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I. Introduction

In recent years there has been a revivel of interest in stochastic eco-~
nomic models whose basic variebles are unobservable and must consequentiy be

estimated by the economic agent as part of the optimizing pi'ocess.1 Friedman's

well-known "permenent income" hypothesis of consumption behavior is a notable
example. M. Nerlove [ 7] and L. Taylor [ 8§ ] have successfuly used such models

to obtain conditions yielding estimators for the unobserved variables in the forr

of a distributed lag function of past observations. Estimators with this properl

have been widely used in econometric work, making it a matter af some importanca
that a solid theoretical underpinning should be estsblished.

' My goals here are less specific than the derivation of the distributed lag
function as an optimal estimator. Vhile I shall use an economic model much like
those of Nerlove and Taylor in that it is characterised by unobserved variables -
to be called states of the world - I intend to study its properties with the

aid of the apparatus of decision-theory and information theory. ‘Thenks to the
work of Blackwell and Girshick [1 ], Marschak [ 5 ] and Merschak and Miyasewa [6
there exist powerful theorems that can be applied for this purpose. It is

worth mentioning here that one property of interest, the obsolescence of
information, suggests why estimation by means of distributed lags with declining
weights might be optimal in our framework.

The plan of the paper is as follows. Section II contains an example of the
kind of economic situation that the model describes and lists some of its
attractive features. The next section is devoted to a study of conditions
related to the obsolescence of information. In section IV we present a simulatic
# I have had many extremely helpful discussions with my colleague Joseph
Ostroy on the topics of this paper, but remain responsible for the views express:

Mr. Rakesh Sarin has provided me with valuable research assistance in connectlon
with the simulation studies reported on in sections IV and V.

1Marschak [ 4] has emphasized that the 2-step procedure of first estimating
the parameter of interest and then taking an action based on this estimate is
generally incorrect.
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of the working of the model for a simple case with two states of the world and
two observations. The problem investigated by means of this example is that of
the number of periods it tekes a decision-maker on the average to realise that
thé state of the world has changed. Section V discusses the long-run properties
of‘ the model and (section VI the formation of expectations. Our findings are

sumnmarised in section VII.
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IT The Model and Its Scope

Let us conmsider the example of a seller of some good who must determine
the demand curve facing him in the current period. He has & series of past
observations of prices and quantities sold, which he can - and will - use in
gome way to obtain an estimate of the amounts that he will be able to sell at
different prices today. However there are two reasons wﬁy he does not know
whether in fact the past observations have all come from the same demand curve.
Firstly, the demand curve in any period may be one of several, depending upon
what actions competitors have taken, the incomes of buyers, changes in tastes,
cte. Although he can guess at the degree to which these forces have been
operating, he does not know their effects with full certainty, Secondly,
observations will not lie on the demand curve that generates fhem because of
transient factors., Calling the various possible demand curves states of the
world, we assume that the process genexating them is a First-order Markov=
process, known to the decision-maker, This means that the conditional prcba-
bility of a particular state oceurring in period t, givén'that some state
occurred in period t-1, is independent of states occurring before t-1, The
decision~maker also knows, we assume, the conditional probability distribution
of observations, given the state of the world. The knowledge of these
probability distributions, together with the history of past obsexrvations,
is all he has to go by. |

We hasten to remark that this model is very broad in scope and c&n be
applied to a variety of problems. A second set of examples is obtained when
states of the world are interpreted as equilibrium exchange rates (or prices
of any sort) and the observations are the current surpluses in the balance of

payments of & country (or number of unfilled orders). The model will be
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applicable in all situations in which it is desirable to distinguish the

effects on observations of changes ;g_the_underlzing economic structure from

the effects due to trensient factors. This distinguishes it from the models

used to analyse inventory problems, problems of determining optimal internationsa
reserves- etc., where the underlying econcmic structure is assumed to remain
unchanged. Thus in all the literature on optimal international reserves the
assuxmption is made that the equilibrium exchange rates do not change over the
entire time-intervael being considered, with all changes in the balance=of=
payments surplus ascribed to random factors.

