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1. Introduction.
In & previous paper [3], the author presented a maximum likelihood

procedure for estimating the paremeters of the model

i
(l) yt = ao z AO Xt_i + u_t, 'llt = pout—l + Eb, t = 1,2,-00,T
i=0

where a zero subscript on a parameter symbol will always indicate its
true value. In the above, {€t :t =0, £1, £2,...} was taken to be

a sequence of mutually independent identically distributea (i.i.d.)
N(O,Gg) varisbles. It was further assumed that M e (0,1), p € (-1,1)
and that the sequence of explanatory variables {xt :t =0, £1, & 2,...}

was bounded nonstochastic and such that

T — %
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is well defined with ¢ > O.

If we define

i
(2) a = }: Ay Xy
: i=0

it was asserted in [3] that a may be consistently estimated by the
procedure given there. This claim is false. Lack of consistency is,
formally, a consequence of the fact that the "variable" to which it

corresponds, viz., %ﬁ, t =1,2,..., T has the property

(3) ‘ii 2t cw
t=1

Intuitively, a represents the (nonstochastic) initial conditions of
the model in (1). Thus, in view of the stability requirements, it is
clear that the farther we are removed from the origin the "less" the
position of the system depends on initial conditions. Consequehtly,
additional observations as T - convey less and less information
regarding a.

Consistency for the other parameters, however, is preserved as
was asserted in [3]. The proof given there is in many ways deficient.
In the following we shall show that, under slightly more restrictive
conditions, the estimators obtained by the search procedure given in

(3] converge to the true parameters, not only in probability but with

probability onel as well.

lFor a definition of this term see [4, Ch. 3]; convergence with

probability one is what we mean by -strong consistency.




An interesting by-product of the argument used to establish this
result is its applicability to problems of estimating, by minimum chi
square methods, the parameters of nonlinear models whose error processes
are finite order autoregressions. Such problems are occurring withv

increasing frequency in econometric research.

2. Convergence of Estimators.

Here we shall consider the model in (1) with the stochastic
specifications given there but subject to the following additional
conditions
(A.1) If we put w = (A, p)', then w €Q, where Q is a closed
bounded set and in particular A e [81,1 - 81], pe [-1+ 5,51 - 62],

o} ,62 > 0 but small.

(A.2) The explanatory sequence {xt :t = 0,+ 1,+ 2,...} obeys, for

all t, |xt| <K, for some constant K and

0
1
{%-iﬁo T Z XXy o = e(T) |
t=1
the c(T) being well defined constants and c¢(0) > O.

(A.3) The true parameter, W is an interior point of 1, and l/T

O’
BEL/a»a» converges to a nonsingular matrix for Wy L being a

concentrated log likelihood function defined below.

Remark 1: The restrictions imposed by (A.l) are empirically innocuous.
Iﬁ practice we would be searching over an interval, say, [.001,.999]

for AN and [-.999,.999] for p. The results we shall obtain would,



-k

thus, be inapplicable to models in which IKOI'Z .999 or

bel < .OOi and |p0|‘2 .999. It is clear that such restrictions are

inconsequential. The condition in (A.3) is needed only in order to

establish the asymptotic normality of the resulting estimators. We}

shall not derive such results here since they have been obtained in [5].
If we partially maximize the (1og) likelihood function of the

model in (1) with respect to o° we obtain, upon division by T, the

concentrated (log) likelihood function

(1) Ly(w;y,%) = - 3 [1n(2m) +1]
+ A n(1-9%) - 3 In Syw;3,%)
where

(5)  Sylw3x) =3 (v - ax¥)' Vy - ), ¥ = (78 a¥y) s

00
- ' % = i
x* = (x{,xg,...,xT) P }Z A Xe g
i=0

The function I referred to in (A.3) is simply TLT(w;y,x). We observe
that ST(';y,x) is bounded away from zero, for W € (i. The plan of
the argument is as follows:

i. PFirst, we show that ST(w;y,x) converges to its limit, say
s(w), with probability one uniformly in w. Hence that LT(w;y,x)
converges to its 1limit, say L(w), with probability one uniformly in w.

