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0. Introduction.

While most econometric models extant contain laegged endogenous
aemong their predetermined variables, relatively little attention hss
been paid to the complicetions entailed by the, possibly, autoregressive
character of structural errors. Indeed, most such models are estimated
by some variant of two stage least squares (2SLS). The problem has
been examined first by Sargan [15] and later by Amemiys [1] and Fair
[9]. Sargan operates in a very general context and Amemiys assumes in
his models the asbsence of lagged endogenous variables. The present
paper has been stimulated by Fair's contribution which, while an
interesting addition to the literature of such models leaves & number
of questions unanswered.

In a previous version [8] we considered a simple two step estimator
whose asymptotic distribution wes invariant to iteration. Here we shall
examine systematically the problem of limited information estimation in
the coptext of a mbdel containing first order lags in the endogenous

varisbles and an autogregressive error process of the first order.

1.The research on which this paper is based was, in part, supported
by NSF Grant GS2289 at the University of Pennsylvanias (Dhrymes), the
National Defense Education Act, Title IV (Berner)and the S. S. Huebner
Foundation (Cummins)
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Extension to higher order lags in the dependent variables and higher
order autoregressions is rather routine.

We shall show that one of the procedures suggested by Fair is
similar, but not identical to the limited information variant of the
estimators discussed in Dhrymes [L4]. We shall also show how a modified
method of scoring epproach yields estimators which are asymptotically
equivaelent to the converging iterate of the two stage least squeres
estimator (C2SILSA) as discussed in [L4].

Finally, having produced the asymptotic distributions of the
extimators above, we shall obtain a ranking of the various alternatives
based on the covariance matrices of the appropriate asymptotic

distributions.

1. Formulation of the Problem
Consider the standerd linear dynsmic structural econometric model

for which we have a sample of size T. It may be written, compactly, as
(1) Y=YB+XC +U

where Y is T xm, X is TxG and U is T xm being, respectively,
the matrices of current endogenous variables, predetermined variables
and error terms of the system. The matrices B, C are mXxm, G Xm
and comprise, subject to certain identifiebility restrictions, the
unknown structural paremeters of the problem.

Following the practice in Amemiye [1] and Fair [9] we write the

error specification as

(2) U=U,R+E



where
(3) R = diaG(DlyOzx---:Dm)) |Di| <1 i=234,2,...,m
It is assumed that the rows of E, i.e., €, = (etl’etz”"’etm)’

t=1,2,...,T constitute a random sample, or more generally
{e%. =t=0, 1, ¢ 2,...} is a sequence of independent identically
distributed (i.i.d.) random varisbles. In addition, it is assumed that

(4) E(e;,) = 0, Cov(gy ) =3

5 being a general (unrestricted) positive definite matrix, and that the

equations of the system are identifisble.

Remark 1. The fact that R is assumed to be a diagonsl matrix in no
way implies that the error terms of the system are uncorrelated or

mutually independent across equations. One mey, quite easily, show that

(5) Q=RQR + 3, Q = Cov(uy )

Consequently, the uti’ i=12...,m are not generally uncorrelated (or
in the case of normality independent).

Let us now focus on one of the equations of the system, say the
first.

We may write
(6) Y= Y9B.q v Xy, tu,

where Y. g are, respectively, the first columns of Y and Uj

B'l’ Y., eare the first columns of B, C after elements known to be
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zero have been suppressed; Yl’ Xl sre, thus, appropriate submatrices

of Y, X.

For simplicity we assume that the system contains only first order

lagsl.

Consequently, partition

where 1¥tl is an appropriate submatrix of Y_l and W1 is an appropriate
submatrix of W, & T x s matrix containing all the exogenous variables
of the system.

To conclude this section it seems appropriate to restate Fair's
proposal in the context of our notetion. This will elucidate at least
one of the alternatives he has dealt with and indicate the similerities
and differences of his procedure relative to the estimators to be
discussed below.

While a number of suggestions are put forth, perhaps the most

clearly enunciated of Fair's procedures is the following:

i. regress the varisbles in Yl on a set of variables that, at least

includes2 the variables in Yl lagged one period

ooy
the variasbles in lYfl as well their one period lags and the

variables in Wl as well as their one period lags and

obtain the "predicted" matrix ?l.

1 Higher order lags can be easily accommodated at the cost of some
anelytical complications. No essentially new problem, however, is introduced.

2 This is the aspect of the procedure that makes it i1l specified.



ii. Regress (ytl - p1y£_l,l) on the variables contained in the
i Y. - ¥ o -
matrices (Yl plYl,_l), (lY-l 0y lYfe), (Wl plwl,-l)
repeatedly, with o varying over the interval, say, [-.99,.99]
and select that regression which minimizes the sum of squared

residuals. From that regression one, thus, obtains estimators
8.1, Pys say g'l’ ;l.

A difficulty with this procedure is that the list of regressors is
not specified and no attempt is made to determine whether the properties
of the structural estimators are affected by the choice of regressors
at the first stage. Moreover, if we follow the procedure not merely for
one equation of the system but for all we would expect to have a

situation in which & variable in Y. is "explained" (at the first stage)

1
by different specifications depending on which structural equation is

considered at the moment.

