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1. Introduction and Preliminary Concepts

The problem of distributed lags in economics has its origin in
the following considerations. Suppose we are interested ih an
economic phencmenon, 1y, which has as its (systematic or non-
stochastic) determinant some econamic verieble, x. The influence
of the latter on the former, however, is not exerted instanteneously
but is spread or distributed over many (perheps infinitely many)

time periods. This leads to the formal model
o]

(1) Yy, = 2 W, X +u

t 120 i7t-1 t

where y, represents the economic phenomenon of interest (at time t),

x. is the determining verisble, w,, i =0,1,2,... , are fixed,

t i
but unknown, constants and u, is a suitably specified random
varisble. It is then readily seen that a chenge in x does not
trenslate instantaneously and fully into & change in the conditional

mean of y. For example, consider the sequence

X =O, t

0, -1, =2,...

1,  t=1,2,3,...

This is an invited survey of certain aspects of the literature
on distributed lags and is to appear in the Soviet journal Economics
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The conditional mean of y is given by

(2) E(y, lxt_i, i=02,2...0= 0 t-0,-1,-2,...
t-1
= 2 w‘ t = 1,2,-
i=0

Thus, even though a permanent change has occured in the determining
varisble the impact on the dependent varisble is distributed over

an infinite period, the instantaneous impact being wb, the cumulative

impact after two periods being v + Wy, after three LA + Wy + Wy

and so on. It is useful at this stage to introduce

Definition 1. The model in (1) is termed the general infinite

distributed lag model. The sequence {wi i = 0,1,2,...} is termed

the genersl infinite lag structure. The elements, LA of the

sequence above are said to be the lag coefficients.

Various special cases of the model in (1) have been employed in
empirical work. Perhaps the earliest such epplication is to be formed
in Irving Fisher [10]. Fisher's application is a rather crude one in

that he proposed the scheme

= i >
wi 0 i n
wi=a(n+l-i) i=0,1,2,...,n.

An independent development along similar lines is that of Almon [1]

who proposed the scheme



Wo = 0 T>n
W, = Px(t) T=0,1,2,...,n
where
k
(3) px(t) = X bjs.(t)
j=0 79

the sj( *) peing suitably defined Lagrange interpolation polynomials.
"Almon's application was to the problem of determining the pattern by
which appropriations are translated into expenditures. Thus, firms or
govermments may decide on a certein level of budgetary appropriations
for a certain type of expenditure. Typically, the authority embodied
in the budgetary appropriation lapses after & certain number of time
periods (years). In this case there is a good institutional reason
why one may take the lag coefficients to be zero for T >n. It mey
be shown that the introduction of Iagrange polynomials sbove is quite
superfluous and we may best define this class of distributed lag
models by the model in (1) subject to the conditions

k

(1) W= 0, T>n, w =BT Bt - Eo Biti

We have, therefore,

Definition 2. The model in (1) together with the restrictions

in (4) is said to be the polynomial leg model of order n and

deggee k.
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This model has been employed quite extensively in recent empirical
work; particularly so in the context of economy wide economic models
such as the Wharton Model [26] and the MPS ModelzL [29] - both of which
are models of the U. S. economy. Similar applications are contemplated
with respect to project LINK which is essentialiy a global model of
trade flows. |

By far the most extensive empiricel application of distributed
lag models, however, originated with the formulation first suggested in
the work of thé Dutch econometician L. M. Koyck [22]. His problem wes
that of "explaeining" fixed investment end his suggestion wes that efter
some period, say, T, one should specify the following behavior for

0
lag coefficients

(5) WT=Ot7\T T =TTy +1reen

If for simplicity of exposition we teake Ty = O then the model in (1)

mey be rewritten as

w '3
i
(6) Yy = © 230 Nxg oot uy

This leads to

Definition 3. The model in (6) is said to be the geometric

distributed lag model.

1 Formerly known as the MIT-FRB Econometric Model



Since Koyck's first formﬁlation a number of very ingenious
retionslizations of the geometric lag have been proposed, notably
those due to Cagan [5] and Nerlove [28].

The discussion of the relationships among these diverse developments
and the general exposition of such models will be much facilitated

if we introduce the notion of the lag operator. The discussion of

these aspects here will be somewhat elliptical. Greater detail may

be found in Dhrymes [8, Ch. 2] or Griliches [13].

Definition k. et X be the set of all functions {x : N -R]

where N is the set {0, +1, +2,...} and R is the one dimensionel

Euclidean space. The lag operator, 1, is defined by
Lx(t) = x(t-1) VxeX.

Powers of the lag operator are defined by iteration, i.e.,

(7) 12 5(t) = LILx(t)] = Dx(t-1) = x(t-2) .
In general
(8) 1 x(t) = x(t-k) K=1,2,... .

and by convention

(9) 10

I, Ix(t) = x(t) VxeX.

The operator I is said to be the identity operator. It is easily




established, in view of (7) and (8), that

ks

k8 _ ]

(10) L =L 7, (L7

Moreover, it may be shown, Dhrymes [8, Ch. 2] that the set of all

finite linear cdﬂbinations of elements of the set {I,L,L2

...} over
the field of complex numbers constitutes an algebra which is isomorphic

to the algebra of polynomials in the complex ideterminate.

The import of the preceding is that in dealing with polynomiels
(or power series) in L we can treat the latter in the same way as
we do the complex indeterminate. The convenience of this fremework
will be evident in the discussion to follow.

Tn the notation just introduced, we may rewrite the general
infinite distributed lag model in (1) as
w Li

' i

(1) vy, = W(L)x, + u,, WL =
b k i-0

t

o]

Definition 5. The quentity W(L) of (11) is said to be the

general infinite lag operator.