N ii. Second, we show that the sequence of estimators defined by



LT(@T PY,x) > LT(w;y,x), Vwe

has at least one limit point, say w,, and that wo = Wy

with probability one since

Thus,

we conclude that &T converges to W

w, is any limit point.

0

In the course of the argument we shall use a number of results not
generally employed in the literature of econometrics, and for that
reason we state them as theorems giving appropriate references for

their proofs. .

L}

THEOREM 1. (Bolzano-Weierstrass). Every bounded infinite set
has at least one limit point and there exists a subsequence that

converges to it.
Proof. See [1, p. 10] and [10,p. 38].

THEOREM 2. (Arzelé—Ascoli). Let {fn} be a sequence of equi-
continuous functions from a compact topological space X to a metric
space Y which converge at each point of X to a function f. Then

{fn} converges to f uniformly on X.

Proof. For a discussion of a number of variations of this result

see [9, pp. 153-155].

THEOREM 3. (Borel-Cantelli). Let T be a set of points v, F
be a o-field, i.e., a collection of subsets of T such that if An €eF
c co c R
then An € F, An n An' e F, LH.An e F, An being the complement of An’

and P(-) be a probsbility measure over F. If A e F, then
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implies

P(An, infinitely often) = O «

Proof. [2, p. M1].

THEOREM 4. (Birkhoff-Khinchin). ILet {xn tn = 0,% 1,4 25000}

be a strictly stationary process2 and suppose that
Elxol < ®

then, with probability one

1 i:

3 -— - w¥
lim n Xk = X
n - -

k=in

exists and moreover E(x*) = E(x).

Proof. This is given as Corollary 2 to the B_irkhoff-Khinchin
theorem in [6, p.129].

In order to show convergence of LT(w;y,x) to L(w) with
proba'bility one, uniformly in w, it will suffice to show the same

for ST(w;y,x) and S(w).

Remark 2: Proceeding as above would also show that minimum chi-square

eé‘bimators , obtained by the condition

2For an explanation of this term, see [k4, Ch. 91].



(6) ST(&T :YX) < ST(WSY,X)) Y e

have the same (asymptotic) properties as maximum likelihood estimators

in this context.

Remark 3: Note that in (5), w enters only through & x* and V,
but not through y, since the latter depends only on wo.

We have

l "'l 2 -l
. —= e - 1 - — - 1
(7)‘ ST(w,y,x) 7 (ozoxo* ox*) 'V (aoxo* ox¥) + A (aoxo* ox*)'V "u

1 -1
+=1u'
T u'V "u
. th . o i
where xX 1s a T-element vector whose t -element is Z, NX, .
0 i=0 0 t-i
It will suffice to show that, as T =%, each of the three terms in
the right member of (7) converges to its limit uniformly in w, and when

the occasion requires it, with probebility one.

Consider the third term first. Thus,

T T . -1
1 -1 1 2 1 21 2
(8) TV uSET }; ug - 2P g }: Wl 1 TPOT }; Ug -
$=1 | t=2 £=2

But since {u_b :t =0, & 1,% 2,...} is & strictly stationary process,
by virtue of the i.i.d. assumption regarding {Et :t =0, £ 1,£ 2,...},

s0 are {ui} and {u_bu_b_ } We note that
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2
P o
(9) B = ——5 <= Elugu,| <=
-po
T 2 T o
plm-liiu:() plnn---Zuu=Oo
e T t " 1.2  Tow I th-1" [ 2
=1 t=2 Po

Consequently, by Theorem L,

T T

1 2 1

T Uy T Ueleo 2
t=1 |

t=2

converge with probability one to some limits, say go, E,l respectively.
But convergence with probability one implies convergence in probability

and we conclude

02
0

(lo) go = 2 J gl = pogo .
. 1- po

Therefore, in view of the particularly simple way in which p enters

(8), we conclude that

1 1 2 2
TuV u—>00+ ) (p Po)

1-p,

with probability one uniformly in w.