2. A Two Step Alternative
Consider again, under the standard assumptions, the model in (1),
whose first equation is as exhibited in (9). Let W be the T x 8

matrix of exogenous varlables, in the entire system, of which W1 is

an sppropriate submatrix. Using Wi and as many other columns of W

(and W if necessary) as there are columns in Y, eand ,YX,

1 by instrumental variables. More precisely, let Pl be

the matrix of instruments so selected. The first stage estimator of

estimate3 5,

8*1 is then

& _ 1 -1 [
(10) 8., - (Rz) ey

3 It is assumed that the model contains enough exogenous variables
for this:'to be feasible,
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Under the standard assumptions - a matter we shall examine at greater
length below - the estimator in (10) is consistent.
Do this for every eqﬁation end thus estimate consistently the para-
meters of B and C not known a priori to be zero.

Partition conformably,

I
(11) X = (Y_,X), n=< 0) = c(I-B)""

and note that the tth row of the reduced form is given by

' -1
(12) y'b' = yt-l' HO + wt' Hl + Vt. ’ v‘t‘ = u‘t' (I'B)
u. being the tth row of U, yt. the tth row of Y and wi, the tth
row of W.

Since ﬁ, C have been estimated consistently we can obtain

"predictions"” of Vi. recursively, from

~ ~

(13) Ve, = Viop. Tp * W, Ty
given some fixed initial condition, the simplest of which is 56. =0

Remark 2. The initial condition 55. = 0 1is of course quite arbitrary
and the particular estimates are likely, in small samples, to be
sensitive to this requirement i.e., the numbers one obtains in any given
application are likely to vary as we alter the specification. The
properties of the estimators, however, are unaffected by such practices
if the model is stable, as one customarily assumes. For alternative
ways of handling this aspect see Pesaren [1L4]. Such alternatives,

proposed in the context of single equetion models, entail specific



assumptions on the sequence of exogenous variaebles {wi. tt =0, 21, +2...

In this connection, it should be pointed out that Monte Carlo
studies, in a single equation context, indicate that small sample "bias"
and "mean square errors’ are not materially affected by whether we
"estimate" initial conditions or we set them equal to zero; see for
example Morrison [12]. On the other hend such "estimates" of initial
conditions are not consistent.

From (13) we thus obtain the metrix ¥, of "predictions" and legging
every element once we obtain Y-l-

In addition, from the first stage estimators we have

. = -z.8
(13). Uy =¥y - 240,
and from these residuals we obtain, by the usual methods, Sl'
Define the matrices
1 =Py 0 Ow=a0
~ ~2 ~
-P 1l + Py -Py Q=w==0
(1k) 1o o 51+ 52 o0 7. = (Y,, ¥ ,W.)
1 | 1 f1 1 A Rt R |
~ ~D o~
"""" oyl ey e
0~--- -0y 1

and obtain the instrumental vsariasbles estimator

~ ~ A

P R, [V |
(15) 6.1 = (zlvl zl) AR
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Evidently, this procedure may be applied to every equation yielding, in

the obvious notation

~ ~ N_l _l ~ N_l
— 1 1 —
(16) 8.1 = (Zivi Zi) ZiV V.4 i=12, , 1
Remark 3. It may be thought that the estimator above is equivalent to

the limited informetion meximum likelihood estimator when the structural
errors are jointly normsl. This conjecture may be prompted by the
similarity of the procedure above to the interpretation given by Amemiya
and Fuller [2] to the distributed lag estimator proposed by Hennan [9].
This, however, is not so. Perhaps the simplest way of noting the
differences and similarities is to revert to the single equation model.

If we write
(17) Yy = O F NV g T W W= oWy T

the estimation procedure we suggest in the preceding amounts of the following:
Estimate @, A by instrumentel veriables, obtain the residuels and

estimate p. Compute

t-2 .
(18) Ve = @ o NWe g
Define
(29) D N AT

in the obvious notation, and obtain

A

(20) < o ) S (X ¥t ¥ w“i"ly

~
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(21) plim QLK_& = Q

exists as a nonsingular nonstochastic matrix

and if

T

1
(22) plinm 2 ww, =0 forall 7
Toeo =1

then the asymptotic distribution of (20) is given by

. . _ 1oy el

o o 2 . X'V X
(23) ’\/;i' ( ) ) - ( > ~ N(O, (DIIV); (DIIV = ¢ plim ( —F >

& A T o
where

0
- - - = - = i

(2)4') X = (Y_l) W) Y_l = (y1)y2’ LI ’yT—l) y't =a tz_o A Wt—i

On the other hand the maximum likelihood (ML) (or in case of nonnormality,
the minimum chi square) estimetor of & and A has the distribution

(see e.g. [6, ch. 7]

(25) Jr (

Q>

>

) (5)] e

ML

where
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0 0
a1 P X vix (5-N)°
(26) i O lim ~——p— + 8, S - | 0 ABTg -
T o (1= (2 =-np)"
It is thus easy to see that
- >
(27) *rrv - % 2 ©

in the sense that the difference is positive semidefinite.

In the Amemiya and Fuller problem we have

= Z) i = .
(28 Yy = @ = Now g e, W= opuy gt E

Here )\ is a parameter that enters only the mean of the dependent

variable, but not its variance. For this "reason" the estimators of A

and o (by ML methods) are asymptotically independent. "Hence", the
asymptotic properties of the ML estimators of « and A\ are independent
of the properties of the consistent estimator of p. If we solve the

difference equetion in (17) we find
w 3 o0 .
(29) Yy =@ LoNw + T A

Thus, in (29), we have a second order sutoregressive error process and

A is both = mean and a variance parameter. "Consequently", the

estimators of A and p are not independent even asymptotically. Thus,
how well A is estimated will depend on how well we estimate p in the

"first" stage since we treat these two perameters asymmetrically.