Attractive features of the model outlined above ere:
(1) It presents a picture of the world that is more realistic thaen the alter-
natives used hitherto. The world as an economic decision-maker sees it is in
s constant rtate of flux, where the past is an unrelistle guide to the present,'
but is used because it 1s the only gﬁide availsble. On the othef.hand, the
world is not pure anarchy. Our assumption that the stochastic process is &
Markov process is intended to capture scme elements of stability of the under-
lying structure..
{ii) It allows the decision-meker to form expectations about the future that
are much less rigid than a straightforward extrapolation of past observations
would be. These expectations will be affected by past observations in &
manner that depends on the trensition probebilities.
(iii) Related to (1) above, the model suggests that the standard practice in
econcmic theory of separating the analysis of equilibrium from thet of the
stability of this equilibrium is quite misleading. There is no such thing

as static, deterministic equilibrium; instead we have & geries of processes
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that never settle down. Furthermore, the distinction between short-run and
long-run reactions disappears. This is & desirable result, for there is no
way in fact through which & decision-maker can immediately distinguish
short-run changes from long-run changes.
(iv) Work done by Cyert and deGroot on the use of the Bayesiaen approach to
duopoly theory is very similar in spirit to our model .and suggests that it may
be unnecessary to construct models on an ad hoc basis for the "investigation
of different problems in economic theory.

To summarise, the model is designed to study the adaptive behavior of
economic units as they respond to changes in the stochastic environment.
Both time and uncertainty are accorded paramount importance in this ‘vision'

of the operations of en economic system.



III. The Obsolestence ‘of Information™
-Notation

zi(t) (i=1,....,m) indicates the i'th state of the world in period t.

xj(t) (j = l,....nf indicates the j'th observation in per}od t.

Yk(t.B) (k =1l,.0..,(t-B)n) is the k'th member of the set of sequences of
observations from the periods B,....,t-l, where B is a positive
integer < t.

P(t) is the m x m lMarkov transition matrix with elements p., (t) =
p(zk(t-l-l)lzi(t)) i,k = 1,....,m, where p( ) refers to the
probability of the event in parenthesis.

Q(t) is the m x n Markov matrix with elements qij(t) = p(xj(t)lzi(t)).

ai(t) is the i'th action available in period t (i = 1,....,i5.

P, is an m-component vector giving the a priori probability for the various
states of the world in the;initial period.

T(t) is an lgx n payoff matrix whose elements Tij(t) show the payoff to
the decision-maker in period t when action a, is taken and observation
x:i is made.

& is the discount factor per time period (0<a<l).

J(t,tl) is an n x n Markov matrix whose elements jij(t,tl) =

p(xj(tl)lp(xi(t)), vhere tl is any positive inteéer # t.

Assumptions

2l. The action in any period t must be taken before the observation
xj(t) is available, although all past observations are known. The

gtates of the world are never known.
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A2. The matrix P(t) is constant over time and vritten as P. P is
non-singular.
A3. The matrices Q(t) and T(t) are constant over time and indicated by
Q and T respectively.
Al. The renk of Q is min (m,n).
A5. The conditional probabilities xalzi aré independent of the

actions taken in any period, as well as past observations and states
of the world.

26. The decision-maker maximizes the discounted sum of the expected
value of the payoffs over all periods. Symbolically, his objective
function is

+00 ﬁb &

n
5 £ a't,,(t)p(y (t,0)]x,(t))plx,(£)),
0 yel gm1 | MU Xy !

where by convention p(yk(O,O)IxJ(O)) =1 forvall KoJe

We turn now to some elementary implications of the above definitions
and assumpticns.

1. The g priori probebility vector for the staes of the world
in period t = poPt.

2. The a priori probability vector for the observations in period
t o= POPtQ-
A7. The vector popt is strictly positive for all t.

3. The vector poPtQ 1s positive for all t. {From AT and AL.)

4. Because of A5 and the assumption that the zl(t) are a first-order
Markov process the maxinization of the objective function can be broken
down into a series of independent maximizetions, one for each period.

In all that follows we shall accordingly focus on the decision to be made

in some specific period alone.



Consider the situation facing our decision-maker in period t. He has a
series of past observations yk(t,O) and in addition knows the a priori proba-
bilities of observations in the current period. He will use the past observa-
tions to revise these prior probabilities in Bayesian fashion, and make his
decision with the aid of the revised probability vector. Knowing the transition
matrix P, he could also use the past observations to generate a revised
probability distribution for observations in future pexiods, a topic we shall
disucss in the next section. At the moment we are interested in the value of
the information provided by the past set of observations.