Remark 4: It is worth noting that in the argument above the normality
of the {ut} process has not been employed. Indeed, it will never

be employed, except in defining the likelihood function. The results

-

follow from the fact that {Et .t = 0,t 1, 2,...} is a sequence of



j.i.d. random variables with zero mean and finite (absolute) moments
of certain orders.
We now turn to the second term. We have

1 -1 1 -1 1 %t =1

= * - *) 1 == *1 - =
(11) T(aoxo ox*¥)'V "u T OgXg VU oo Viu.
Tt will suffice to show that the second term in the right member of (11)
converges to its limit with probability one, uniformly in w. The

first term depends only on p but not on & or A

* We may write the tth element of x¥* as

t-1
(12) X%(' = a)\t + z 7\1X_t_i, ) t = 1,2,0--’T
i=0

where a was defined in (2), and note .that for all w € Q

IaI < é& .
1
Using (12) we can write
(13) %ax*'v-lu = -% cxa]_)'V_lu + % Q x*y

where x** is a T-element vector the tth element of which is given by

t-1 41 2
Z; o )\lxt-i’ t =1,2,...,T and A= (NA ,eeesN)'. We observe that

m—



-10-

T T T T-1
15 21 1 1 21 t
(k) 72 —TZ pTX)\ utpTZ u1+p?ﬁz}‘“t'
t=1 t=2 t=2 t=2
It will suffice to ghow that 1/T 2: 1 %ﬁut converges to its limit

with probability one uniformly in A. Convergence of the other terms
is proved similarly and uniformity of convergence with respect to p

is obvious from the representation in (14). But

t-1

% i |
=pu+ 8 3 t=12o.o
o%o 5 Po ¢-1’ 155
i20

and we note that wu, (the observation on the u-process at "time"

zero) is a finite valued random variable. Thus, we may write

7 L, I T -1
1 t 0 % ] 1 i
5. 7 2 Mag = z (Apg) ™ + Z A [T Z post—i]
t=1 $=1 =1 i=0

and observe that Z$=l (7\po)t is bounded by some constant independently
u

of N or T. Since u, is a finite valued random variable ﬁg-converges

0

to zero with probability one. Hence we need be concerned only with the

second term. Define

t-1

1 i
(16) Wpp = T Z PoCt-1
| i

and observe that
AN



' t t 1
(17) l ? Ny, o I < ZA" sup |WT,t| < &=

£21 t
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Then, to shoﬁ éonvergence with probability one, uniformly in A, we

must show that sup, IWT £
2

| — 0 with probability one. If ml >0

we have, using the Chebyshev inequality for fourth moments, for a

random variable, 2z, having mean zero and finite fourth moment

I
pri|z| > @l} < =S

If the E-sequence has finite fourth order moments, we have, in view of

the definition of Wy o in (16)
2

L
E(Wy 4)

(18) Pr{lwT tl >} <
2 Q)l

where K1 is some constant not depending on t, T or Po Since

(-]

(29) ) y By, ) < X i

T=1 t=1 T=1
we conclude, by Theorem 3,
suplW tl -0
b
t<T

with probability one. Hence, that Z$=l

1
T3

t
A WT,t

-

_— < 0

converges to zero with
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probability one uniformly in A. We must now deal with

T t-1 T t-2
1 -1 1 i i
= X 1 = = -
(20) T QX V- u T a[ Z Z }\xt-iut P z Z th-l-iut.
(t=1 i=0 t=2 i=0
T t-1 T-1 t-2 o
i 2 i
- P Z Z N ¥y * P Z Z A Xt-iut] '
t=2 1i=0 t=2 i=0
It will suffice to show that
T t-1
1 i
T z Z Nxe g%
t=1 1i=0

converges to zero with probability one uniformly in Aj; uniform
convergence with respect to o and p 1is obvious from (20) in view
of the fact that the set Q is bounded (and closed). Using the

t t-1 i

. _ € s < .
representation Uy Poto + Zi=0 p0 £t as before, it will suffice

to show that
T -1 t-1 T-1 T-1 T
- 1 i3 _ 131 .
(1) 7 Z Z Z A z Z NPT Xt
i 32

t=1 j=0 1i=0 t=max(i,j)+1

converges to zero uniformly in A. Let

1
- - e .
(22) Wi, = T Z Lomi -]
t
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We observe that, provided the €-sequence has finite eighth order moments,

(23) E(Wg,i’j) <K, ;lg

where K, is some constant not depending on A, Py’ i, j, T or x..