The point of using the iterated instrumentel variables (1IV)
approach instead of the direct meximum likelihood is that the IIV
estimator does not depend, in its asymptotic distribution, on enything

but the consistency of the "first stage” estimator of o.

3. Properties of the Estimator

Consider again the model as exhibited in (12).
We assume
(A.1) The matrix Hb is stable, in the sense that its roots are less
than unity, in modulus.
(A.2) The sequence {E%_ :t =0, 21, +2,...} is one of mutually
independent identically distributed random varisbles (i.i.d.) with mean
zero snd coveriance matrix S, and the matrix R, in (3), is stable.
(A.3) The exogenous veriables are (uniformly) bounded nons‘l:ochasticl‘L

and

exist s nonsingular matrices, where

Z, = (Y ¥4, W)

and Yi’ ii¥l are obtained from the systematic part of the final form

-1 -1
to_ T LY 1 ' ~ T '
(30) Vi (1 ML ™Tmwy 4 (T ]'[OL) V!,

N
This assumption may be relexed at the cost of some analytical

complications, as will be indicated below.

wll-



Remark 4. The assumption in (A.3) entails some restrictions, when it
so happens that the columns of 2& are linearly dependent (at least
asymptotically). This will occur, e.g., when the system conteins only

two exogenous veriables the two being a sine and a cosines. When this

is so Yi’ thl

thus rendering (A.3) invalid. The same is true when the only exogenous

contain only linear combinations of sines and cosines

verisbles of the system are polynomials of various degrees in "time".
In most applications, however, these limitations are innocuous since
the verious columns of Yi, inl are (infinite) linear combinations
of all the predetermined veriables and all their lags. In general we
would not expect such linear dependencies to materialize, and (A.3)

rules out explicitly the case where the tth row of Yi’ thl consist
of linear combinations of the tth observations on the exogenous
variables of the system.

If we define

Tx = diag(ﬁl,zg,...,zm), 5 = (8:1,5:2,.,,,5:m)v
(30) |
-1 . -1 -1
Vo= dlag(Vl :V2 ’ --’Vm )y ¥ = (Y:l,y:2,'°-}y:m)'

then the IIV estimator of the system as & whole is given by

(31) § - (Zevlzt vy

We have

~12-

ILEMMA 1. Given assumptions (A.1l) through (A.3) and the conventions

of the model as exhibited in (1), the estimator in (31) is consistent.

5Th.is limitation was pointed out to us by a reader of the earlier
version of this paper.
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Proof. After substitution for y we obtain

(32) B -8 (BeTr) 2T lu,  w- (uipulyeeou)
. ] -m
It will suffice to show that
5. -1
1x
(33) plim 22¥ ¥ _ o,
T o w T

This is so, since

&, =1
(34) plim Z‘,; Z

T

= 0%, % = diag(¢il,¢§2,...,¢;m)

and the ®§i are nonsingular by (A.3).

Consider the i'P subvector of (33). We observe that

iy 7V ey
(35) plin = =P =0

The last equality follows easily from (A.2) and the fact that the

exogenous varisbles of the system are bounded non-stochestic.

IEMMA 2. The asymptotic distribution of the estimator in (31) is

given by
(37) ox - 1im (z*.l-l Z*l'l Tt Mx' E@ IT\ M* Tx (-Z-*'Il Z*I'l
IV T T T T
-0
= _ ' s
T* = diag(zl,Zé,...,ZQ), Mi Mi - vi
M* =

dieg(My My, - - - M)
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Proof. First, we observe that

z! (\7'1 v hu
it'i i i
plim
T > 'J—T
(38) o -1 O . . = 0
-l pi+pi -1
 e1d ~ ylg | O -1 by tpg =1 0O
= plim ~fT(pi o,) T % 17 P u,

since T (;i -p,) has & well defined asymptotic distribution as T — .

Next, by similar arguments, we see that

~ -1
(2, -Z,)' V7 u
i -1
(39) plim —2 L 1.,
T —»x \/'-1‘
Thus, we need be concerned only with
(%0) T v_"lu _ Txt M*' g*
NG NT

where €% = (ef',efé,...,efl;l)'

Y' and €%, = €4 with the exception that

g = (Ey40€py00r6py 1

2
- Jl-piutl, i=1,2,...,mn.

3
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Let 7% be the s  rowof M7, and note that

1%1. 1%+
, Lol T
(141) >V w1 ey s 22 2?:: Es.
T N1 ©oWr s=2
Z¥! Zx!
Lmzl' mzs.
where € = (esl’es'&‘""’esm)'

But the first term in the right member of (Ll) vanishes in
probebility with T; morevoer in view of (A.1), (A.2) and (A.3) the

Lindeberg-Feller Theorem [3, ch. 3] applies and thus we conclude

=yl Zx' Mx' (5@ T,) MxZx
(42) z3 v ~N<O, 1im FT )
‘\/TI' T 00
It is then immediate from (32) that
(43) JT (8 -8) ~ N0, ot.) q.e.d.

COROLIARY 1. Iterating the estimator in (31) will not alter its

asymptotic properties.
Proof. Obvious from Lemmas 1, 2.