Let us commence with the simplest case, where there is only one past
observation xj(S). Since the decision~maker's current payoff depends only on
ai(t) and xj(t), the matrix J(t,B) will determine the value of an observation
from the period B. For instance, if this matrix should happen to equal I,
the unit matrix, or a permutation thereof, there is perfect information and
all other observations are unnecessary. At the other extreme is the case
where all rows of J(t,8) are identical.(l)

Now p(xj(s)lxi(t>> = plx,(B), x, (£))/p(x, ()

3
= §E plz (B), 2.(0) pla (8|2 (B)) px (8) ]z (£))/plx; (6))

= II p(z (B)) p(zs(t)lzr(B)) p(xj(B)lzr(B)) p(xi(tylzs(t))/p(xi(t>>.

The numerator of this last expression is, for fixed value of L and j, a
quadratic form in the variables p(zr(B)) p(xj(B)lzr(B)) and p(xi(t)lzs(t),
where ¥ and 8 = 1,....,m. It can consequently be expressed as the i,j'th

element of a certain matrix, which is the product of three matrices. Without

Dsee 151, pp. 199, 200.



presenting the derivation we proceed immediately to write the product matrix,

which is

o' Py re_reg,

where PO(B)* is the m x m diagonal matrix whose main diagonal is the Vector

B

poP , and the primes indicate the transposes of the corresponding matrices.
p(xi(t)) igs of course the i'th component of the vector poPtQ. Let
Qo(t)* denote the n x n diagonal matrix whose main diagonal is this vector.

(Qo(t)*)-l exists by A7. Then it can be verified that the matrix whose i,j'th

element is p(xj(B)lxi(t))u

B

J(t,B) = (Qo(t)*)'lg'(Pt' )'PO(B)*Q. Bml,eeee,t=1 (1)

The process of deriving the elements of the matrix J(t,Y). where ¥ is any

positive integer >t,is similar and yields

1

Ik = (Q (0% Q'po(t)*pY‘tQ, Y o= t+l,.... (2)

Suppose we wish to compare the value of an observation from period Bl
with one from some preceding period 52, where 62 < 81. The two matrices of
conditional probabilities,

J(t,BI) = A(t)Po(Bl) *Q, (3

81-82
o = [ *
and J(t,Bz) Alt) (P ) 90(82) Q, (4)

t-B

where aA(t) = (Qo(t)*)-lQ'(P .

The expected value to the decision-maker of an observation from any
past period B,

v(t,B) = max §§Tij“‘" p(xk(mlp(xj(t)) p(xj(t)). (5)

How does v(t,Bl) compare with v(t,Bz)? It iz known that} for all payoff

1

matrices T,

V(tcBl) 2_ V(toszl ' (6)
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if and only if
J(t,B,) = J(&,B, )M, A (7
where Ml is some n x n Markov matrix.(l)
From (3) and (4), it is sufficient for (7) that for some Markov matrix Ml,
8,6 © o
(P"1 2)'P°(32)*Q Po(Bl)*QMla
_or BQ = QM , where B = P_(B >*)'1(951‘82)'P (8.)*
1’ ol o2 "’

1

Note that (PO(BI)*)- exists because of A7

Lemma 1

B is a Markov matrix, i.e., ité elements bij >0 (i,j, = l....,m), and
Bu = u, where u is the m~-component vector (l,....}l).
Proof: It is clear that B, the product of three non-negative matrices, is
non-negative.

_ Now uPo(Bz)* = poPBZ.

. Therefore uPo(Sz)*PBl-BZ = poPB2PBI-BZ ‘lPOPB

g

l= uPo(Bl)*.

1

B2 ()M = u.

Therefore uPO(Sz)*P 1
Taking transposes, we obtain immediately
@ 80 P12 2 (B )% = u
Let a = {q]éwiqi = g}, where w, > 0 and qi is the i‘;h.column of Q.
We are now ready to state
Theorem 1

Let n > m. A necessary condition that the value of information from

period Bl should be not less than the value of information from an earliex

(l)See {1], p. 328 (Theorem 12.2.2), or [ ], p. 152 (Theorem 8.1).



period Bz, where 62 < Bl’ is: qu €gQ for all i (i=l,....,n).
Proof: Since n > m and the rank of P is m, it follows from A4 that the rank of
the matrix A(t) in (4) is m. J(t,Bz) = J(t,Bl)Ml therefore implies that

QMl = BQ, where M, is an n x n Markov matrix. Take the i'th column of BQ, Bq}.

