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1. Introduction and Summary.

JIn an interesting paper [2], over a decade ago, Brown had
éﬁggested an estimation procedure for the standard simultaneous
equations model which he termed simultaneous least squares (SLS).

A paper by Nakemura [6] asserted the consistency of SLS. Since that

time, however, no systematic attempt has been made to study‘the
efficiency of this estimator vis-a-vis other commonly employed estimators,
except in desultory Monte Carlo fashion. In part this is due to the

fact that the asymptotic distribution of the SLS estimator has not

been oblained in the literature.

We shall derive, below, this asymptotic distribution and show
the relation of SLS to the two stage least squares (2SLS) and three
stagé least squares (3SLS) estimators; hence, to limited and full
information maximum likelihood (LIML, FIML) estimators as well.

Contrary to assertions in [2] SLS 1s not a full information
estimator, if by the latter we mean one that takes into account the
stochastic dependence of the system's stfuctural errors. It is a
full information procedufe only in the sense that it estimates all
structural éarameters simultaneously. In;fact, the best way to under-

stand the essence of SLS is in terms of the general linear model
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(1) y = X8 +u, E(u) = 0, Cov(u) = 2 .

If in (1) we obtain the estimator

() - B = (®0) xRy

where R is a symmetric matrix which, if nonstochastic it is not
necessarily Z_l, and again if stochastic it is not necessarily
true that plim R = Z-l, then one has an exact analog of the
relation between SLS and 2SLS, 3SLS. Clearly the estimator in (2)
may or may not be efficient relative to the ordinary least squares
(OLS) estimator of B depending on the proximity of R (or of its
probabiiity limit) to Z-l. This is exactly the relation of SLS tc
281S. Thus SLS would be (asymptotically) inefficient relative to

38LS, except in very special circumstances, and cannot be uniformly

ranked relative to the. 2SLS estimator in terms of (asymptotic) efficiency.

2. Asymptotic Properties of the SLS Estimator.

Consider the standard structural econometric model

(3) Yt. = yt.B + Xt.'c + ut' J t = 1,2, .v. .,T

where y = (ytl’ytZ""’ytm)’ Xy, = (th’th""’XtG) are,
respectively, the vectors of observation on the m current endogenous
and G predetermined variables of the system; the matrices B, C
contain the structural parameters of the problem. The system is

assumed to be identified through a priori restrictions so that it




will be known that some elements of B and C are zero.
The sequence {ut. it = 1,2,...} is assumed to be one of
independent identically distributed (i.i.d.) random variables

obeying
() E(u; )=0 Cov(u)=3.

It is convenient, but not necessary, to assume that the predetermined
variables are nonstochastic and that ﬁhe second moment matrices of
the variables of the problem possess nonsingular limits.

If we impose the a priori restrictions, the observations on

the ith structural equation may be written as

(5) y e+ Xify-i +u

i

where Yoy is the ith.Folumn of

6) Y= (y.l,y.a,...,y'm)s (yti) t=1,2,...,T, i=1,2,...,m .
If we put

(7) X= (x_l,.x_g,...,x'G)= (x, ) £=1,2,...,T, § = 1,2,

then Y., X in (5) are appropriate submatrices of Y, X respectively;

B‘i’ Y.5 are the ith columns of B, C, respectively after suppression



of elements known to be zero. Finally U, is the ith column of

(8) U= (u'l’u

.2,...,u_m) = (uti) t = 1,2"0-0’T, i = 1,2,...,111 .

-

Tk'fe model in (3) may be written more compactly as'_
(9) Y=YB+XC+U

from which we can obtain the reduced form

(10) Y=XI+V, I=C(I- B)'l, V=U(I- B)'l .

The SIS estimator is obtained by minimizing

T

(11) Z (yt. -xt.H)(yt. -xt.]'[)' = tr(Y-Xm' (Y-XT)
t=1

with respect to the unknown elements of C and B.
It is easy to show from (11), that SLS is essentially a limited
information procedure. To see this recall that 2SLS is obtained by

minimizing
tr A'Z'ZA
while 38LS is obtained by minimizing

tr STTA'T7A



the essential difference between them being that 38LS takes into
account the correlation structure of the error terms but 2SLS does not.

In the above

I-B 5 . -
(12)- A ( S ), 2= (Y,%), 2= (§,%), =M, N = x(x'%)"1x* .