Remark 5. The motivation for the two step alternative considered here
may be seen from (38). It is evident that the asymptotic distribution in

(43) does not depend on the distribution of the "first step’ estimators

of the autoregressive perameters Py’ i=22,...,m.
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This is so since the vector multiplying ~T (;i - pi) in the right

member of (38) venishes asymptotically. It is in order to effectuate

this property that we have defined both ?i end Y%, in terms of the

Y»
-1

fins) form of the system.

The estimator we shall consider in the next section will lack this
simplicity since its distribution will be shown to depend on the prop-

erties of the quantities T (Si - pi) as obtained from the "first stage”.

4. Two and Three Stage Least Squares Variants in the Autoregressive
Errors Case
In this discussion it is useful, but not necessary, in motivating

the estimators to assume, in addition to (A.2), that

(Lk) I N(0,5)

It mey be shown, see e.g., [4], that the log likelihood function

of the observations may be written as

<t

-1,, 7. |V
L ATTAYZl -5 In

(1) AR YW = - = In(2r) - 5 Infa| - 52

.

1

~ A

- L33 m|g| + Z1m|(1-B)" %X(I-B)I-%tr{fl (74 -Z_AR)' (ZA-Z,AR))

In (145) the symbols have a slightly different meaning then was the

case eerlier; in particular, we have put

(46) Y=YB+Y-ICO+WC1+U’ ZA = U

where, of course,
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(k1) Z=}(Y,Y_l,w), A= (I-B, -c(')-ci)v

and the observation corresponding to t =2 18 eliminated from the defin-
jtion of Z in (k7). This observation appears separately es the row z,.
Purther, it is clear that the terms - 5 [ina] + 2, A0™ A"z ] pley
no role in obteining the (asymptotic) properties of the meximum
likelihood (ML) estimators; this is so gince the relative weight of such
terms venishes as T — «.

Tt is shown in [U4] that the three stage least squares (3SLS) enalogue
in tte present model is obtained by minimizing, with respect to the

unkncwn elements of A,

(18) A=trZt (FA-2z_AR)' (ZA-2_)AR)
subject to & prior estimate of Q and R. In the preceding

(’"9) 2 = (T, Y-l’ .W) ’

and Y is the projection of Y on the space spanned by the columns of

Yo Y o W, W g

If A is a prior estimate of A, then the prior estimates of 2

end R are given by

= (G T UL, T E- U-7 K

<14

(50) L%Evﬁ,

Tt is, further, shown in [4] that if we iterate this procedure (with
respect to K, S end R) until it converges then the resulting

esimators have the same asymptotic distribution as the ML estimators of
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A, 5, R. While this is not shown directly, what is shown is that these

two sets of estimators satisfy, asymptotically the seme set of equations.

We specialize these results to the case under consideration, i.e.,
to the case where R 1is diagonal.

Before proceeding to this task it will be useful to introduce a
more convenient notation to overcome the confusion arising from the

many subscripts one has to employ in such situations. Thus, introduce

the selection matrices Sn, Si2’ Si3 such that

(51) Ysi:L = Yi’ Y._:LS:!_2 = iY*_?l WS»:I_3 = Wi’ i=12...,m

Putting
8, 0 O i

(52) 8 = o} 5, O. s S = diag(Si,Sz,...,Sm)
0] 0 813 |

we have that

(53) Z, = 28, zx = (I ® 2)8, 2%, = (I, ® 2_,)8

y = 2%% + u

At sny rate minimizing A of (48) with respect to the unknown elements

of A we find
(5%) [Zx - (R' ® I)2%, 1’ (le 1) [Ix- (K ® 1)za_e1]8

- [2* - (B ® Dzx, )" (e [y-(F & Dy ,]
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where y is a defined in (30) - except that observetions for t =2 are
omitted - and Y1 is obtained by reducing the time subscript of the
elements of y Dby one.

It is clear that the two stage least squares (2sLS) variant of this
estimstor is obtained by neglecting the stochastic dependence of the
system's errors across equations, which means, operationally, thet we

set, in (5L4), =1 1. Thus, substituting for y in (54) we find

(550 8.8 {[B*-(R® Dzx 1 [Zx- (R ® Dzx 1}

[Zx - (R' ® I\Za:l]‘ [u-(R'® I\u_ll

Remark 6. The relations in (54) and (55) show that it is not

necessary to define the ¥ component of 7 as the projection of Y on
the space spanned by the columns of Y-l’ Y_2, W, W-l' This is
necessary only in order to obtain orthogonality between the metrix of
residuals and 2%, and thus justify the transition from (54) to (55).
Tt is interesting that an (asymptotically) equivalent procedure cen be
derived that mekes repeated use of instrumented varisbles estimetors.

To be precise, if Y 1is not obtained by projection then it is necessary

that it be obtained from the relationship

\ ~ _ ~ "~ ‘ ~ ~

(56) Y=Y, F o+ Y F, + WF3 +W_F)

where
o~ -l ~ A~ ~ -l ~ o~ o~ ..l
F, = CO(I-B\ +(I-B)R(I-B) ~, F,= COR(I-B)
~ ~ ~ _1 ~ ~ o~ _l
F3= Cl(I-B) , Fy = clR(I-B)
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The slternative, but asymptotically equivalent procedure is as follows:
Estimate, by instrumental varisbles methods the vectors B-i’ Y.y
i=1,2,...,m using the relations in (6) and thus obtain the estimates
0’ El' Using these estimates we can compute the residual matrix T
and obtain an estimate of R by computing

Gi ), i=1,2,...,m

(57) Py = (2 Ueo1,i uti)/(Z -1,i

This is all that is required to obtain the matrices 'ﬁl, r”"z, ﬁa, F),

and thus Y. The estimator that is (asymptoticelly) equivalent to the

one in (55) is

(58) B

(2% - (R' @ Dzx )" (2o - (F ® D22 117

(Zx - (K ® D)z 1" [y-(R' ® I)y ;]

Note that is not necessary to recompute the ﬁi’ i=1,2,3,4 since

iteration would rely only on (57) and (58) and would not involve (56).