Since
' o T-1 T-1 0 ‘
(24) EGO . L) <K lco
T,1,57 <72 2
rm i=0 §=0 o]

we conclude, by Theorem 3,

sup|W . .| =0
i3 Ty1,3

with probability one, and hence that
% cxx**'V’lu -0

with probability one uniformly in w.

Remark 5: The construction above proves more than is needed, since it

shows convergence to zero with probability one wniformly in ®w and Po

Notice also that the bound in (23) uses the fact that the sequence of

explanatory variables {xt it = 0,4 1, 2,...} is bounded.

be relaxed, however, if we assert, instead, that

N

This may



=14~

max|xt| \ T
lin d =, lin 85T -0, d = }: %
T —w T —0 dT P |

and in the definition of ST(w;y,x) we divide by dT instead of T.

Finally, we must show that
1 -1
_— K o *) ! * - ¥*
= (ozoxO ox*)'V (aoxo ax*)

converges to its limit uniformly in w. Notice that the quadratic form
above does not contain random variables.

Let

o

o«
i i
(25) g, (@) = % X Ao¥g-g ~ @ Z Nxe s
120 10

and note that

(26) 3 (o - ax*) 'V (o - axx)

T T =1
=%[ z gi(w) - 2p Z g, (Wey 1 () * o° 2 gi(“’)] .
$=1 £=2 $=2

A

It will suffice to show that 1/T ZE=1 gi(w) converges to its limit

uniformly in Ww.

We note that

. . oK X
(27) |gt(w)| < EEP + 3 o

0
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for all t, where K, is some constant independent of t and W.

3
Moreover, let wl,w2 € Q, then for all t,

o

(28) ley(w) - g (w)l = ‘(oz2 - ) z Nx, s

iz0
O a1 K Xy
+ (R ) Z( Z N )\1>xt-i < lap-a 5, %= 2
i1 §20 1

where KLL is a constant not depending on w or t. What (27) and
(28) show is that {gt} is a family of continuous functions defined
on the compact set ( which are uniformly bounded and equicontinuous.

Noting that
(29) 12w, - &) = ley(wy) + gy laglwy) - gylor)l

we see that {gi} is also a family of uniformly bounded equicontinuous
functions, continuous on the compact set €.
Define now

T

(00t ) - EEW), 1) = ) £ )
t=1

and note that {fTJ is a family of continuous functions on 2, which
is uniformly bounded and equicontinuous. In view of assumption (A.2)
fT(w) converges pointwise (in w) to a function f(w). We then conclude,

N )
in view of Theorem 2 that {fT} converges to its limit uniformly in w.
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We have therefore proved

LEMMA 1. Let ST(w;y,x) be as defined in (5). Then ST(w;y,x)
convefges to its limit with probability one, uniformly in ®w and its

limit is given by

- 1im X ¥ _ ¥y 1L * *
(31) S(w) = ;ﬁi T(%fo ox*)'v f%ﬁo'“x)
02
2 0 2
+oy + (p - py) -
0 2 0
1- pO

[y

Moreover, LT(w;y;x), as defined in (L), converges to its limit with

probability one, uniformly in w, and its limit is given by

(32) Lw) = - 3 [1n(er) + 1] - 3 1n S(w) .

Remark 6: It is important to recapitulate what role the various
assumptions have played in establishing Lemma 1. The fact that

{et tt =0, 1,4 2,...} is a sequence of i.i.d. random variables with
finite (absolute) moments of certain order waé used in showing that
{ui}, {utut-l} were strictly stationary and in invoking certain
(ergodic) theorems regarding the convergence with probability one of
sample means of processes having finite (absolute) first order
moments (Birkhoff-Khinchin theorem). The properties of the €-sequence
were also employed in invoking the Borel-Cantelli lemma (Theorem 3)

to show that terms of the form 1/T x*'V’lu converge to zero with

pro%ability one uniformly in w. In this connection we have also
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employed the boundeness of the sequence of explantory variables.