1

This eguals lel, where m i

1 is the i'th column of Ml' Since m i 20,

1
Bg" € Q (i=1,....,n).

Theorem‘g‘

Let n < m. Then a sufficient condition that the value of information from
period Bl should be not less than the value of information from an earlier
period 32, where B2 < Bl’ is: qu € a for all i (i=l,....,n).

Proof: Since the rank of Q is n by A4, there exists an n X m matrix Q+ such
that Q+Q = I, Q+ = (Q'Q)_lQ'. Also Q+um = Q+Quh = Iun = U where u (um) is
the n-component (mrcomponént) vector (l,....1l) and we have used the fact that
Qun = um, since Q is a Markov matrix. Now there exists by assumption a non=
negative n x n matrix M, such that QM.l = BQ, Also BQun = Bum =u. Therefore

1
+ -+ +_ + -
Q BQun = 0 u, " u - But Q pQun-nQ QM.lun IM.u . Therefore M.u = un and M1

ln in

is the required Markov matrix that satisfies QMl = BQ and it follows easily
tha; J(t,Bz) = J(t,Bl)Ml.

From Theorems 1 and 2 we obtain immediately
Theorem 3

Let m = n. Then a necessary and sufficient condition that the value of
information from period Bl should be not less than that from an earlierx period
B, is: Bt €Q forall i (i = l,....,m.

Suppose we wished to compare the.Markov matrices whose i,j'th elements are
p(x {8 )lz (t)) and p(xj(B )Iz (t)) for the value of the information they pro-

t
vide. The two matrices, it can be easily shown, ‘are ®, () *) l Bl)'P (8 )*Q

and (Po(t)*)-l(Pt-BZ)'PO(BZ)*Q respectively, and we shall indicate them by
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K(t,Bl) and K(t,Sz). The proof of the following theorem is omitted because it
parallels that of Theorems 1 and 2.

Theorem g

-
g

(i) A necessary condition that K(t,Bz) = K(t,Bl)M2 for some n x n Markov

s ~
matrix M2 is: Bql €Q for all i {i=l,e0es,n).

(ii) This condition is sufficient if n < m.

t-B8;

We proceed now to the general case. Let L(t,Bl) be then xn Markov

matrix whose i,j'th element is p(yj(t,Bl)lxi(T)), where yj(t,Bl), to repeat, is -

a particular member of tﬁe set consisting of all possible sequences of observa-
tions from the preceding t-Bl periods. Let §j(81,82) represent the j'th member
from the set consisting of past obSerVationsﬂfrom the preceding t—Bl-l periods

plus the -observation from the Bz'th period, where 32 < Bl' §j(61.32) is thus

obtained from yj(t,Bl) by replacing the Bl'th observation by the Bz'th one.

t-B1

Let L(t,Bl,Bz) be the n xn -Markov matrix whose i,j'th element is

p(yj(Bl,Bz)!xi(t)).

Lemma 2

If K(t,Bz) = K(t,Bl)M2 for some Markov matrix M., then K(Bo,Bz) = K(Bo’Bl)Mz'

(> < €,
where Bl < Bo t

- . -1, _t~8,, -1, t=-B_ .,
Proof: By assumption (Po(t)*) (p 9) Po(Bz)*Q = (Po(t)*) ® "1 Po(Bl)*QM2°

t-B

Premultiplying both sides by the matrix (PO(BO)*)-l((P-l) o) 'Po(t)* we

obtain (P°<B°)*)fl(pBo'Bz>'Po(Bz)*Q = (PO(BO)*)flcpso'Bl)'Po(Bl)*QMZ.
Theorem S :
If'K(t,Bz) = K(t,Bl)M2 for some Markov matrix MZ' then

(i) J(t.sz) = J(t.Bl)Mz. and

(ii) L(t,Bl,Bz) - L(t,Bl)M3 for some n x nt—Bx Markov matrix M3.

. B
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Proof:

(i) By assumption

-1, t-B.., - ~1,.t8.,,
(B (t)*) “(P~ "2)'P (B )*Q = (P_(t)%) (P~ "1) P (B,)*oM,.

Premultiplying both sides by the n x m Matrix (Qo(t)*)-lQ'Po(t)* we
obtain the desired result.