Remark 7. It is shown in [4] that the asymptotic properties of the

estimator in (54) do not depend on eny of the properties of 2 EEXEEQ
consistency: they do, however, depend rather crucially on the estimator
of R. Provided ¥ and R are initially estimated consistently, all

subsequent iterates are shown to be consistent as well.

Remerk 8. The procedure discussed in connection with (58) is the exact
asnalogue, in the autoregressive errors case, of the LIIV estimator given

in Dhrymes [7]; where the estimator is modified to take into account
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the covariance matrix 3, i.e., when it is based on (5L4) rather than

on (&5) then it is the exact analogue of the FIIV estimator, also given
in [7]. One difference ought to be noted, however: while in the absence
of autocorrelsted errors the LIIV and FIIV extimators are asymptotically
equivalent to 2SLS and 3SLS estimators respectively, this is not so
here. The estimator in (58) (and its fullinformation analogue) would

have to be iterated until convergence is obtained. Only the convergent

jterate is asymptotically equivalent to the autoregressive two and

three stage least square estimators.

To establish the asymptotic properties of the estimator in (54)

and (55) we put

(2% - (F' ® D)zx 1" (1@ 1] (2% - (R ® D)z#]

=i+

(59) 65 =
and by slightly expanding (A.3) to read, in the relevant part,

(A.3)" plim% [Zx - (R' ® I)2%, ' (z‘l® I) [Z% - (R' ® I)z,]

T oo

exists as a nonstochastic nonsingular matrix we conclude that

(60) 6(2) = plim & [ - (K' ® Dzx ] (3t 1) [2x- (K ® 1)z, ]

T w0
exists as a nonstochastic nonsingular matrix.
It is then easy to show that the asymptotic distribution of the estimator
in (54) is given by

(61) T (8 -8)

<11 = ' % 1t -1 1 '
gs1sa ~ 16T 2 (2o (R1O D)z, ]' (277 1) {e- [(R-R)'®Ilu,}

where, we remind the reeder,
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_* = ® 7 7z = Y \ Y =
(62) 2 (1m Z)s, Z (Y,Y_l,W » Y=Y F +Y SF, +WF3 +W_F)

the Fi being the probability limits of the quantities ii’ i=12,34
defined in (57)
We now proceed to find the distribution of the limited information

estimator as exhibited in (55). Clearly, this is given by
(63) T (8 -8) ~ ()t A @ -(r @ Dzx ) {e- [(R-R) ® Tlu,} .
2S1SA JT -1 -1

Let Efcf) be the t°* row of Z, =28, 1i=12..m; zs_f) is,

cbviously, the t* row of 2, = 25, 1=1,2,...,m We remind the

resder thet, in this context, t = 3,4,...,T. Iet

I 2l i) i (1) = 2\| = (m
(6’"‘) Z%? ) = Ei. -piz‘(t-i., Z% = diag(z%{ ) ,z%(. "")z?é(. )l)
let
_ ™
€20
(65) plim L [E*-(R' ® I)Z*%_ Ju . =
T =171
~ T »x
| Sm
. 1 ,= ' )
€y being the probebility limit of = (Zi-pi iz-l) Uy similerly,
i, L B}
€20
(66) glim % [z* - (R'®T)2% J'u_y = |
—300
| Som
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(67) E = dieg(Eyqsboprerosbyy) s = dieg(tyystops o s byg) -

and define ¢* to be the matrix in which ¢ 14 is replaced by

1-p.
i .
— 3 T Finally, letting
ii
(68) u¥ = diag(utl,ute, . ’utm)

We see that we may rewrite (63) as

~ T T
(69) NT(5-5) o |2 D el o2 e Dour el + Xt J&(S-B)J
oSISA [JT i SR ¢ |

where O 4s the initial estimator of the structural parameters on the

basis of which we estimate the autoregressive paremeters , 1=212,...,m

i
and G(I) was written, for simplicity, as G. The third term in the
right member of (69), thus, shows quite clearly how the estimator of the
autcregressive parameters affects, in this context, even the asymptotic
properties of the system's (other) structural parameter estimators.

To complete the problem we must obtain an explicit expression for

the and ¢ 44 To this effect define

€41

| (Hé - piI)(I - pin('))‘l(I-B)‘l(I- piR)‘l + (1 -B')'l(I -piR)-l

(70) & = i i _
1 (1-p§) (I-pinc')) 1(I-B) 1(I.pin) 1

where o . is the 1*® corum 3.

We note, then, that



-2h-

(71) €33 =S58, 8417 G4y

Instead of obtaining the distribution of NT (3 'S)ESISA for arbitrary
estimator 5, we obtain the distribution of the converging iterate of
such estimstor.