The compactness of the set QQ, of admissible parameters, was

utilized in invoking Theorem 2 (Ascoli-Arzeié), as was the boundeness
of the explanatory variables. Compactness for o is not essential
since we may eliminate it by partial maximization, as was done in [5].
This, however, would lead to more involved, but conceptually identical,

arguments.

Remark 7: Introducing into the model additional variables, i.e.,

considering

=]
i
(33) Ve =% 2 NXe-1,1* z %i%ts T %
iz0 j=

does not change anything substantially. Essentially the same arguments
will go through if similar boundedness conditions are placed on the

xtj’ j=223...,n and on the additional parameters Obj’ j =2,3:.0,0.

Remark 8: Increasing the order of autoregression, i.e., if we consider,

for finite m,

(34) Uy = Z Poie-1 * St

will complicate the argument by foreing us to deal with more involved
formulae but will leave the essential features of the proof unaltered.

Let us now show that the estimators defined by

o ——



(35) 1o (s,%) 2 Ty(usy,x), ¥ 0 € 8

converges with probability one to wo. Tt will suffice to do so for

the minimum chi-squaxe estimators defined by

(36) S(Bpsy,x) < Sy(wyyx), ¥ we @
We first note that

(37) S(w.) = 02, S(w) > 8(w,.), YV we Q.
0 0 - 0]
PN bb
let {wT},\the sequence of estimators obeying (36). For each sequence
{ut} this forms an infinite bounded set and by Theorem 1 it has at
Jeast one limit point; let w, be such limit point and {GT 1 bea
i

subsequence converging to ..

Because ST(w;y,x) converges to S(w) with probability one

wniformly in w, for almost all sequences {ut}, we have

(38) 8(uy) < S(uy) -
But (37) then implies

(39) 8(uy) = S(uy) -

For the parameters of the model to be identified it is necessary that

(39) imply that w, = w,. This is an identifiability condition, else

o
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the estimator would not be able to discriminate between "Wy and wo.
Let us postpone the verification of this condition for the model under
consideration and first complete the argument, assuming that (39)

jmplies ' »
(40) W, =W, .

Since w* is any limit point of {u‘JT}, (40) implies that the
sequence, therefore, converges to . Since (38) and (39) hold with
probability one - i.e. for almost all sequences {ut} - we conclude

that

(h1) Pr{ lim ®

T -

7= =1

which states that the estimator, &T’ convergés to the true parameter,

w with probability one.

0}

Let us now obtain the conditions under which the model under
consideration is identifiable. What we must show is that (39) implies

(40). 1In view of (31), we have

2

I
[o]

o1 * *y 1y 1 * * 2
(42) lim T(qfo-qg:YV (%fo-%g) +0, + 9,

2
T > 1l- po

This clearly implies

. 1 -1
(43) Py = Pp» ;ﬁo T (Oloxg- Ot*x*)'Vo ((103{)0e - a*x*) =0

o
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What we must determine is the following: Under what conditions
on the sequence {Xt} does the second equation in (43) imply

K* o, = Qb.

Tt is clear that this is not a vacuous exercise. Consider, for

instance, the sequence X, = c + qﬁ, t =1,2,... and zero otherwise,
for some constant c¢ and |q4 < 1. Tt is easy to see that this obeys
(A.2) and that all arguments leading to (39) remain perfectly valid.

For this sequence the second equation in (43) becomes

Q, Q.
2 0 % _
(1 - o) (1-7\0 B 1-7\> =0-

This, unfortunately, does not imply o, = QG A, = %o. Thus, for this
type of sequence we cannot infer that {@TJ converges to wo, nor
that (1) is valid.

So, let us see what restrictions we need impose on the x-sequence
in order to render the model jdentifiable. Using the representation in

(25) we can write the second equation of (43) as

T T T

(L) Tllrri° % [ z gi(w) - 2p, Z gt(w)gt_l(?») + pg z gi_l(w)]
- £=1 =2 =2
- ) 9(0:)e(0,3) + ) e(1,0e(1,0) + ) ) ot)e(s:3)
J=0 i=1 i=1 j=1

where -
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, 2 2
(45) CP(O’O) = ao Q- a)LQOt-)e

(16)  0(0,3) -0 + o - (@@ + )

0
231, 2.3-1 13-l
‘DO[OtO')% +\Ol*7\;-je - Oto()t_)e('?\;‘]e + 7\?) )] 3=1,2,...
= i 2.1 i i
¢(1,0) = ao%\o +O N, - (Otoa*)(')\o + 7\*)
2.1i-1 2.1-1 i-1 .1 )
—pg Ay KT - (oL ) (N, + 7 )] i=1,2...