(ii) The i,j'th elements of L(t,sl,Bz) and L(t,Bl) are

p(ij (8,), x5s +.1(Bl+1),---.. xjt_ltt-nlxi(tn and
2 1
p(ij (81),...., xjt-l(t-l)lxi(t)) respectively.
1
New  plx. (B, x, (B.#1) eee.s x,  (t=1)|x, (£))
Jg 2" Tig gy v Je-1 1
2 1
= p(x, (B), x, (B,+#1) ,.e.e, x, (t-1), x_ (t))/p(x, (t))
Jg, 27 g b 31 1 1
2 1
= {L I oo I pltx, (B, x (B,+1) peeees x,  (t=1), x (¥)]
r, ¢ r 3 2 3 1 . R P i
L 8, "B+l t 8, | B, +1 : _ t-1
z_ (B, = (B.41) yreee, 2_ ()}
rBZ P4 r81+l 1 ‘ ' rt B

X plz (B), = (B,+1) yeeve,s = (t))] / pix, (%)

rB 2 rB 1 1" . rt i
2 1

- I I el p(x. Bzl (B.)) pix, (B.+1) |z

[.rsz rBl+l r, 332 2 re2 2 JBl+l 1 r8 +1

1
p(xi(t)!zrt(t)) p(zrfs (B, z,

(Bl+l))...i

(Bl+l)' es e

2 Bl+l

zrt(t))'\ /pixigtn

= |3 I eeeeI plx, (B ]z (B))) pix
\ rsz r81+lv rt 362 _2 rB 2

2
cepix (v) ]z () plz, (B.)]=z (8.+1)) plz (B.+1) |
i rt b o 2 rB +1 1 rBl+l 1l

B2 1

z (B, +2))....plz,  (t-1) ]z (v‘t)) plz, (t)f[/ p(x, (1)

rBl+;z | -1 t t

(Bl+})];r' (B +1)....

8.+1

3
Bl+l 1
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= | I ceel_ plx, B}z (8.+1) Mp(x, (B.+1) |z (8 ;l))-c-o
r r 3 2" %r 1 5 1 x
B,*1 t B, B+ B *1 B +1 1
co.p(x, (B)|z_ (£)) p(z (B,+1) |z (B,+2)) ... plz_ (£))}
E A r81+1 1 rs +2 1 z,.
. 1
/ p]xi(t))

Now, from Lemma 2

plx, Bz,  (B+1)) =2 px, (B))|z, (By+i)im o

62 Bl+1 Bl+l

where mkj is the klj'th element of the matrix Mz. Therefore, substituting in
the last but one expression for p(xj (Bz)l.zr (Bl+l)),'ﬁe obtain

32 31+l

P(x. (8 )' x. (B +l)'o.-o' x
3 2 3 Tl
8 By+i
z ceel Iopx (B2
L.r61+l rt k xk 1l Y
%
xr

(t-1) | x (t))
jt‘l l b 8

(8,+1)m, . { }|/p(x (¥)
B *1 1 kg e

oo D I plx (B)|z_ (B, plz_ (B)]z (B,+L)m {
8, r, k %P1 % 1 78 1 % 41 1w

'

/ p(xi(t))

T {p(x (B,), x
kPP jBl+1

(By#1) suenes xjt-l(t~1)]xi(t)hnkj

. A
Therefore, if the columns of the matrices L(t,Bl) and L(t,Bl,Bz) are

arranged so that each set of n columns contains in numerical order the set of n

observations from periods Bl and Bz respectively, the matzix M3 has the form

M2° 68 ve 0

0 'I'Izhtol. o .

c 0 M

2

with nt'Bl'lmz matrices along the principal di;gonal and null matrices else-
where. Since,M2 is a Markov matrix, M3 will clearly be a Markov matrix as

well.

g e s
e B .

LT AT .
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From Theorems 4 and 5 we obtain immediately
Theorem 6

Let n < mand que 5,, i=1,....500

Then L{t,B81,82) = L(t,B;)M3 for socme Markov matrix M3'

Theorem 6 provides a sufficient condition that the value of the observation:
from the préceding t - Bi periods should be not less than that from the
preceding t - B1 - 1 periods plus the observation from period 82, where
Ba < Bl. This condition jnvolves the matrices Q and B, the latter being
(Po(Bx)*)_l(PBI-Ba)'Po(Bz)*. Since B (besides depending on P) depends not
Just on the difference B -Bz but on B1 and B2, it is desirable to have a
condition free of the latter dependence.