The minimand of SIS may be rewritten more suggestively as
(13) tr(Y- XM)'(Y-XT)= tr K 1A'Z'ZA, K= (I-B')(I-B)

A "full information" analog of SLS would have to be obtained from

where § 1is the covariance matrix of the reduced form errors
(15) Q= (I-B )'l (1 - B)'l

by minimizing with respect to A, given a prior estimate of 2.

If the structural errors were normal then (1l) gives the exponential

of the likelihood functi;n,and the "full information" analog of SLS

is clearly inefficient relative to FIML since it fails to take into
account the Jacobian of the transformation from the structural errors
to the jointly dependent variables of the system. Worse than that,

the estimator thus ébtained, is inconsistent, as may be easily verified.

In obtaining the normal equations for the SLS estimator it is
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more convenient to group the unknown paraﬁeters according to
(16) 8= (y',B")", v= ('Y.'l"Y:g’-”:'Y:m)': p= (511’5:2:-'-:5:111)'

i?stead of the customary grouping, &= (B:l,S:Z,J..,S:m)', 8.i==(B:i,y:i)' .
Observations on the model in (3) or (5) may then be written in the

compact form
(17) y =2 +u
where
' ¥ . .
(18) Y= (y:l,yzz,.-o,y:m), X = dlag(X]')X2, ...’Xm)’ Y*= dlag(Yl,Yz, .a .,Ym)

z¥ = (X5,Y%), u= (ulsulgeeoul ).

We shall now write down the normal equations of SLS, relegating the

details of their derivation to the appendix. Thus, we have

(19) £(8) = 2¥' (K @ 1,)2% & - (KT 1)y

+ () @he 1) - 2%)

where

(20) v*=diag(vl,v2,...,vm), V=Y, - XTI, i=1,2,0..,m .

Remark 1: Equation (19) suggests a possibly efficient algorithm for

obtaining the SLS estimator - as a solution of the equation f(8) = 0 -



by iteration. Thus, suppose an initial consistent estimator is

available for &, say g(o). We thus compute the quantities

L V. =v. -%., ¥. = xT. and obtain the first iterate
1l 1 1 1 i . .

(?1) ) 5(1) = [2*'(§‘1 ® IT)Z*]-l ﬁ*‘(ﬁ’l ® I'T)y]

where

(22) 2* = (x5,¥%), ¥* = diag(?l,i‘z,...jm) .

"~

It is then clear that given 6(1) we can obtain 5(2) and continue

until convergence is attained. Of course, the conditions under which

converging iterate is the SLS estimator.

Remark 2: It is evident from (21) that all iterates - beyond the
initial consistent estimator %(O) - have an interpretation as

instrumental varisbles (I.V.) estimators with instrumental matrix

7 (E e 1),

Remark 3: The expression in (21) elucidates the comments made at the
end of section 1. Thus,.we see that SLS proceeds analogously with the
3SLS estimator except that it uses the irfelevant matrix i-l instead

of 2 1 and "purges” the current endogenous variebles in each equation

by using the restricted reduced form residuals. This is the price paid

by not considering the dependence of the structural errors of the

system. We remind the reader that 3SLS has an interpretation as an



I.V. estimator obeying a relation like (21) in which ‘E-l is replaced

by 51 and ¥* is obtained from the unrestricted reducted form

by ordinary least squares. Thus, although SLS has the appearance
(and the computational burden) of a full information estimator, it is

essentially a limited information one.

Remark 4: The initial consistent estimator %(0) may be easily
obtained from equations (5) by using as instruments, in addition to
the included predetermined variables, other (excluded) predetermined
variables. In view of the identifiability condition it will always
be possible to obtain 5(0). In fact therg is a multiplicity of such
estimators. For the reasons above, perhaps SLS is more aptly named
the restricted reduced form iterated instrumental variables (RRFIIV)
estimator.

From (21) we immediately have

" 1EMMA 1. The iterates of the RRFIIV estimator are consistent
provided
7 (k1 ® 1)Z*

(23) 1im =¥
T se T .

exists as a nonsingular matrix, where

(2’4) 2*= (X*,:f*), _Y-*= diag(?l,Yz)---,Ym)’ _]._:XH]-_’ i=l,2,o--,m .

Proof: It will be sufficient to prove the consistency of %(l)'

Thus,



. 0 rogr el Loy e
(25) By -0 = KT e 1,)2%171%* (8 te 1u

and the result follows immediately from the consistency of g(o)

and the nonstochastic character of the predetermihed variablesl.