The specification introduced by Koyck and given in (6) may be

written as

(12) Yy = T5T, xt + ut

provided |k| < 1. The latter is & condition implicit in the model

given in (6).

6=



Cagen's contribution, alluded to above, relates to the adaptive
adaptive

expectations rationale for the model in (12). The, suppose that

economic sgents act according to

(13) Yy = Pty

Avove, y is some observable economic varieble and p* is an expec-

tational quantity. The adaptive expectations model hypothesizes that

economic sgents revise their expectations linearly according to the
most recently observed deviation of expectations from realizetions.

In perticular, if p is the observed velue of the variable the

hypothesis states
(lh) p?t(: - %-l = B(Pt—l - p%-l) ﬁ € [o)l) .
Solving (14) by the use of lag operator methods we have

1-9)I
(15) P} = LI_-%- Py-1 v=1-8

Inserting in (13) we find

(16) v, = (1 -y

= TToan o Pl T %

which is the geametric distributed lag model.
Nerlove's formulation is equally ingenious. 1In his scheme one

supposes that economic agents, given the information conveyed by their



environment, determine the optimal quentity of a certain economic
variasble, say y%. At the same time they hold a certain magnitude of
this variasble say VAT The edjustment they make to their holdings
is then asserted to be proportionai to the gap between actuel and

desired holdings, i.e., one hypthesizes that

(17) yt "yt_l = a(Y{ "'y.t_l) + ut € [o!l)

it being understood that the relationship only holds when y%-yt_l > 0.
For exemple if y% is desired capital stock and if yt‘-yf_l < 0 then
decumulation can occur only at the rate of depreciation, it being
assumed that second hand markets for fixed capital do not exist.
Actually, this assumption may not be very realistic for individual
firms although it is clearly a very reasonable one for the econamy &s

a whole. At any rate solving (17) we find

s}
(18) yt=I_-Ig-L_y?E+ﬁ¥FLut 5 = 1-0.

But y% is not sn observable quantity; we may, however, postulate that

optimization occurs according to
(19) ¥} = exg

where Xy is an observable economic quantity. Consequently,

oal I
(20) Yo = T-60 %% " T-5T % -

Except for the appearence of the rendom component this is the geometric



lag model exhibited in (12). The ingenuity of the Nerlove formulation
. will become evident when we consider the estimation problem posed by
such models.

A somewhat unsatisfactory feature of geometric lag structures is
that the sequence of lag coefficients‘declines monotonically, so that
the largest impact of a chenge in the determining varisble is
registered instantaneously; thereafter the lag coefficients decline
in magnitude. In many economic problems, however, we have reason to
believe that lag coefficients first increase, reach a peak and then
decline. Such a behavior cennot be described by the geometric lag
structure. This prompted Solow [32) to suggest the Pascal lag
structure which postulates that

(21) wi=(l-7\)r(r+ii‘l)>\i, i=0,1,2,...

A e [0,1) re (0,») .

The operator suggested by this specification is
'

(22) W(L) = ﬁ_l—?‘——% .
(I-AL)

In empirical applications - of which there have been only a few -

one usually takes r to be an integer. It may be easily demonstrated

that the operator above results from the successive application of r
geometric lag operators, all heving the ssme parameter A. More

appropriately the lag structure exhibited in (21) is termed the

negative binomiel lag structure.
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A final development in the evolution of distributed lag specifi-
cation in the literature of econometrics is the work of Jorgenson

[19]. Jorgenson suggested the rational lag operator

(23) W) - By

where

n .
(2h) A(L) = 2 8 it B = T b , m<n,
=0 3=0

it being understood that the polynomials A(+), B(+) contain no
common factors. Although Jorgenson sought to justify the rational lag
specification as an approximation to the general infinite leg structure
exhibited in (1) by appealing to the Weierstrass approximetion theorem,
this justificetion is rather unsetisfactory. For a discussion of this
aspect see Dhrymes [8, Ch. 3] and Sims [31]. The specification in

(23) and (24 is best looked upon &s & hypothesis about the structure
of the economic phenocmenon under study rather then as an approximation
to a perfectly general underlying lag structure.

In closing this section it ought to be noted that an uncanny
perallel development hes occurred in the engineering literature; in
perticular, the rational lag distribution has received extensive
attention. See, for example, Steiglitz and McBride [33], and the recent

survey paper by Astrom esnd Eykhoff {3].



2. Cheracterizetion of Leg Structures

Often, it may be useful to give a summary characterization of the
lag distribution. In particular, we may be interested in whether the
jmpact of the determining on the dépendent varisble is "concentrated"
or "diffuse", or in the average lag by which such impact is registered.
For certein type of lag structures such éummary characterizations'

are readily available. To this effect note that from (21) we obtein

(25) lim E(ytlxt_i, i=0,1,2,...)= & A"
t - » i=0

Tt is clear that the economics of the problem could typically require
the condition }wl < w; frequently, it would also be required thet the
lag coefficients be of the same sign. When these two conditions hold

we may define

w,
(26 wt = — 1=01,2...
We then observe that
®©
(27) weloll, Z wr=1.

We have

Definition 6. If the lag structure {wi :i=0,1,2,...} has the

properties

i I



wiwj _>_O for all i, J

Z wi=w<oo
i=0

then it is said to be a normelizable lag structure.