We first note that, if J(t‘.,Bx)MBl for every B1 < t, then J{(t,B2) = J(t,81)M
i’of scme MAi-ko’v matrii M for any RB2<B1, & result implicit in the transitivity
of the ordering by value of information. Thus it suffices to look at B for
B2 = B1 - 1, i.e. (PO(Bx)*)'lP'PO(Bx - 1)*%, If (P _(81)%) = P_(B1-1)*, &
condition that will obtain for Markov processes whose limiting probabilities
exist when t is large, the elements on the principal diagonal of B will be
. approximately equal to those on the principal diegonal of P. Now let
B = AL + (1-A)C, where O<A< 1 end C is any m X m Markov matrix all of whose
rows are eq_t:ua.l.l Then BQ = AIQ + (1-A)BC = AQ + (1-A)D, where D is a Markov
matrix with the same property as C. Thus the columns of D are scalar multiples
of the vector u = (1,...,1). But u € a because Qu_ = U 3 therefore the
columns of D, and hence those of (l-A)Dea. Thus que(s, for all i. Taking A
now close to 1, wve find that B.is a matrix with elements on the principal

diagonal close to 1. Since these elements are approximately equal to elements

s

‘bll b12
1. It is easy to show that any 2x2 matrix B={, " 4 | can be written

N 21 2.2—!

in this form provided b].l) b21 and b22> bla'



16
on the principal diagonal of P, we have a condition on the latter matrix,
viz. Piiszl - 61 (6§ small), i=1,...,m, that should ensure that BqéeQ. i=l,..,n,

independently of Q. In terms of our model, this condition means that the

stochastic process governing the movement from one state to another is stable,
the probability being high that the environment will stay in the seme state
from one period to the next.

It is also clear that; for n = m, the condition quea (1 =1i,0..o0)
is likely to hold for Q=1 in@ependently of B,_since it is trivielly satisfied in
the limiting case where @ = I. Indeed, ip this limiting case the only
observation of value is that from the preceding period, for it serves to
identify with probebility 1 the state prevailing in that period. Any knoﬁledge
of states prevéiling in eerlier periods is of course redundant because of the
Markov property of the stochastic processlgoverning gtates of the world.

What is the significance of this obsolescehce of information? As we
mentioned at the outset, it suggests that the weights attached to different
observations for the purpose of taking todey's action will decline, the
farther back from the past they come. Care must bé taken iﬁ interpreting
this statement, for it is not trﬁe for any individual decision-maker. The
concept of the value of information applies to an entire information structure -
hence we are asserting that thé phenomenon of declining weights will occur for
the average individual. This is to be contrasted with the Nerlove-Taylor
approach, where the goal is to obtain estimates in the form of distributed lags

for each individual.l

1. Because of their more stringent requirements, both Nerlove and Taylor
placed restrictions on their peyoff functions. In Nerlove's case this function
took the form of minimising the mean-square-error. Taylor used & payoff
function quadratic in the action and state varisbles. On the other hand
Taylor allowed the payoff in each period to depend not Just on the action of
that period but om all actions taken in the past as well.
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IV. Lags in Adjustment to Changes in the Environment

We study in this section the case where n=m=2 and the matrix

P l-p~1 1

1 TPy
| o 1_‘ |

State 2 is thus an absorbing state. We shall assume that the system has i

P =

moved to state 2 in period 1 and that it was known by every individual

that the system was in state 1 prior to that. Thus the prior subjective prob-
ability for state 1 in period 1 is P for each individual. The question of‘ !
interest is how long it teakes the averege individual to learn that the change

has occurred, and how this depends on the matrix Q. It is to be expected that

it will norma;ly take a few periods before the revised probability for state 1

will have dropped to & reasonably low level (say .10) and that the grea£er.

the value of the information structure Q the shorter will be this lag.

jr—— b o—— —y

8 .2 P
and Q, = | |
1.9 3.7

——-t —— ——

For our example we pub

pl='9’ Ql=

It is easily verified that Q2 is less informative than Ql, i.e., that Q2=Qfﬂ
for some Markov matrix M. With each of these information matrices the model
was simulated for 20 runs, the length of & run being 20 periods. The results
were as follows. |

For each run a sequence of revised probabiiities was obtained. The average
of these revised probabilities in each period was then eelculated. With the
information structure of Q1 the average revised probabilities for state 1 in
periods 2, 3, 4 and 5, given the observations from the preceding periods, were
.63, .27, .14 and .065 respectively. The average individual had revised his

probability to below .10 after Just three observations. The corresponding
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probebilities with Q, were .78, .63, .58 and .Uk, (For period 11 it was still
as high as .19) When no observations are used at all the sequence of |
probabilities is of course (.9)2 = .81, (.9)3 = .73, (.9)" = .66 and (.9)° =
:59.

