) we can write the trace in (56) as

{y- ® @Iy - [2°- (R'® 1)z% 1}’ cltenly-® ®Iy_;

- [2¥- (R' ® 1)z 18]

The derivative of this expression with respect to 8% has already
been established, implicitly, in (28) - subject to appropriate
modifications. |

If we put

<
<?

(59) 8= (I-B) (I-B)

|

we have that o ] -

(60) 9_%%_];4 - o (st @ 1)V - T (s @ T)V),

where B = (?i,?é,...;?é)', v* - digg(%l,vz,...,Vﬁ), v = (5:1,;:2,...,;:m)',
;-i are the columns of V and Gi is the residual matrix corresponding
to Yi. The latter is the matrix of opservations on the current endogenous
variables appearing as explanatory variables in the ith structural
equation.

Hence, the first order conditions with respect to &% yield
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(61) {[z*' - z*_‘]'_(R e DIt e 112*- R' ® 1)z¥,1- 7**' (571 @ 1)2**18
= 2 -2 (R ® DHIEte 1ly-@®' ® Iy_,!- z2**' (571 ® 1)y

where we have put

(62) | z* = (0,0,V*)

and have noted that

(63) ™Eten v (st e )y .

In view of the orthogonality of V¥ and 'Zfl we may write (54) -

omitting the subscripts pertaining to the iterative aspects of the

computation - as
(s) [z -z (R@ D)@ 1](z*- (R ® 1)z% - 7' (571 @ 1)2**)8*
= [2*' - Zf]'_(R enIEte 1ly- R'® Dy_,1- z¥' (st e 1)y .

A comparison with (61) shows that the FIDA estimators differ from FIML
only in the way in which the residual components ﬁi are treated;
FIDA operates with quantities of the form

~3 0 NNty LT 13y LTy
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while the FIML estimator operates with the quantities

Fdyly J5H §Y A yry  -FH Ty
13 'y’ V3 73

the 313, st being computed by using a consistent estimator of 8%,

Thus, the CIFIDA and FIML estimators differ only in the way in

which they "purge" the relevant stochastic canponent from the moment

matrices of the current endogenous variables.

We note, however, that

(65) plim S = =
T o0
wnere
~ ~ 1 V'V oy .
(66) S=(I-By) -5 (I-By) -

Consequently, for large samples CIFIDA and the FIML estimators

are identical and hence they would have the same asymptotic distri-
bution. To see this, one has only to compare equations (54) and (55)
defining the CIFIDA estimator and equations (57), (58), (61) defining
| the FIML estimator. Needless to say the last three equations can

only be solved by iteration.

Remark 5: In view of the asymptotic equivalence of the CIFIDA and
FIML estimators it would seem to be computationally simpler to use

the schemes in (54) and (55) rather than the one implied by the FIML



-25-

estimator in (57), (58) and (61). The latter require recomputation
at each iteration of the inessential matrix S which has the same
probability limit as S. This aspect entails no asymptotic gain
and considerable additional computational burden. Whether there is

small sample advantage in the recomputation of S is an open question.

Remark 6: It is possible that the convergence of the iteration in
(54) and (55) may be established by an argument similar to that
employed by Sargan [7].

The preceding has established

Theorem: Consider the dynamic structural econometric model in
(1) and (2) together with conventions C.1l-c.3 and assumptions A.1-A.6.
Then the FIDA estimator as given in (29) is consistent, as is any
subsequent iterate.

Moreover,~provided convergence holas, the convergent iterated
FIDA estimator obtained as a fix-point of (54) is asymptotically
equivalent to the FIML estimator and consequently the two have thé

same asymptotic distribution.

5. Conclusion.

In this paper we have defined a séquence of estimators for the
parameters of a dynamic structural model with autoregressive errors
as in (1) and (2). The sequence is defined by an iteration procedure
given in {54) and (55).

Al]l iterates are consistent. It is‘conjectured thaﬁ the ith
iterate is (weakly) efficient relative to the jth one, Jj < i. More-

over, if the iteration converges then we obtain the maximum likelihood
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estimator, in the sense that asymptotically the convergent iterate is
equivalent to the FIML estimator. The difference between the FIML
and CIFIDA estimators lies in the way in which they "purge” the
second momént matrices of the current endogenous variables of their
appropriate "stochastic" component. The FIDA estimator‘-g?l)
(first iterate) is an almost exact analog of the usual 3SLS estimator.

, The significance of the preceding discussion is twofold. First,
it elucidates the nature of the FIML estimator and second, it provides
a relatively convenient computational procedure for obtaining an
estimator which is asymptotically equivalent to FIML.

Finally, it is simple to see that the estimator presented in [21]

differs from the FIDA estimator - when specialized to the conditions
of [2] - essentially in the way in which one tréats the iagged

endogenous variables. It is then obvious what modifications are

needed in [2] in order to obtain the simple equation analog of FIDA.
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