Remerk 1. Normelizable lag structures are isomorphic to

-12-

probability mess functions. Indeed, some of the early work on distributed

lags relied heavily on this isomorphism. Thus, recell that if y is
a geometric (discrete) random veriable, then the mass function of

x=y-1 1is given by
Prix = i} = (1-7\\7\1 i=0,1,2,...

whose ordinates give the geometric lag structures, introduced by
Koyck [22].

Let {xi :i=1,2,...,r} be mutuslly independent jdenticelly
distributed (i.i.4.) rendom variables having the mess function above;

then

has the mass function
Prix = 1} = (1-NF (r * 1'1)7\1 1 =0,1,2... -
i

But the ordinetes of this mass function give the Pascal lag structure

introduced by Solow [32].



Meking use of the isomorphism noted above we may define various
nessures of central tendency or dispension in exactly the same manner

as we do with randam variables.

Definition 7. let {wi :1 = 0,1,2,...} be a lag structure and

t be a real indeterminate. Then
00
Wt = 2w t

1s seid to be the lag generating function (of the lag structure).

If the lag is normalizable, then by suitebly redefining the lag

coefficients, if necessary, we observe that

(28) W) = L iw = mw)
1=0

Definition 8. If {wi :1 = 0,1,2,...} is a normelized lag

structure, i.e., if w, € [0,1], 5] oW = 1, then the quantity in

(28) is said to be the mean lag; the quantity
(29) W) - (D17 = v

is said to be the leg variability.

The quantities of Definition 8 are analogous to the mean and
variance of discrete random variables and have exactly the same
interpretation. Note, however, that such quantities (although they

mey certainly still be defined) are meaningless when the lag structure

is not normalizable.

-13..
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Example 1. For the geometric lag structure we have

o o
(300 W(H = (1-2) T ()t = E=h, m(w - 2B, v - 2
o X Y 102

We observe that both mean lag - m(w) - and lag varisbility - V(w) -

are increasing functions of .

Exsmple 2. For the negative binomisl (Pascal) lag distribution we

have
r 2
(31) We) = =N - R, Ve = BE
(1-2t) (-2

Here mean lag and lag variability are increasing functions of both A

and r.
Exemple 3. Suppose that the general rational leg structuré is

normalizeble and has, in fact, been normslized. Then,

A(t) A'(1) B'(1)
w(e) = By, mon - g - B

Vhﬂ__A“l‘ A'(1) 2 B'(1) , (B2 2
= Ay 1 Bl B(1 :

(32)

3. Estimation of Distributed Lags.

a. Polynomial Lags

We begin by considering the class of Ely_gomial lag structures since
the estimstion problems in this instance are rather simple.

The formuletion is as follows: Given the model
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(33) yt = wat-T + u,t, t = 1,2,...,T

with known n and subject to the conditions
- k i
(3 w_=P1), P(t)= & B, t', k<n
T i
i=0
find efficient estimators of the lag coefficients.

Clearly, the solution to this problem is known under the usual
assumptions on the error sequence {ut :t =1,2,...}. Thus, if the
latter is a sequence of independent identically distributed (i.i.d.)
randam variables with mean zero and variance 02, the solution to the
problem is as follows, provided that the u-sequence is also independent
of the x-sequence.

Using (34) and (33) we observe that

k n .
\ = = l = ) .o .
(35) Yy ;Eg Bizti U,z ;EL X g t=n+1ln + 2, ,T

The Geuss-Markov theorem then yields that

(36) é=(Z'Z)-lZ'y’ Z=(Zti),t=n+l,n+2,.-.,T,i=o,l,2,o..,k

y = (yn+l)yn+25"',yT,\' B = (60’61,62)"°)Bk)'

is the best linear unbiased estimate (BLUE) of the vector coefficient

B. Deducing best linear unbiased estimators for the lag coefficients
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is comparatively easy since we have the relation

(37) W= 8 Q= (1) T=0,1,2,...,n; i=0,1,2,...,k .
and by convention T =1 for T-= 0, i = 0. It is, then, apparent

from (37) that

=
I
o

™

(38)

is the BLUE of W.

The distribution theory of polynomial lag estimators is rather
straightforward; it represents only & slightly higher degree of
complexity then that encountered in the usual regression model.

In empirical applications two issues are paramount:

First, what is the length of the lag (i.e., whet is n) and whet is
the order of the polynomial (i.e., what is k)? Second, is the
specification in (34) competible with the data?

For the first issue the discussion above proceeded from the
premise that both n and k are known; subject to this & priori
informetion one has an efficient procedure for estimating the unknown
parameters. Typically, however, in applications neither n nor k
are known but must be estimated simultaneously with the lag coefficients.
Little systematic study has been directed toward the solution of suchv
problems. The standard procedure is to select a rether narrow range
for possible velues of n and k estimate parsmeters under all
admissible alternatives and choose the set of estimates that minimizes,
say, the residual sum of squares. It may be shown that if such a

priori restrictions are true, the procedure above yields the minimum
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chi sequare estimator. The second issue is discussed in Dhrymes

[8, ch. 8].

b. Geometric Lags

Here we shall consider in some detail the estimation issues
raised by the geometric lag structure; the discussion of general
rational lags will be considerably less complete.

The model we shall discuss first 1s

(39) Vo= To5T % % =127

where {ut :t = 1,2,...} is a sequence of 1i.i.d. random verisbles
with mean zero and finite (absolute) moments of at least order eight.
The exogenous varisble is assumed, for the moment, to constitute a
(wiformly) bounded sequence of fixed comstants, having certain
properties to be specifigd below.