The chief point we are trying to make by means of this simple example
is that the introduction of uncertainty into models of economic behavior is

sufficient to justify the use of lags even when large numbers of participants

are involved. When there has been a change in the state of the system, it takes

a few periods before this change is discerned by the average individual. The
length of this lapse will be determined by the information pattern available to

individuals.

V. Long-run Properties of the lodel

' We look in this section at the long-run behavior of the revised
probability vector for states in period t when t is large. The i'th conmponent
of this vector (when the J'th sequence of observations from the preceding
t-1 periods has occurred) is p(zl(t)]yJ(t,l)), i=1,..m3 4= l,...,nt-l.

We assume that the process described by the transition matrix P is ergodic
and irreducible, so that lim poPt = p¥ independently of Py Because of this,
the dependence of the rev;::a probability vector, which shall be indicated by
pr(z(t)), on p, Will cleerly diminish as t increases. The question of interest
is whether lim pr(z(t)) exists under these circumstances.

It is Z::& to‘see that‘the answer is generally in the negative. Assume
that n=m and put Q = I, the identity matrix. Then for any t the state in
period t-1 is known exactly by every individual. It follows that pr(z(t)) =

eiP, if the system was in stete i in period t-l, where el'is the i'th unit
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vector. If p* contains more than one positive component, the system m.ll
switch from one state to another and pr(z(t)) will fluctuate accordingly.
More specifically, for large t pr(z(t)) will equal e,P with probability p, .
This is true for each individual and hence also h;)lds for the average indivi-
dual.

It appears that the behavior of pr(z(t)) for large t will depend on the
information matrix Q and one is tempted to conjecture thaf the fluctuations will
be smaller in amplitude as the value of Q decreases, since it is clear that
lim ér( z(t)) = p* if Q has zero infbrma.f;ion value. For the case where only one
1c-;‘;.ls'(ieorva:t‘.ion is used the above conJecﬁure is easily validated. It was mentioned
in section III that the matrix K(t,B1), whose i,J'th element is p(xj(61) ]zi(t)),r-
(Po(t)*)-l(Pt-Sx)'Po(Bl)*Q- Let us take two information matrices Q, and Q, such
that Q2 = QJ.M for some Markov matrix M. It follows easily that K(t,61)Q2 =
K(t,B1)Q1M. where the subscript denotes the specific information matrix used to
obtain K(tﬁ;). ‘Let N(t,Bx)Q be the nxm matrix whose 1i,j'th element is
p(zi(t){xJ(Bl), i=i’,...n; J=1,...,m, where Q represents the information 'matrix.‘
Then it follows from a theorem proved by Marschak and Miyasawa ([6], Th. 8.2,

p. 154) that N(t,B8: )Q , vhere M* is some nxn Markov matrix.

Q
2 1 :
Since the rows of N(t,Bx)Q give the revised probabilities, this implies that

= I‘d*m(t 931)

the revised probabilities obtained with informat_ion étructure Q2 are convex
linear combinations of those obtained with Ql Thus the set of revised prob-
ability vectors obtained with Q2 in any period is & subset of that obtained
with Ql for f.he same period. This means that the amplitude of the fluctuations
of the revised probability vector will be greater as the value of the informa-

tion matrix increases.
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We conjecture that this result is also valid in the general case, where all
past observations are used. To gain an idea of the extent of the fluctuations

the model was simulated for 100 periddé with the following matrices:

- — —
P P N P
P= i3 = R = .

In each case the system started in state 2. When Q1 was used, the revised
probability of state 1 fluctuated between .783 and .354 On the other hand,
the fluctuations ranéed between .716 and 471 vhen Q2 was used. THote that
p¥ = {.6,.4) and that therefore, were Q equal to I, the revised probability would
be .8 roughly 60% of the time and .3 the remaining 40% of the time.