COROLLARY 1. If the RRFIIV (SLS) estimator can be obtained

through the iteration of (21), then it is consistent.
Proof. Obvious from Lemma 1.

Remark 5: Although Corollary 1 qualifies the consistency property,
in fact Brown [2) assumes iterative convergence beginning from an
unspecified initial condition. Nakamura [2] takes convergence of the
Brown process as given or, at any rate, assumes that the minimizing
solution has been somehow obtained. Thus, the corollary above may

be viewed as an alternative proof of consistency.
"LEMMA 2. All iterates have the same asymptotic distribution.

Proof. It is clear that for any 1 >1

(26)  plim NT (3 1

-8y =¥
T - (1) )

plim 2 2*'(K'l® Iphu .
T oo NT

Thus, asymptotically,

;Actually independence of, or even uncorrelatedness with the

elements of u would be sufficient to establish consistency. In (25)

0

8 is the "true" parameter vector.
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~ 0 X 0 X '
&(5(1)-6)~ &(6(1)-5) i=2,3,..

Remark 6: ILemma 2 does not imply that "iteration does not matter.”
It states that it does not matter for "large samples.” Evidently,
small sample properties will differ according as the estimator we

obtain satisfies f£(8) = 0 or not. What we my deduce, however, is

that, if we terminate the iteration after k steps, the resulting

estimator has the same properties as the converging iterate, if one

exists.

The asymptotic distribution is given by

LEMMA 3. The RRFIIV (SLS) estimator has, asymptofically, the

distribution

@7) Jr (8 - &%) ~ m(0,9)

where

S y -1 —x
2 (K~ ® 1) (28 I)(K~ ® I)Z ] 1

(28) 0= ‘I’-l[lim -

T o
Proof. Utilizing the result in (26) it will be sufficient to
obtain the asymptotic distribution of 1/~Fr E*'(K'l ® IT)u. To this
effect see, for example, [3, p. 254] or [4, Ch. 3]. Now define the
matrices

bl |

(29) R(i) = .x! k* , Q(i) =

s iTss Ti- s is "i-

N k.* ) i=l,2,...,m, S=l,2,-..,T



where .x' is sth column of Xf, .5'
i"s- | i

is sth column of Y, and
i“s- i

each contains, respectively, Gi and m. elements; evidently, k*i‘

is the ith row of K . Let

(1) : (1)
Rs e Rs
(30) Rs= . ",Q's= : ? Ps= Q'S *
(m) (m)
Rs Qs
m
Noting that PS is a matrix of dimension 2= (mi + Gi) X m we may
i=1
thus write
T
1l Sxr, -1 1 ‘ '
(31) — Z (K "® I Ju= —/— Z Pu' .
n N

But {Psu;. :8 = 1,2,...} ~is a sequence of mutually independent
nonidenticali_ty distributed random variables with mean zero and
covariance matrix PSZP;. We further note that

T

T
I
P SP' = lim
S S
s=1 T

(32) 1lim 7 E¥ (KT e 1)(Z & 1)k 81,)7]

T oo

3=

which we may assert to be a nonsingulaf matrix with finite elements.
Let F(-) be the common distribution of the vectors u_. Then we

have that
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T

1 2
(33) lim 3 f P u_|“aF(u.)
tow T L Jlpu s S S

s=1

=]

T
. 2 o
< Z I f | o “ar (o)

o= " s Ip_lllol >n+T _
where “PS”2 is a norm for the matrix P, defined by

2 ' )
(34) ”Ps” = tr PP .

Since the predetrmined variables are nonstochastic and second moments exist

we have no difficulty in establishing that

T
ym 2 ) e
m —
T —00 T ZL s
s=1
is a finite qgantity. Let
(35) a=suw [plI, a>o0.

The condition « >0 simply requires that for some time s not all

predetermined variables are zero. Thus,

k 2 | 2
), bl fHPSHIcPI >N oler®

3l

(36)  1lim

T o

s=1

T

vim L) P |o|%ar(p) .
<y i) I flcpl S(nfe)T

T 5o ool .
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But the last integral converges to zero because the structural errors
have finite variances. Consequently, the Lindeberg-Feller condition,

see [4, Ch. 3], is satisfied and thus

1l —=xt, -1
(37) — Z*¥'"(X T ® I )u ~ N(6, 1im
'*/:I' T Tow

i

I

Z PZP') .
s” s

s=1

From (25) it then follows immediately that

(38) . N (g - 60) ~ N(0,9) q.e.d.