It is evident from (39) that the basic problem here - as indeed in

nearly all distributed lag estimation theory - is one of nonlinearities,

and the genre of problems encompassed by the model
: - \
(ko) vy = 8(0) +u,

contains all problems to be deelt with in this section as special cases.
In (40 © is a vector of unknown parameters and the subscript on the
function symbol simply "dates" the observation. Referring to the model
in (39) we have

: o 3
(1) 0 = (a,\)' gy (8) =« iZ=30 ‘7\ X, 4 -



Estimators of the unknown parameters of the model in (L0) may be

obtained as

I 2
sup X [y_b - gt(e) ]
0e® =1

where © is the admissible paremeter space. General conditions

under which estimators so obtained are consistent are given in
Jennrich (18] and Malinvaud [24]. Jennrich also obtains the conditions
under which their asymptotic distribution is normel. An earlier
discussion of similar problems may be found in Wald [34] and Wolfowitz
[351.

Computationsl algorithms for obtaining such estimetors have been
examined by Steiglitz and McBride [33] and Dhrymes [6], [8] and e
Monte Carlo comparison of their (small sample) properties is given in
Morrison [27].

The minimum chi square (MCS) or meximum likelihood (ML) estimator -
in the case where the u-process is assumed normel - is obtained as

follows: Define

o0 t-1
(k2) 8, = 2 )\ixi, x5 = Z 7‘1’%-1
i=0 - i=0
and observe that we can write
t
(L43) | ¥y = 8N +OXE tu .

For given A one can compute
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5 (1338 abx [T ] 2ty
(Lk) -

~ t *D2

a N xE Z Xy 2 xty,
treating a. as a parameter to be estimated; e termed the

0 o’

truncation remainder, and its treatment as a parsmeter to be estimated

were first introduced by Klein [21]. An any rate, frequently the
economics of the problem would impose the constraint A e [0,1) and
it involves little loss of generality to assert A\ ¢ [0,1-8], > O;
but then we can divide the interval by the points 7\1, i=0,1,2,...,r

such that A compute the quentities

0

in (L44); the triplet A, Q, ;o

residusls squared is the MCS or ML estimator, as the case may be. It

= 0, )‘r = 1-8 and for each 7\1

which yields the smallest sum of

should be remarked in this context that the estimator of ao is not a
*2 R R

consistent one; indeed, provided 1:LmT - (= X, /T) is a positive

quentity and lim, (= x'){/T) is bounded the matrix to be inverted

in (44 is asymptotically singular. Thus, taking into account the

truncation remesinder is a practice suitable for small samples only;

Morrison's results [27)] indicate that, for small samples, taking a5
into account yields apprecisble improvement of the estimators for «
and .

The Steiglitz-McBride, (SM) algorithm proceeds as follows: the

first order conditions for the MCS estimator are

o

(15) aZ (v, -ox}) <=0, S (y, -ox})xt = 0
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where, now,

()-|-6\ X?é: 1 X, = Zikix

But from (L46) we obtain the recursive relations
(¥7) X% = AX¥ , + X

Then, given A, the quantities x¥, x%*l can be easily computed

from the data, provided initial conditions, xs, xs* are available.

The SM algorithm takes such initial conditions to be zero. This is
a convenient assumption and may be shown to leave unaffected the
asymptotic properties of the estimator. In fact, using this pair of

initial conditions is equivalent to using x% in the manner defined

in ghe) and neglecting the truncetion remainder ao.

The essential aspect of the SM algorithm is to put

CI-AL, 1
Yo = TohD M Y ML YE T Toaw Y

and to write the equations in (45) as

*2
ath +)\Zy§_lx:_2yj;x9€
(48)

G xxxpxy) + N Ty g xPE) = 2 VEXEN

Given an initiel estimate of A the starred quantities may be computed

) may be obteined; recomputing the
1

>N

and thus the first iterate (



2]l

) - we may obtain the second iterate and
1l
so on until convergence is attained. Unfortunately, no general theorem

>

sterred quantities - using (

exists defining the conditions on the x-process that will produce
convergence. It is clear, of course, that if convergence is attained

then the converging iterate corresponds to a solution of the equations

in (45).
Two facts are to be noted. First, the estimation procedure does

not necessarily guarantee that the restrictlons on A will be respected;

second, there is no gusrantee that the solutions so arrived at will

repregent the minimum minimorum of the function to be minimized. A1l

that is found by the iteration is a stationary point.
The (asymptotic) properties of the ML (or MCS) estimators - as
the case may be - have been determined. Under suitable conditions on

the x-sequence it may be shown that, asymptotically, such estimators

obey
a o
(19) B[ (5)-(3) ] ~wow
where
*D : -1
th aZxéxztl
(50) o = 02 lim %‘
Ty 2 *%2
AT XEEXE X DXy
and ( q ) is the converging iterate.
A

Thus, provided we are prepared to rely on asymptotic theory the
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inference problem is completely solved. There are many veriations of
this basic model. ' The most obvious extension is to include additional
explanatory variables none of which is subject to & distributed lag

scheme\ enteiling parsmeter nonlinearity. .In this case the model is

of the form
aoI f}
(52) Ve TTAL %o T YT T

The estimation problems entailed by this model are of exactly the same
type as those dealt with immediately above. A somewhat more complicated

set of problems is presented by the model

aL I
(52) ¥ =T % TS B

where {st :t =0, t1, +2,...} is e sequence of i.i.4. random
variables with mean zero and variance 02.