Asymptotically, this estimator behaves as

T
2 1l
(72) (G -gxt') NT (5 -8) ~= | T (zx-exut ))er
C2SISA JT =3 t t-1""t

Unfortunately, the right member of (72) is not the sum of independent
random vectors. Thus, the Lindeberg-Feller theorem invoked in Section 3
is not applicable here. The random vectors in (72) are dependent; because
of the special character of the autoregression from which this dependence
arises, it is possible to use the results of Mann and Weld [12] to convert
the problem to one involving n-dependent variables. We illustrate this
for the case

T T T

(73) .J_'_ E* 2 u-)t(-_l.e%. = .}.. £* 2 u*n ' + 2 g*Rn 2

t-1"¢-

% -n-15¢-
VT =3 VT =3 JTo 43 oB-

Tt is clear that the second term in the right member of (73) cen be made
arbitrarily small in probability by appropriate6 choice of n, since
its expectation is identicelly zero. Thus, the asymptotic behavior of

the left member of (73) is determined, essentielly, by the first term in

6
To see this, note that for an srbitrary (conformeble) vector of
n 5T ] can be made arbitrarily

o 1 t
constants 0, Var[l/»fT) a'g*R Zt=3 u, €.
smell by proper choice of n; apply, then, Chebyshev's inequality.
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the right member. Evidently, we may epply the same reasoning to both
terms of the right member of (72). This is perfectly feasible since
the (stochastic) components of z¥ may be expressed in terms of the
finel form; the latter, however, represents a rational lag in the
exogenous variables and a rationel lag in the e-process.

Having used this truncation argument in (72) we do, in effect, find
the asymptotic distribution of a random vector which differs from
NT (8 'S)CQSLSA by an arbitrarily smell guentity with probability as
close to unity as desired. This is essentially the meaning of Lemmsa 1
in Marm and Wald [12].

Now, there are many variants of central limit theorems for n-dependent
variebles. If the process is assumed to be Gaussian then, in view of
(A.3), the conditions of Hoeffding-Robbins theorem [11] or [6] will hold7

and thus we conclude that, asymptotically,

T N
. 1 _— )
(74 j_; t§3 (Z§-§*u§_l)€t. N(o, Al + A2 A3)
where
(75) A, = gin:;% [Z* -(R' ® I)Ztl]'(z® 1) [Z* - (R' ® I)Zfl]
2 2 . 2
(L-p)(1-p) o
2 1 'j ! 2 = —.J.l- ~
A = s P ) i’ -— 1,2 ¢ o
(76) 2~ -rij o0 gijgjj‘ Tig s 3 y oo,

7 The Hoeffding-Robbins theorem is usually stated for scalar random
variables; its application to vector random veriables is possible by the
following result, see Dhrymes [3, ch. 3]. Iet {x.:T=12,...} bea
sequence of random vectors and O an arbitrary reél conformeble vector.

It {z P2 = a'xT, T=1,2,...} converges in distribution to N(o'u,0 )
for all redl «, ~then {xT : T = 1,2,...% converges in distribution to a
N(u,3) random vector.
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(77) A3 = [Ui;j(giic’;‘ji + C13§35)|
and

N ' an
(18) gy = M g (Bymey 20) 0,00 = Bgts

the ¢, being as defined in (70)

Tt follows then, immediately that

(79) J:r (g -8)C2$ISA ~ N(O: q)CQSI.SA)
where
(80) Oops1sh = (G-ex¢)™ (A +A2-A3)(G_§§*')‘l

We have therefore proved

LEMMA 3. Consider the linear structurel econometric model as given
in (1), (2) subject to the assumptions (A.1), (A.2), (A.3) and the
additional reqQuirements that the segquence {eé. :t=0, £1, % 2,...}
has finite sixth order ebsolute moments and that

(81) 6 = plim 7 (Z*-(R' @ Dz ' (B - (§' & Tzx ]

T o0

exists as a nonsingular matrix with nonstochastic elements. Then the
converging iterate of the limited information dynamic sutoregressive

(LIDA) estimator as exhibited in (72) has the asymptotic distribution
(82) NT (8 -8) gogrsn ~ MOs Peosisa)

where
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(83) CDCQSLSA = (G'g*c ) (Al + A2"A3) (G'Cg* )

the Ai’

i = 1,2,3 being as defined in (75), (76) and (77) respectively.
COROLLARY 2. The kth (nonconvergent) iterate of the LIDA estimator
does not have the seme asymptotic distribution as the (k +l)8t

(nonc:onvergent) iterate or the convergent iterate T (5-8) CoSISA”
Proof. Obvious from (69)

Remark 9. It is interesting that we can give a two step estimator that
is asymptoticelly equivelent to the C2SLSA estimator, by using a modified
form of the method of scoring [3, ch. 3]. It ought to be noted that

this is a general procedure epplicable to all problems that obtain
estimators by extremising some function. To this effect, note that the

CoSL3A estimator is obtained by minimizing the function
(8k) A = tr(ZA-2_jAR)" (Za -2_,AR)

with respect to the unknown elements in A and R. If we put

(85) % = (8,p*')' ¥ = (91’92""’%)'

then the C2SISA estimator is a consistent root of %%* = 0.
Now, let B* be any consistent estimator of B®* and consider the

estimator

-1
(86) §x = Bx [W (S*)] %ﬁ% (8%)
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Clearly, this estimator can always be obtained given the initial
estimator ®* and is easily recognized as & modified form of the first
jterste involved in the application of the method of scoring.