Remark 7: In the proof above certain conditions were invoked, viz.,
those in (32) and (35). Instead of asserting (32) oue vught to show
how it follows from the assumptions made on the predetermined variables.
Such an activity, however, has only élegance to recommend it and it
lies outside the main objectives of this paper.

The proof above strictly speaking applies to the iterates of
equation (21) and would give the distribution of the SLS estimator
only when the iteration converges. If the equation f(%) = 0 has
a consistent solufion - which must bg obtained by a procedure other
than the one given in (21) -then an alternative argument can establish
the asymptotic distribution of the estimator. Thus, by the mean value

theorem, write

(39) £(8) = £(8%) + & £(8%) (8-2)
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where &% 1lies between 60 and g. One . can then show that

(%0) plim
T

00

d
I £(8%) = ¥ .

HlH

Moreover, by establishing the asymptotic distribution of l/J& f(60)

one obtains the result given in Lemma 3.

Remark 8; If we waive the condition that the predetermined variables
are nonstochgstic and, in particular, if we admit lagged endogenoﬁs
variables a certain complication will arise. Thus in (31)'we would
no longer be dealing with a sequence.of independent random vectors.
However, if we obtain the final form of the model - see (4, Ch. 12] -
we can express the lagged endogénous variables in terms of the
exogenous variables and a certain rational lag in the structural -

errors. Because we shall impose a stability condition on the model it

will be possible to deduce mutatis mutandis, exactly the same results
as in Lemma 3 by the application of a central 1imit theorem on
m-dependent variables. For extensive applications of this approach,
see [5]. |

We have therefore established

THEOREM. 1. Consider the modél in (3) subject to the assumptions
and conditions given in section 2. Then
i. The RRFIIV (SLS) estimator has an interpretation as an
instrumental variables estimator.
ii., It may be obtained by iﬁeratién, as given in equation (21);

provided the iteration converges.



iii. If we begin the process with an initial consistent estimator
then all subsequent iterates are consistenﬁ.
iv. All iterates have the same asymptotic distribution.
v. The asymptotic distribution of the cbnverging iterate
(if one exists), in fact of every iterate, is giveﬁ by

Nt (5 - 60) ~ N(0,%) where ¢ is as given in (28).

3. Comparison with 2SLS and 3SLS Estimators.

Having obtained the asymptotic distribution of RRFIIV it is now
rather simple to appraise its efficiency relative to that of BSLS'or
full information maximum likelihood (FIML) estimators. The asymptotic '

distribution of 3SLS is given by

) VI (B, - 8°) ~ N(0,C5)

where

(42) C, = lim

3 T

Z* (2 e 17 }'1
T

We have

LEMMA 4. RRFIIV(SLS) estimators are asymptotically inefficient

relative to 3SLS.

Proof. We show that the difference of the two covariance matrices

is positive semidefinite. Now, define D by
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(43) (kL e 17T (K e 1) = 7' (™ @ 1EI T (5 @ 1) + D

and observe that DZ* = 0. Multiply both sides of (43) by (2@ Ip)

to obtaiﬁ
by [zt e IT)E*]'lz*'(K'l ® 1) (5® 1)
- cte IT)‘Z*]‘li*' +D(S® 1) -

Post multiply (kL) by T times the transpose of (43) and teke limits

to obtain .

(45) ® = c3 + 1lim T D(EZ® IT)D'

T — 00
which establishes the desired result.

COROLLARY 2. 3SLS is strictly efficient relative to RRFIIV (sLs),
in the sense that for at least one element of & the asymptotic 38LS

variance is strictly less than the corresponding SLS variance, unless

(46) lim T D(E® IT)D' =0 .

T —>co
Proof. Obvious from the Lemma.

LEMMA 5. RRFIIV (SLS) has the same asymptotic distribution as

38LS if




i. K=2

ji. All equations of the system are just identified.
Proof. Obvious from (43) since, under either i. or ii. D= 0

Remarkig: Since 3SLS and FIMIL have the'same asymptotic distribution,
Lemmas 4, 5 and Corollary 2 hold with respect to FIML estimators as
weli.

The relation of RRFIIV (SLS) to QSLS.and limited information .
maximum likelihood (LIML) estimators is established by

LEMVA 6: REFIIV (SIS) estimators are asymptotically

i. equivalent to_2SLS if the equations of the system are
just identified, or if K1 is a diagonal matrix.
ii. efficient relative to 2SLS if K =235, or (by continuity)
if k1ot gR, for suitably small &, R being some m Xm
matrix such that 3 T + ¢R is nonsingular.

iii. inefficient relative to 2SLS if X 1is a diagonal matrix.