We obtain MCS estimators by minimizing
(53) S = (y-ax) viy-ax

the symbols having the same meaning as before, where

—_ 2 = ! | = I
(5%) Cov(u) = 0"V, u = (Wt -0 )'s By = 70T &
|t-s]
' (vts)’ Vig N t,8 = 1,2,...,T

Evidently, estimators here may be obtained by & double search over the
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admissible persmeter space for A and p. Thus, if we put © = (QyAyp )"
and sT( 8) for the minimand in (53) divided by T, we obtain
estimators by the operation

[s.(e)] .
oco o

Here the ML estimator differs slightly from the MCS one in that the

former maximizes

T T 2 T 2
(55) L(6,¥,%) == 51n 2r- 5 1n 0" - —58,(6) + 3 In(1-p") .

2 20

Upon partial meximization with respect to 02 and substitution in (55)

we find
. T ST(G'\
(56) LT(G;Y;X\ ==-3 [In(2m) + 1] - 5 in W

and see that the ML estimator is obtained through the operation

[ST(e) ]

sup _——7_
8e® (1-02)1 T

Typically, in both cases it involves little loss of empirical relevance

and considerably simplifies the nature of the mathematical arguments,

Bearing this in mind we see that for any admissible © limT_ew (1.-p2)1/T = 1.
Consequently, we would expect the two estimators to be asymptotically

equivalent - which is, in fact, the case.
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The asymptotic properties of such estimators have been established.
We shall not give, here, the details of the arguments involved; we
shall, however, sketch a somewhat novel proof given in Dhrymes (7],
[8, Ch. 6] which indicates that such estimators as discussed above

converge to the corresponding parsmeters not only in probability, but

with probebility one as well. Thus, consider the MCS estimator

defined by
sT(e) < ST(e), v 6 g 2]

Tt is clear that O cen be eliminated by partial minimization,

thus yielding

L1yt A1 \2
(57 sy - By | vEIEET |y Ly
S (x* V) (3 V)

where w = (A\,p)'.

Consequently, provided x} #0 for all t, we see that ST(w)
is bounded awsy from zero and is bounded above by %—y' vt y; thus
any asymptotic properties we determine with respect to the MCS estimator
will be appliceble to the ML estimator es well,

To show convergence with probability one of the MCS estimator we
proceed as follows: First, we show that, for any admissible w, ST(w)

converges to its limit, say S(w), with probability one, uniformly in w.

Convergence with probability one means the following. Let 8 ©be the
sample space over which the error process (u-process) is defined, and

let s be the subset of & over which convergence does not hold.
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Convergence with probability one means that the measure of s is

zero. Uniformity in « means that the limiting argument employed in
the preceding does not depend on the (admiésible\ w considered. Thus,
we may say that "for almost all sequences {ut it = 1,2,...1" ST(w)
converges to S(w) uniformly in w e Q, O being the set of
admissible w-parameters. [r
Second, we observe that the sequence of estimators {&T} such
that ST(GT) < ST(w) Vv we O is a bounded infinite sequence and thus
conteins at least one limit point, say w,; moreover, there exists a
subsequence {ﬁTi} converging to w,. Third, we show that w, = wo’
the latter being the true paremeter value. Since the argument is valid
for "almost all sequences {u._t it =1,2,...)" and w, is any limit
point, we conclude that &T converges to Wy with probability one
provided e certain identifisbility condition holds. Since the estimator

of o 1is defined by

(58) a = (x*' v gy e V‘ly

we also conclude that & converges to ao with probability one. This
argument mey be readily extended to the case where the error process

is an n-1--'-}—1 order autoregression or the model contains additional
explanatory variables none of which are subject to an (infinite)
distributed lag.

Now we observe that

x*”'V'lx* *2

(59) o

=1 o
~
| s
]
ie}
e
4
[
+
=i
ot
[
n N
~
]
©
F
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and, thus, setting
(60) hy(w) = xf-pxf ;) = éo )‘i(xt-i 0% 1)
we have that, provided the x-sequence is bounded

(61) EXOIES

K being the bound of the x-sequence. Moreover, if wl,w2 € Q

2
(62) [ny(up) ~Be(up) | < Py =71 55+ log oy gil
1

which shows that {ht} is a sequence of uniformly bounded equicontinuous

functions. Since
(63) [02(0,) - 020w} | < [By(uy) =By(op) | Ing(up) + Be(wy)]

it follows that {hi} is similarly a sequence of uniformly bounded

equicontinuous functions. The same is obviously true of

(6%) Hy(w) = 15 v2(w)
T t
t=2
But if the x-sequence is such that
1 %
(65) c(i,j) = lim & X, X, .
Tow! t1 U1

exist as well defined finite quantities then the sequence {HT(w)}
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converges, pointwise, in w; +thus, by the Arzela-Ascoli theorem [30]
it also converges uniformly (in w).

Next we observe

CLavie.i] X T T o Tk
(65 =u'V "x¥ = = u,x¥ ~p uxk o -p u, XX +p u, x¥
T T e p=1 T T gy PR g2 ©

and, thus, if each of the sums converges uniformly in A then uniform
convergence with respect to o is obvious. But it will suffice to
show that % b utx% converges to its limit with prdbability one

uniformly in A. The other terms can be handled entirely gimilarly.

But
t-1 t-1
% i R i
(66) U =gl * Pobtj’ X =MNXg* I Nwy
0 i=0
Consequently,
T T t-1
(67) % D> xfu, = % uxx 2 (np ey u Z pg 2 7\ixt_
t=1" t=1 t=1 i=0
Z'l‘3 % ‘bz->l j %‘\ t;‘l t-1 j
+ x* A p' € + 4 24 N o €
g1 g0 © ®d g 30 jo O v

and it will be sufficient to show that the last tgrm of right member
converges to zero uniformly in A, the other terms being handled
similarly. To this effect, observe that changing the order of sumstion

we have
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1 'ZI'> tS:‘l 'til i3 T;\l T5:‘l i3
(68) = & AN pL X 13 = L 2. N ptW, . .
T 41 j0 o  otitd 44 50 ° LI
where
>
(69) W == » X, .E, .
T,i,3 1T t=max(i,j)+1 t'Jf t-J

and it would obviously be sufficient to show that

lim sup

W |
T oo i,j<T T,i,j

converges to zero.