. _ 2. 1i+) 2.1+j i J J
() o(1,) = BEALT + ol - a0 + A ]
2 1-1+j 2.1i-1+j i-13 i-1.J i -1 ,.J-L1
s SRt e G I L3 b hd T N Ly

2. 2.i+j-2 2. i+j-2 i-1.3-1 i-1.3-1
+ 059N + O Ny - a @ (Ng Nt N No )1
i,J = 1,2,5 ...

and

T
(148) e(i,d) = lim % z xt-lxt-j .
Toe = g

For the bounded x-sequences we consider here, it is apparent that

(¥9) o(1,3) = (i - 3) =e(3 - 1) .

Denote, then, the "aut_ocovariance" function of the x-sequence by
e(T) T=0,1,2,... &

\
Notice that we previously required that ¢(0) > 0~ —



1f co(-) is not a constant function and has the property, say,
e(1) = 0, T # 0, then the jdentifiability condition holds. To that
end the coefficient of c¢(0) in (44), must vanish. But we observe

that for the coefficient of c(0) we must have

[+ ] [+
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. . 2
(50) ) o(s,1) - (@ Sa?e ) [(egd o) Cpglapitaapi™h| o

i=0 i=1
which immediately implies

i i i-1 R T A .
(51) % = Oy Oghg = A Ay = po(ao7‘o - A ) i=212...

But the second condition in (51) requires

(52) A=A -

We have therefore proved

THEOREM 5. Consider the model

[+ o]

= i = =
(53) v = % 2 No¥goq t % B T Po%-1 tEy 6= 1523
i=0

for i.i.d. N(O,ca) & and subject to the assumptions (A.1), (A.2);
then the maximum 1ikelihood and minimum chi-square estimators of the
paremeters ® = (a,\,p)' defined by (35) and (36), respectively,

converge with probability one to wo - the true parameter vector -

\

T'
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provided the identifiability condition that (39) implies (hQ) is
satisfied. To this end it will suffice to place certain restrictions
on the "autocovariance function,” e¢(-), of the x-sequence. In

particular if c¢(T) =0, 7T # 0 identifiability is obtained.

COROLIARY 1. The estimator of cg given by ST(GT;y,x)

~converges to cg with probability one.

Proof. Obvious by the uniform convergence of ST(w;y,x) to

vS(w) the w-continuity of the latter and the fact that GT converges -

to Wy with probability one.

Remark 9: If we consider the model of Remark 7 with or without the
error specification of Remark 8, nothing of substance will change in
the argument leading to Theorem 5, except that the verification of the

jdentifiability condition will be rendered more cumbersome.

Remerk 10: The preceding theorem and the argument leading to it are
extremely useful in dealing with nonlinear (single equation) estimation

problems. Such models may be formulated as

(5b) v, = &(x,8) + t=1,2,...,T

where {xt} is the exﬁlanatory sequence and © is & paremeter vector
constrained to lie in a compact set C. The error process may be
specified to be strictly stationary. A typical specification in

econometrics may be

N



m
(55) Uy = }: Pi% 3 * By
' i1

where {Et :t =0, 1, 2,....} is a sequence of i.i.d. random

varisbles with zero mean and finite (absolute) moments of order, say,
In the model of (51;.), since the explanatory sequence is one of

fixed numbers, it is notationally convenient to write g(xt, 8) as

g‘t(e)' In this more suggestive notation we have

(56) y =g(e)+u t=1,2,'o',To
t t t

The functions gt(') may be quite nonlinear (in e). If & is the

caovariance matrix of u = (ul,uz, ces ,uT) ', the minimum chi-square

estimator may be defined as that which (globally) minimizes
(57) 5,(05%,x) = & [y - &(0)1'07 Ty - g(®)]
where

g(0) = (g,(0),e,(8)s---,8x(0))"s ¥ = (y15¥pr e V)
Thus the estimator, say éT’ is defined by the condition
(58) ST(éT;y,x) < ST(G;y,x), VoeeC.