Proof. To prove i. we observe first that

o 0
(47) o (Bogq - &) ~ N(0,C)
where
. et - )
: . ‘2*12* -1 2 (2 ® IT)Z E*lz* -1
(48) ¢, = e ( T > T T

When K—l is a diagonal matrix, then

-17-
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(ko) KT @ 1)ZF 1TV (kT e 1) = (ZFTH T
and it is easily verified that

(50) °=c, .

| When the system is just identified 2SLS coincides with 3SLS
and thus the first part of i. follows from Lemma L.
To prove ii. we note that if K= then ¢ = C3; the second
part of ii. follows easily by continuity and the arguments given in
[1, Ch. L].

To prove iii. we note that when 5 is diagonal, then

(51) €y = Cy -

The result then follows from Lemma k4.

Remark 10: Since LIML has the same asymptotic distribution as 28LS
Lemma 6 applies to LIML estimators as well. -It is possible to give
more precise conditions under which 2SLS is inefficient or efficient
relative to RRFIIV (SLS) estimators in terms of the relation between
the characteristic roots of K-l and those of . It does not seem
worthwhile to do so, however, since our inability to rank RRFIIV (SLS)
relative to 2SLS is well established by Lemma 6.

We have therefore established

THEOREM 2. RRFIIV (SLS) estimators are inefficient relative to

3SLS or FIML in the sense that the difference of the covariance matrices
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of their respective asympfotic distributions - in the order stated -
is a positive semidefinite matrix. Thus, FIML and 3SLS dominate
RRFIIV (SLS).

It is not possible to rank, uniformly, RRFIIV (SLS) and 2SLS or
LIML estimators in terms of relative gsymptotic efficiency. They are

1

equivalent if K is a diagonal matrix, 2SLS (or LIML) dominates if

S is a diagonal matrix, and RRFIIV (SLS) dominates if K = Z.

k., Conclusion.

In this paper we have studied extensively the properties of the
SLS estimator proposed by Brown [2]. We have given it an iterated
instrumental variables estimator interpretation and have shown that if
we vegin the iteration with & comsistent estimate then 21l subsequent
jterates are consistent. Moreover we have established that SLS is
(asymptotically) dominated by 3SLS (or FIML) estimators and that
it neither dominates nor is dominated by 28LS (or LIML) estimators. .
Which of the two situations holds depends on the parametric configuration
of the problem.

The results we have obtained provide considerable guidance in
the design of Monte Carlo experiments which would explore the small

sample properties of SLS (RRFIIV) relative to other full or limited

information estimators.
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APPENDIX

In this appendix we derive an expression for the normal equations
of SLS and obtain the probability limit of the matrix of second
deritatives of the minimand of SLS.

The minimand is given by -

see equation (13) in the text -

m
(A.1)  tr(Y-XM'(Y-XT) =tr XK lyrgtza = Z Z

i=1 J=1

ji

where
(A.2) M= (mgy) = A'Z'ZA, K- (x'Y)y, i,5=1,2,.

If we differentiate (A.1l) with respect to the first element of 5,

as given in (16), we would have, symbolically,

: E m m m m |
d -1, 00 v\ i3 \' [y i)
(A.3) V tr K "TA'Z ZA = Z Z‘ k a—(-y— mji + Z (gr k mji
1 -1 §=1 1 i-1 g
AR <BK'1>
= tr K M) +tr{s— M.
X < Y11 > | Y11

If we repeat this operation until all eléments of & have been exhausted,

and write the result in the form of a column vector, we shall denote this

by
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(8.4) 555 tr KM = tr K‘l(s%n) + tr(%—l—-)M .

Although the notation is grossly inaccurate the symbolism is useful

for our purposes.

Let us concentrate on the first component and observe that

(A-S) mji = (y.j -YjB.j = Xj(Y.j) (yoi—YiB‘i - XifY‘i) *

Consequently, Y1 appears only in the elements mlj and

mjl’ j=12,...,m. Thus
m m
o . om om
(A.6) tr K‘l<§§“—>= K g;il +Z L It
Y1 ‘1 V.1
3=1 =1
. )
13
- -2 X! K - Y - X i
X Z y.; - YR 5Y.5]
5=1

Similarly differentiating with respect to B-l we have

m
O om om .
-1{ oM 13 31 1 .31
(A7) trK (B-—.):Zk it 43 ek
Pal 3 P 1

1j
-2 Y' Z k s - Y. .+ = X. . .