Using Chebyshev's inequality for eighth order moments we have

8
E(W
T,i
(70) Pr”wT,i,jl >r} < >
But
K
- \8 1

where K1 is some bound independent of T, i or .

Now, for eamy r > O

© T-1 T-1 ®
(72) z Z T rpr{lw |>r}<x, 2

71 1-0 3=0 T,1,J 2 gy q°

<

and by the Borel-Cantelli lemma [L] we conclude



(73) Priv | >r, 1.0.}=0.

T,1,J

This, however, easily implies that sup, 3>T |WT, i,jl converges to
zero with probebility one. Thus,we have established that %— 2 xjé u,
converges to zero with probability one, uniformly in A and o 0

Finally, we deal with the term

T T T
Eui-&,zututl+022ui .
=2 t=2 - t=1

—

=)

£
=l

£

<

-]

Il
=l -
o
=i+

It is clear that if we can show that & Z 2 l S uu, ., approech

t t-1
their respective limits with probability one, uniformity of convergence

with respect to p will be obvious from (74). We note that

2 2
o

2 o
(75) E(v,) = -1—-?? *Elugu, | fl—_—°.§-§, Vot
(o] o

and moreover that {ui st = 1,2,...1, {u wu, o = 2,3,...] are
strictly stationary procesks. Consequently, by the Birkhoff-Khintchine
theorem [11] the quantities %Z u2, Z WU, ) converge to their
limits with probab:l..lity one. But one easily shows that

2 2
1 2 % 1 %R
(76) ’Flim T > ut = 5 plim T > utut_l ]
—- o l- o Tow 1- Po

and, consequently, the limits have been identified.

What the preceding argument hes shown is that ST(w) converges to
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its limit, say, S(w) with probebility one uniformity in w. Moreover,

we have obtained that

2 Go(p )

(17) S(w) = ot +(w)
l-p
)
where
o o x;'V-lxs x;'V_lx*(x*'V-lx*o/T\
(78) p(w) = o lim —2 '
°p T *' 1
— 00 x V "x¥

and the vector x3 is computed with respect to the true perameter xo.

Tt is clear that for all admissible w, ¢(w) > 0 and,in particular,
(79) m(wo\ =0.

Thus, we have that

(80) S(wo\ <s(w, Vwet.

Now, consider the subsequence {&T } of the estimator sequence {GT}
i
the former converging to w, which is a limit point of the latter.

By construction we have

(81) S (&T ) 5sT(w\ VvV we Q.
i 71

Consequently,

(82) S(w,) € 8(w) V we

and in view of (80)
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2

(83) S(w,) = S(wo\ = 9,

Yo being the true paremeter vector (7\o,po\'. But (38) immediately‘

implies
(81 ox = Pg o(w,) = 0 .

For the model to be identified we would require the condition that

implies
(86) A = A

If (85) and (86) are satisfied then we con lude that w, = W, ‘and,

since w, is any limit point of {wT}, thet {wT} converges to W,

with probability one.

Remerk 2. It is important to recognize that the identifiability
condition in (85) and (86) is not vacuous. Thus, consider the
x-sequence X, = (-l\t; it obeys all requirements on such sequences

discussed earlier. On the other hand, we find

~ .1 t i t 1 1 .
(87) x* = 5 Nx, .= (=17 2 (=N = (-1) Lim = x*'V o x = =—= .
vy b 1=0 TFN I T 1A
Consequently
. 2 2
(88) p(w) = ag _(.J;j_.L)_ - i}_i.ﬁl_ =0

) )
(1 +>\0) (1 *7‘0)
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which shows that S(w) does not depend on A; thus, no information
is given by the argument above on the limit of the sequence {XT}. For
this particular x-seqQuence it is also verified that [&T} as defined
in (58) does not converge to ao, unless ko is known and utilized in
obtaining &T'

If the true paremeter wo is an interior point of Q then the

asymptotic distribution of the MCS estimator is established through the

expansion
(87) aS(é)-as(ewags(6)(@ o)
) 36 =3 ‘7o’ T 360 ()

where O is the MCS estimator of 90; the latter is the true
peremeter point and © obeys |§..eo| < |8 -eol.

The argument involves the use of & central limit theorem for
m-dependent variables - see, e.g., Dhrymes (8, Ch. 4] - and the
approximeting argument given originally by Mann and weld [25],

particularly their Lemms 2. We then determine that, asymptotically,

(88) T (6-8,) ~ N0,Gyqq)
where
—x_*.'.z-_lﬁ*. _]_',a *lv'l ax* o _‘-lv
T T %X N
2 1 dxc* \' -1 2 dx¢\' ,-1f dxx
(89) C:Jics,“’oTl_if"‘co Tao('Sx') v ”*o‘o(ax)v ('57'\') 0
2
0 0 2
i 1= e




it being understood that x* and B_g;\*_ are computed with respect to

the true parameter point 7\0.