In order to show that
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(59) Pr{ lim §; = eo} =1

T—o0
where ©_ is the true parameter vector one must show that following:

i. % [g(eo) - g(e)]'Q—l[g(eo) - g(6)] converges to its
limit uniformly in 6, as T -

R X R . -

ii. 3 [g(eo) - g(0)]1'0""u converges to zero with probability

one uniformly in ©

iii. % u'@‘lu converges to its (constant) limit with probability

one uniformly in ©

iv. The model satisfies an identifiability condition, i.e., if
S(e) is the limit of sT(e;y,x), then 8(8,) = s(eo),

6, € C implies 6, = 6.

Theorems 1 through L should be sufficient to establish the validity
of the statements in i., ii. and iii. in the case of bounded explanatory
veriables. It would be an interesting research problem to determine the
minimal conditions on the explanatory sequence that insure convergence

with probability one of nonlinear minimum chi-square estimators.

Remark 11: The case of nonlinear least squares, i.e., the special
case where, in (57), é = ch and the {ut} are i.i.d. random
variables with mean zero and variance cg, has been treated in two
important papers by Jennrich [7] and Malinvaud [8]. Thus, Jennrich
and Malinvaud have given a solution to the problem of nonlinear least

\
squares for models with i.i.d. o
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disturbances. Unfortunately, the procedure employed goes not
readily extend to the case of dependent random variables. The
approach taken in this paper, however, holds the promise that we
may find an equally general solution to the problem posed by the
model in (54) and (55), the estimator being defined by (57).
Asymptotic normality of the resulting estimates will require the

additional assumptions that (a) ©, is an interior point of C

0
and (b) (ast(e;y,x))/aeae has a nonsingular limit, for © =8.

Tt is for this reason that (A.3) was stated at the beginning at
Section 2. Such requirements are quite apparent from the standard
mean value theorem applied to (asT(O;y,x))/Be , which is typically

employed in establishing the asymptotic distribution of such estimators.

3. Conclusion.

In this paper we have shown that the maximum likelihood and
ninimum chi-square estimators in the context of the model in (1)
converge with probability one to the true parameters, under certain
conditions on the explanatory sequence. Moreover, we have indicated
how the argument we have employed may be modified in order to show
that (nonlinear) minimum chi-square estimators in the context of the
model in (54) and (55) converge to the true parameters with
probability one, and that their asymptotic distribution is normal.

Finally, it is interesting to note that in the Monte Carlo study
reported in [5], using the procedure examined in this paper, for the

model



[e 0}
i
Vg = Z No¥p-1,1 T B2 F U Y T POl T &
1120

one obtains, among other results,the following. For AO = .5, Po = .9,
Gi = 2,00, Qé = 5.00 and 100 replications the mean square error for

%T is .002 for sample size 100, .003 for sample size 50. For

BT the corresponding quantities are .003 and .00k, For Qi, they

are .009, .010. For Q,, .006, .007.
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Appendix

In this appendix we give a simple argument, justifying the

transition fromour equation (19) in the text, to the statement that

|w, .| -0 with probability one. Thus, let (T,F,P) Dbe a

T,

probability space as in Theorem 3. Define, for any ¢ > O,

supt <T

T,"b = {‘Y : le,t‘ >CP’ rY € F}

By the result exhibited in (18) and Theorem 3 we conclude that for

any ¢ > 0
P(A(,%, i.o)=0
Let

AP =y : o Wy o > % v e F)

Then A’{fp C Aq,i, and therefore we conclude, for any ¢ > O,
P(A*,;‘P, i:0)=0.
let

w = lim sup{ sup |WT tl}
t<T

and note that w is a nonhegative random variable. Also observe that

Ve
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Priv>0} <P(AF 1.0) = 0.

Consequently conclude that

AY

sup |W, .| -0
R

with probability one, as claimed.

A similar argument will establish the transition from equation

(24) to the statement

sup |V | -0

i,3 T,i,J

with probability one.