Now expeand

2
(61 Sh(ow) = S5 (5%) + pehy (B%) (0% - BY)

where |Bwx- Sgl < |&* - _Sgl, 8% being the true value of the vector B%.

Substituting (87) in (86) we obtain

(88) NT (3*-86) = AT (8'*_56)
| 1 BEA (8%) L1 o (5%) + 1 BQA (8%¢) T (B% - B%)
| T 3B%0% :/'; B* 10 T 3B¥30% "0

Given the usual regularity conditions and the fact that, if

plim &% = 8%, then plim 5%* = BY es well, we conclude that, esymptoticelly,

(89) JT (B -8%) ~ - M-t %2? (8%)
where

1 3%
(90) M= plim T W (5')0(')

T -

But the asymptotic distribution of the right member of (89) is that of
the consistent root of the equation -a%% = 0. Since the C2SISA estimator
gives a consistent solution of this equation the (esymptotic) equivelence

claimed sbove is demonstrated.8 Finelly, it should be pointed out that, in

3 A certain uniqueness condition is clearly involved in this claim.
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our dsrivetion in (82) we have given the marginal asymptotic distribution

of the © component of 8%, as the latter is defined in (85).

5. Description and Comparison of Alternetive Estimators

There are s number of limited informetion estimators for problems
gimilar to the one dealt with in this paper. However, no distribution
theory exists except in cases which ere far more restrictive than the
ones considered here. Thus, e.g., Amemiya [1] deals with a model not

conteining lagged endogenous varisbles. We could, if we wished,

specialize our results and compare with what he calls MS2SLS estimators.
In Feir [9] a problem entirely similar to ours is consider but the
distribution theory of his proposed estimators is not adequately
develloped. His search and iterated estimators are similar to the C2SISA
estinator developed in this model, although it is not clear what effect,
if any, the selection of regressors in the first stage might have on
the roperties of the resulting estimators.

It will be helpful before we undertake a comparison to give an

outline of the various procedures considered here.

1. Fair's procedure was outlined at the end of Section 1 and need not

be repeated here.

o. Converging iterate two stage least squares autoregressive (C2S1SA).

First obtain the reduced model

Y = Y_lFl + Y_2F2 + WF3 + W_th + E

and regress Y on Y-l’ Y-E’ W, W_l thus obtaining the projection T,

of Y, on the space spanned by the colums of Y-l’ Y_2, W, W 1
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Obtain by instrumental verisbles (or other) methods en initial consistent

estimate of C., C,, B and using these obtain an initial consistent

17
estimate of Py i=1,2,...,m as indicated in equetion (57). Using
these: estimates (of the pi) estimate O as in (54) (putting S = I).
From the new estimates of B obtain the residual matrix U and

reconpute the py 88 in (57). Using these recompute estimates of 5

as in (54) and continue until convergence is obtained.9

3. "he instrumentel veriables version of the C2SISA estimator'. This 1is
essentially the same as under 2 except that Y is not the projection
of Y on the space spanned by the columns of Y-l’ Y_2, W, W_l. Rather,

given the initial consistent estimates of Co, Cl’ B we compute ? as

Y = Y—lFl + Y_2F2 + WF'3 + W_th

the %i, i=1,2,3,1 being as defined just below equation (56).

This version obteins estimators for & and Py i=1,2,...,m by
jterating, until convergence, equations (57) and (58). Here the initiel
consistent estimate of CO’ Cl’ B serves both in defining ¥ as well

as i1 obtaining the initial estimates of the op,.

4. The modified method of scoring version of C2SLSA estimators.

Here, from an initial consistent estimate of 5 and p*, say g*, we

2

evaluate oA oA at the point 8% and obtain the desired
5% SEwsoX

estimator 8s in equation (86). In the present case A is defined in
(84) and the ¥ component of Z is the projection of Y on Y 1’

Y, W, W

-2’ 1’

9 It should be noted that no theorem has been produced giving the
precise conditions under which convergence will obtain.
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5. VWhen the pi, i=1,2,...,m are known we may operate with the

reduced model
R (Zi- Py iZ-l)B-i +E i=1,2,000,m

treatiing Y~ piy-i,'-l and Zi- pi iz-l as known data. Here,
operating analogously with the 2SLS procedure means that we use the

estinator

[z, -1

B '~ - z - ! = = L ]
i Py iz-l) (Zi pi 1Z-1)] (Zi pi iZ-l) (Y,i piy-i,-l)i 1,2, sm

~

the Yi component of Ei being obtained from the projection of Y on

the space spanned by the columns of Y-l y W.

6. 'The iterated (two-step) instrumental varisbles estimator developed in

Section 2 is obtained as follows: From an initial (instrumental variables)

estimator of CO’ Cl: B compute ? from the final form as indicated in
(13), and the Si as indicated in (57). The estimator is then as

defined in (31) where the Y component of Z* 1is obtained from the

final form, i.e., for the ith structural equation we use the matrix of

~Na

instruments E.’ V.l, the ?
i i i

submatrix of Y, as defined immediately above.

component of Ei being an appropriate

Fair has not explicitiy derived the asymptotic distribution of his
estinator and thus diréct comparison is not possible in this case. On
the other hand we may extend one of Fair's suggestions so that it
becomes the C2SLSA estimator.