Remark 3. An interesting feature of the result just cited is
that, esymptotically, the estimator for (a,A)' is independent of

that for . This has the consequence that it is, here, possible to

define a two step instrumentsl variebles (IV) estimator having the

seme esymptotic distribution as the MCS (or ML) one. This discovery

is due to Amemiya and Fuller [2]. To see how this eventuates observe

that we can write the model sas

(90) yt, =A¥yq * axe + v, Ve = U= Au
let

‘ 2
(91) Cov(v) = 00, v = (v2,v3,...,vT\,'

If an initial consistent estimator is aveilsble for Q, A say &,

then we can compute

4
-

~ T ~ 2 U
(92) u-t = yt-yt’ yt =Q 2 K Xt_i, D = —r
i=0 Zut-l

and thus obtain a consistent estimator of ¢, since the latter

depends only on A and p. It may then be shown that the estimator

~al

(92) (%) - 105 5 v I i) 57y
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has the same asymptotic distribution as the marginal (asymptotic)
distribution of the first two components of © as exhibited in (88)
and (89).

Initial consistent estimateskfor a and A eare easily obtained from

(90) by use of the instruments Xio X -

Remark 4. It is very tempting to use the simplified procedure

above in the context of the following model

(93) Yy = AVpy Y OX *ToT &

since upon solution, and if |k| <1, we obtain

oI I
(94) Ve = Tk ¥t T (T-AN(I-oD) Tt

When we do, howevér, the resulting estimators do not have the same
asymptotic distribution as the MCS estimator. The "reason" for this
cese, first discussed by Amemiys and Fuller [2] as well as Dhrymes [8]
is that in the model of (93) A is both a mean and a veriance
paremeter for the y-process as is evident from (94). In the model
considered previously A was only & mean but not a verience parameter
(for the y-process). This explanation becomes transperent if one
recalls that in the case of normel distributions (which is the case
asymptotically) mean and variance parameter estimators are mutually
independent. In this connection, Maddala [23] has also pointed out

that, in the case where the error process is normal, the information



matrix is, appropriately, block diasgonal in the first case but not in
the case of the model exhibited in (93).
| In closing the discussion of geometric lag structures it is
instructive to consider the problems posed by the model in (93) and,
in particular, the extent to which the IIV estimator considered earlier
and other two step variants differ from the MCS estimator.
The MCS estimator of the parsmeters O, A, p has the asymptotic

distribution
(95) JT (8-8) ~ N0,0° a*)

where 6 = (Q,A\,0)', 8 is the MCS estimator of © and

( N
-
Fx‘ V-lx x' V'1§ 0 w
-1
2 2
(96) 0¥ = 1im .':!'I‘. y-'.l V-lx |lv‘l§ 1 + To 5 To 5 L
T > » ﬁ - - 1.2 1.2
0 To'g ' Tce
1-2 J_;_E
. L o |

The importent difference between the model in (93) and that in (52 is
that, in the former, the estimators of p and (a,\) are, even
asymptotically, dependent. Consequently, how well o is estimated
will have a bearing - even asymptotically - in how well (a,\) 1is
estimsted. This is to be contrasted to the cese of the model in (52}

where the properties of the estimator of o - beyond consistency - are
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of no consequence in determining the (asymptotic) properties of the
MCS estimator of (@,7\). Thus, we might expect that the IIV estimator
considered earlier would not coincide asymptotically with the MCS
estimator of (a,\). This result is rather transparent, if we observe

thet the initial IV estimator of (&,A) is, say,
~ : -1
0’ x' x'y
(97) < ~> = ( ' ) (x,y )1 < ' >
X x', -1 | x ¥

and the iterate is

(98 (f
A

The estimate of V'l is obtained through the estimate of o given by
}TD o~
~ t= ut ut-l ~ a '
(99) p = > » 4y = y't--(xt,yt l) ( 5 >, t=23,...,T.
7\ ~
[ ut-l

(100) JT (g )va - (a> ~ (0, o° Cyry)

where



-1
x' V-l x' V-1§ 1
(101) Crpy = 1im 7
T » ot} V-lx ot V_l-
Ya Yo A1
and
_ - - - - ol
(102) ¥ 1= (Ypo¥preeos¥py) Yy = To5T %4 -

It can be shown that the marginal asymptotic distribution of the MCS

estimator of (a,\) is given by

(103) NT (?) '<a> ~ M0, Gyeg)
A A
MCS
where
x' V'lx, x' V-l§ 1 -
l - N
(104) Guog = 1im T|= -1 = o=1= T 62(7\-0)2
T - % y_lV x,y_lV Y_l + N 2
(1-2%) (2-20)

Thus, the MCS estimator of (Q,A,p) implies an estimator which is

(asymptotically) efficient relative to the IIV estimator of (a,n)

provided A #p. When A =p the two estimators are equally efficient.

It should be stressed, however, that in obtaining estimators in both

instances no use is made of the condition A = p. A number of other

two step procedures for estimating the paremeters of the model in (93)
have been proposed - see for exsmple Gupte [1L] and Dhrymes [6]. In

general such procedures are inferior to the MCS estimators in terms of



asymptotic efficiency. A more extensive discussion of such aspects

may be found in Dhrymes [8] and Grether end Maddale [12].

¢c. The General Rational Iag

As remsrked earlier this formulation generalizes the polyonomial,

geometric and negetive binomial versions of the distributed lag model.