What are the implications of this result? The most important one appears
to be the following. If the action of a decision-maker is period t depends on
pr(z(t)) alone, as would be the case with the assumption about the payoff
matrix made in section III, one would expect more frequent chenges in the
optimal action as the matrix Q becomes more informative, not merely for the
individual decision-maker, but also for the group &s a whole. To put the matter
in & form that maekes it seem perfectly reasonable, economic responses will tend
to follow fluctuations in the underlying structure more closely if the pattern
of inférmation available to decision-makers is good and will remain more or less
constant in the opposite case. An interesting possibility emerges as a corollary:
if a public agency attempts to improve the flow of information to decision-
makers, this might‘hawe the unexﬁected effect of increasing the fluctuations

of the economic variables that the latter control!l

1. Of course our model presupposes that the enviromment itself is subJect to
shifts. Also to be stressed is the hidden assumption that the Markov process
described by the matrix P is unaffected by the actions of the individuals
involved. In a full-fledged general equilibrium model P itself would be
endogenous.
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—
v! The Formation of Expectations

We turn now to the xrevision of the probability distribution of observa-
tions in future periods as a result of past and current observations. The
theorems here are essentially 51m11ar to those of the preeeding sectionmand we
shall therefore dispense with proofs in general. If K(t,Y) is themxn
Markov matrix whose i,j'th element is p(xj {Y) lzi(t))', where 'Y > £, then

K(t,y) = BV °Q, Y m tHl, t+2, ceeeo
Similar to Theorem 4 is
‘Theoxem ;3_

Let Yz > ’Yl > t.

(i) A necessary condition that K(t,‘yz) - K(t:,yl)M4 for some Markov matrix
M4 is: - .

2 Y1 e g for all i = L,eeees D)o
(ii) IfEn<m, a sufficient condition that
K(t,Yz) - K(t,Yl) for some Markov matrix M4 is: Pqi € a for all i.

Let F(B,Y) be the owdd rf fabc n Markov matrix whose i,}'th element is
P(x (Y)|y (t,8)), i.e. the conditional probability of observing X 3 in period Y
(where Y > t), given the particulaxr sequence i of observations from the pre-
ceding t~B periods. A theorem analogous to Theorem 5 (ii) is
Theorem 8 o
| If K(t,Yz) = k(t,Yl)M for some Markov matrix 4, where 72 > Yl' then

F(B,Yz) = F(B-:Yl)M4- |

What arxe the implications of Theorem 77 Let fi(B ,Y) be the i'th row of

F(8,Y). Let x be a random variable. Then fi(B.Y) x, where x is the vector °

X = (xl,.... ,xn) of observations; is the expected value of the random variable X

in period Y, given the sequence of observations yi(t,B) . Let X = max (xl,.... ,xn)
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and x = min (xX;....,x ). If F(B,Y,) = F(B,Y )M, then F(B,v,) x = F(B,y,) M x.
Since M4 is a Markov matrix, any component of the vector M 4x is a weighted

average of the components of x and lies therefore between x and X + Thus the
range of the conditional expected value of x in pei:iod Y2 is not greater than

its range in period Yl'
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VII Summary

The model studied in this paper is essentially the same as those used
in earlier studies by Nerlove [7] and Taylor [8] to justify the use of
distributed lags in econometrics. The unknowvn states of the world are
assumed to be governed by a known Markov process; information about these
states is provided by a set of observations more or less closely related
to the states. The matrix whose typical element is the conditional
probability of & particular observation,‘given a particular state, is called
the information matrix.

Our most important result, discussed in section III, bearé 6n the
obsolescence of information, meaning that knowledge of an cbservation is
less valuable on the average for current decision-making, the farther back
in the past it lies. Conditions are given in terms of the matrix‘of transi-
tion probabilities and the information matrix thet yield this result for the
case where the number of observations is less than or equal to that of states.
The value of the result lies in the suggestion that the model can justify the
use of distributed lags with declining weights for any payoff functions, pro-
vided one is looking at the behavior of the typical individual.

In section IV we argue that the ﬁncertainty about states of the world
is responsible f§r lags in adjustment to a shift to a new state, the length
of the lag depen?ing on the information structure, and demonstrate this by
some simple examples. The long-run revised probabiiity vectors for states
'of the world are shown to fluctuate in section V, even when the prior probabili-
ties converge to some limiting values, the extent of these fluctuations again
depending on the information matrix. Finally, in gsection VI the same consi-
derations giving rise to the obsoleqcence of ihformation are shown to imply
that the elasticity of expectationms declines, the farther out in the future

they lie.
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