Evidently we obtain a similar equation when we differentiate with

respect to Y-i’ B-i’ i=2,3,...,m. Consequently
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(A.8) tr K.l(g%) = -2 X' (K-:L ® IT)(y - Z%¥3%)
(A.9) tr K'l( oM ) = =2 Y*'(K'l ® I )(y - 2%d)
. Ejp‘ T .

and éinally
(A.10) tr K-l< aM) =2 z*'(K“1® 1.)[2% - y]
. 38 | T | '

Turning now to the second term in the right member of (A.4) we observe
that the derivative is null with respect to all the elements in 1.
We then may confine ourselves to derivatives with respect to elements

of B, i.e., elements of the matrix B. We have

PROPOSITION 1. Let A be an m Xm nonsingular matrix. Then

-1
.. OA -1 -1
(A.11) o - A ele A 7, e; = (05...50,1,0,...,0 )

i3

e; being an m-element row vector whose elements are all zero save the

ith, which is unity.

Proof. Obvious from the identity

An immediate cosequence of Proposition 1 is



PROPOSITION 2.

-1

o) -1 1y ' -1
5—5;5 K =K [(I-B )eiej + ejei(I -B)IX .

Proof. Note that

(A.12) K=I-B-B +B'B

and apply Proposition 1.

PROPOSITION 3.

where b¥, is the jth colum of (1-B)"' eand Q.

row of

(A.13) Q= (I-B) ' M@ET-B) = (¥-XM)' (Y-XT)

Proof. Applying Proposition 2, we have

is the ith

-2k«

(A.14) tr(1-B) Y-8 (@-B' Jeje; +eje; (T-B)I(I- B Hz-3")"1m

1 -l 1] -l 1
= tr[eiej(I—B) + (I-B") ejei]Q .

But (I--B')-le;'jei consists of a matrix all of whose columns are null
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except the ith, which is given by b*_‘j; since

1

) -1 1 "'l 1
eiej(I-B) = [(I-B") eje1

e;ej (I~ B)"l consists of a matrix all of whose rows are null except

the ith which is given by b*:'j Consequently,

3 -1 *1
(A.l5) tr(gb-i—j X )M = 2 b.jqi. ‘ qg.e.d.

Finally, we have

PROPOSITION k.

4a - _ *x1, =1 * %t g1 0 *
35 tr K v - 2[27 (K — ® IT)Z -2 (K~ ® IT)y+ (v*') (Im® V)v*]
where .

(A.16) v¥ = aiag(V,V,, ...,V ), V3 = ¥y - XTI,

V=Y-XI, b= (b’_‘i,bfé,.._.,bxl)' .

M.‘ Immediate from Proposition 2 and 3 if we take into account
the restrictions on the elements of B. |

The expression above may be simplified considefably if we note
that the ith subvector of V*' (Im ® V)b* is given by

(A.17) V'Vb*, = v' ZA(T-B) L b¥, = V! ZA k¥
il i i i i
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where k?i is the ith column of K 1. Hence

(A.18) v*'(Im ® V)v*= 2 N v*'(K'1 ® IT)(y-Z*S) .

Consequently, we may also write

(A.19) % tr KM - 2[2*'(1(‘1 ® 1,)2%6- 2% (K" ® 1)y

+($*.) e 1)y _(3*,) xle IT)Z*5] .

Notice that even though the notation does not make it explicit v*
depends on 9,
The matrix of second derivatives with respect to © may be

written down, in a somewhat inaccurate notation, as

-1 0 -1 g d -1
Q[Z*'(K ® 12" '(v*') (K~ ® 1)z - z*' (?1—8 K~ ® IT)(Y- Z*%)

N
+<§’[*.) ( £ K-l.® IT>(y-Z*6) + <g§ ) (K@ 1) (- z*a)] .

d

The expression 2Z*' FE ke Ip (y - 28%), for example, though

notationally atrocious indicates the matrix of derivatives of

Z*'(K'-1 ® IT)(y-ZS*) with respect to ® only to the extent that

such parameters enter in K_l.



It is then entirely obvious that if we evaluate the matrix above

at O = 80 , divide by T and take probability limits the last

three terms will vanish and we shall obtain

(A.20) plin %— (Z* (' ® 1,)z%] = lim z (2% (K ® 1,)7*] = ¥

T —o + Toow
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