The procedures under 2., 3., and 4. are asymptotically equivalent,
provided in the first two we employ an iterative scheme and the iteration

converges.
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Thus, effectively, the comparison is to be carried out with respect
to C2SLSA (item 2), the obvious modification of 2SLS when the auto-
correlation parameters are known (item 5) and the iterated (two-step)
instrumental variables estimator (item 6).

Inspection of the matrices °?[er and °C2SLSA reveals that
comparison in terms of the estimators of all the parameters of the model
is rather cumbersome. Thus, we confine ourselves to & comparison of the

marginal asymptotic distribution of the parameters of, say the ith

gtructural equation.
Extracting the appropriate submatrix from (83) we find

~ N(O, ©

(91) V1 (5.4 1)

8':i.)C2SLSA

-1
(92) 0.5 = 055 (Cgy = &1 84)

where Gii is the ith block diagonal element of G.

Examining now the iterated instrumental variables estimator of

Section 3 we see that the (marginal) asymptotic distribution of

10
“/:f (E i -5, IIV is normal with covariance matrix
- _ _ _ 1
(Z, - p; s2_)' (2, -0, ;Z5)
(93) o¥, = plim [ i ii-1 i i i7-1
11l T
Tow

Here, however, Zi = (Yi’ inl’ Wi) and Yi’ inl are obtained from

0 Strictly speaking this is not the expression given in Section 3;
it differs from the former only in exclud:.ng from Y observations
corresponding to t = 2 and from ‘observations cor;'esponding to
t = 1. (learly, in a limiting con%ex% this is of no consequence.



the systematic part of the final form.

We observe that @ is defined by

11
- t (T -
T—m
where now
(95) zy = (Y Y&, W)y 420 = (Y g0 Yo Wy )

and the rows of -Y-i as given in (95) consist of subvectors of
(96) y.. =V Ty + W, +u . R(1- B)-l
t t-1- Hl

By contrast, Ei as it appears in (95) differs from the quantity defined

in (93); the difference is twofold. First the Y

1 component of the

former consists of subvectors of
- -1 .
(97) Y.E.:(I'HC')L) H]'.wt" t=1,2,...

and second, the Y:%.L% component of the former consists of subvectors of

(98) ;‘é-l' = (I- H(SL)- ] ’b-l'

In both cases the parameters ]IO R 1'5_ have been estimated consistently

by instrumental variasble or other methods. Consequently

[ ugg.
(99) 6y = “”{;l + 59 Plim% VEL . | [y VB Vo ] | Q'S
T —oo t=3
| E-e- |
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where
—(I-B')-l R' (T-p; I) O |
(100" Q= 0 I -, I
0 0 0

and vg_l, is the row vector of final form disturbances for the system
as a whole.

We observe (see for exsmple the arguments given in Dhrymes [s1)
that the sum whose probaebility limit it taken in (99) convergés to its
limi: with probability one as well; thus, the probability limit in
question may be determined as the expectation of the matrix under the
summation sign. Denote this probability limit by N. Comparing with

(66) and using the Schwarz inequality for integrals we conclude
(101) 5761848y <5 Q" 5,044

in the sense that the difference of the two matrices is negative semi-~
definite. Thus,
2
1 o Leeg

(102) Gyg - &¥384y - Oy =8 eNQT S - o1t

8'8s 658

which is positive semidefinite by (101). Consequently

| o
(102) o = (6 - &fy Liy) T 20

which shows the relative (marginal) asymptotic efficiency of the C2SLSA



estimator relative to the IIV estimator examined earlier.
Finally, it is easy to show that if Py is known then operating
with the reduced model

(10%) Vo " P¥ag,1 (B TPy gZpey ey

and epplying the usual 2SLS procedure the asymptotic distribution of the

resulting estimator is given by

\ & - ~ "l
(105} VI (8. = 8.4)g p, 7 MOr 0yGyy)
Since

, -1

> - >
(106) Gy 2Gpy - &85 2O

we conclude that the relative (marginal ) asymptotic efficiency rankings
are as follows: the estimator in (105) is asymptotically efficient relative
to the C2SLSA and the latter is asymptotically efficient relative to the
IIV estimator.

The substance of our results may be summarized in

THEOREM. Consider the linear structural econometric model exhibited
in (46), its error process obeying (2), and subject to assumptions (A.1),

(A.2), (A.3), (A.3)' and the usual identifiability conditions. Then

i. The iterated (two step) instrumental variables estimator in
(31) is consistent and its asymptotic distribution is given
in (36). Moreover, iterating this estimator further will

not alter its asymptotic properties.



ii. It the autocorrelation parameters Py i=1,2,...,m are
known then applying the usual 2SLS procedure to the reduced
model in (104) yields an estimator which is consistent and
has the asymptotic distribution given in (105)

iii. If an initial consistent estimator of the structural parameters
is used to obtain the estimatar in (55) then all successive
iterates are consistent. Successive iterates have, generally,
different asymptotic distributions. The asymptotic distribution
of the converging iterate (C2SLSA), - if one exists - is givenby (82).

iv. The instrumental variables version of the convergent iterate
two stage least squares autoregressive (c2sLSA) estimator and
the modified method of scoring version (item 3 and L) are,
asymptotically, equivalent to C2SLSA.

v. Employing the criterion of marginal (relative asymptotic
efficiency the estimator in ii. dominates thos in i and iii.;

the converging iterate of iii. dominates the estimator in i.

Remark 10. It is conjectured that the (k+l)St iterate of the estimator

in ii. is, asymptotically, efficient relative to the kth iterate.
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