The specification is of the form

-
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A(L)
(105) Ve = BET %t T % t=12,...,T
where
m i n .
(106) ML) = T 8L, Z bjL'J, by =1 - m<n.
i=0 3=0

An approach to the estimation of peremeters in this model was put forth
by Jorgenson [20]. The approach is as follows. Reducing the modél we

find
(107) ¥y = B*(L)yt + A(L)xt + B(L)ut

where, now,

o n .
(108) B¥(L) = -~ 2 b, ¢
3=1

This is an au*f:oregressive moving average model and Jorgenson's

suggestion was to put

(109) . \ €y = 13(L)ul,c
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assume that {et it =1,2,...} is a sequence of i.i.d. random
variables with mean zero amnd variance, say, 02 and estimate the
unknown parameters by ordinary least squares regression. This
approach, however, would be appropriate only if, in the orginial model

specification of (105), the error process is of the form

I
(llO\ ut = _BTTJT E't

We recall from equations (18) and (20! that in Nerlove's
formulation of the geometric lag model a similar condition held.
However, we cannot credibly invoke (110) as & maintained hypothesis.
If, as in (105), we invoke the customary sssumptions regarding the
error process then the application of ordinary least squares (regression)

methods to (107) would yield inconsistent estimetors since the right

nand (explenatory) varisbles are no longer independent of (or even
uncorrelated with) the error process in (107). Thus, as was the case
with the (reduced) geometric leg model discussed earlier a different
estimation procedure is required.

We first observe that if the error process in (lOS)kiS one of i.i.d.
random verisbles then we cen obtain estimators by minimum chi square
(here nonlinear least squares) methods.

Thus, we consider the problem of minimizing

T
(111) s(e) = 521 ( A -'g i) X, )2 , 6 = (a

with respect to the unknown elements in A(-) eand B(-). In effect the



problem of showing the consistency and asymptotic normality of the

estima‘lior, say é, obtained by the operation
sup S(6)
e

cen be solved by the methods employed in section 3.b. The problem here
is that, if m is at all large, say, greater than two, a search
technique is impracticel. Thus, we are reduced to an iterative procedure,

which may be obtained as follows: let

AN

(112) a = (ao,al,aa,...,am\', b= (bl’bz""’bn"

and differentiate (111) to ob‘l:a,in2 the "normel" equations

T i
25 A(L) > L o _
(113) Tyl 2 ézg'( Vi - E%ET Xy E(iy X, = o 1i=01,...,m
T

3s A(L) AL |
(11)4) ——-:2 Z (y --%—Yx ) Lx :0 j:l,z,.,.,n.

ob £=1 t B(L) "t [B(L\] t
Put

_ I _ I ~ AL)
(115) BT Yy XTI D W % T-BD %

and rewrite (113) and (114) as

————

2 The lower limit on the summation index is, of course, incorrect;
in general, since the observations come in the form of pairs
{(yt’xt) +% = 1,2,...,T} it would perhaps, have been simpler to carry

the summation t between the limits n +1 and T.
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T m n T

(116) P < 2 oa,x%, - 2 b,y* )x = Y y¥xX i=0,1,2,...,m
£=1 \ i=0 i“t-1 =1 Jit-J t-1 £-1 t7t-1’
> [ 2 > D

(117} < Loa.xx , - b,y¥* .)x = L yrxEx j=212,...,0n .
41 \ 40 t-i j=1 J9t-3J ) t-3 £-1 tt-J

The interation procedure suggested by Steiglitz and McBride (8M)
[33] is a straightforward extension of the procedure outlined in an
earlier section when diséussing the geometric lag model. Thus, if an

initial consistent estimator of the vectors a, b is availsble, say

;, g, then the quantities y¥%, x%, x%* can be computed (vy recursion)
using the relations in (115) and E, b. But then itvis possible to solve
equations (116) and (117 for the first iterate ;(l), g(l). Using these
we can recompute y%, x%,'x%* and thus obtain the second iterate 5‘2),
3(2) and so on until convergence.is obtained. The converging iterate,
say (a,b) is a solution of (113) and (11k). Since we have commenced
the iteration with a consistent estimator it may be shown that every
subsequent iterate is consistent and thus the converging iterate, if

one exists, is & consistent root of the normal equations. Its

asymptotic distribution cen be established by the usual device of
oS

o(s)

Unfortunately, no general theorems exist concerning the precise

applying the mean value theorem to the gradient

conditions under which the iteration above will converge.

4. Concluding Remarks

Much of the preceding discussion was concerned with the formulation,
interpretation and particularly the estimation problems posed by distri-

buted lag models.



In effect, we have examined in some detail the rational distributed
lag model snd two of its importent special cases, viz., the geometric
end polynomial lag models. When examining such models we assumed the
error process to be either one of i.i.d. random variables or a first
order autoregression. However, there is no reason to restrict ours-
selves in this matter. Indeed, an extension to the case where the
error is a general linear ( covariance stationa.ry) process was given
for the geometric lag by Hannan [15] and for the general rational leg
by Dhrymes [8, Ch. 10].

A number of issues relating to tests of stability, goodness of fit
and model selection in the context of distributed lag models are taken
up in Dhrymes [8, Ch. 11] although no definitive solution is provided
there. Indeed in the case of nonnested models no satisfactory procedure
exists for choosing one model over esnother. Thus, e.g., if model one
specifies & parameter space 81 while model two specifies the parameter
spece 8, and if & ¢ 8, 8, ¢ 8, (end otherwise the two models
share the same specification) we have no entirely satisfactdry method
for choosing, on the basis of sample evidence, model one over model two
and vice versa.

The problem of the small semple distribution of distributed lag
estimators is also an inadequately explored topic. The essential
problem lies in the complexity of the stimators which is a consequence
of the strongly nonlinear character of most formulations .

Finally, the problems induced by misspecification are not fully

understood. A good beginning in this direction is made in Sims [31].
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Thus, while the literature of distributed lag models is a
relatively extensive one it is by no means the case that the problems
posed by such models and their empirical application are satisfactory

resolved.
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