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Asymptotic Properties of Full Information
Estimators in Dynemic Autoregressive

Simultaneous Equation Models

Phoebus J. Dhrymes and H. Erlat

1. Introduction
In a previous paper [3] we examined the problem of estimating, by
maximum 1likelihood (ML) and three stage least squares-like methods, the

pareameters of the model
(l) yt' = yt'B + Yt_]_.Co + wt‘cl’+ u't' ) t = 1,2,...,T

where {wt. tt =0, 1, *2,. ..} 1is a sequence of s-element vectors of
exogenous variables (which are uniformely bounded and nonstochastic), the

error process obeys
(2) u_ =u . R+e

0, 1, +2,...} is a sequence of

R 1s a stable matrix, {e} :t

independent identically distributed (i.i.d.) rendom varisbles such that
(3) E(Et-) =0 Cov(et.) =3

S being positive definite, and V. is the m-element vector of jointly
dependent variables.

It was shown in [3] that the three stege least squares like procedure-
termed there the full information dynamic autoregessive (FIDA) - satisfies,
asymptotically, the same set of normal equations as the ML estimator, the aif=-
ference being in the manner in which the jointly dependent variables are "purged"

of their stochastic components. Both were shown



to be consistent estimators; in addition, the asymptotic distribution of
the estimators - though not explicitly obtained - was shown not to depend
on the properties of the estimator of Z beyond consistency but to
depend on the asymptotic distribution properties of the estimator of R.
In.this paper we derive explicity the joint asymptotic distribution

FIDA

of the/estimator of B, Co, C, and R.

1

2. Formulation of the Problem.
In connection with (1) and (2) we observe that we require that
(A.1) (I-B) is nonsingular

(A.2) CL(I-B)™, R are both steble matrices

Certain other assumptions will be invoked as the need for them arises.

We also observe that

-}
(W) E(w )=0, Cov(u )= Z risgltoag
t- -
i=0
and we assert that Q 1is nonsingular.
The reduced form of (1) can be written as
(5) Vg. = Vp1.Tp * Wy Tyt V.
where
-1 -1 -1
(6) Iy = C(I-B)", m =C(I-B)", v, =uy(I-B)

and the final form is



] _ ] -1 A [] v -1 ]
(7) V. = (I-IIOL) mow, + (I-HOL) vi.

where L is the usual lag operator.

The FIDA estimator is obtained by minimizing

tr 5H(FAx - 2_A%R)' (ZA% -Z_A*R)

with respect to A and R subject to a prior (consistent) estimator of
2 where

(8) A¥ = (I-B', fc%"'ci)') Z = (yt"yf-l”wf-)’ t=23..., T

and A* is subject to the usual identifiebility restrictions.

In the minimend sbove

~ ~ ~ -l
- — L] 1
(9) Z = (Yt,’yt_l,:wt_) Yt, - (yt_l.’yt_e,)wt,’wt_l.) (Q Q) Q Y
Q= (yt-l"yt-Q"wf"wf-l') t = 2’3)'°':T Y = (yti) t = 2:3:°'~)T
i = 1’ 2’ s e ,m .

i.e., the Vi. component of 7 is obteined from an ordinary least

squares regression in the context of the reduced model

-1 -1
(10) Yp. = Ve3.F) * ¥ 0.Fp t WF3 +W_,F) + st_(I-B) =q. . F+ at,(I-B)
where
(11) F, =R*+T, F_ =-CR(I-B)™Y, F, =T, F, = C;R(I-B)™"
1 0’ ‘2 0 ik W L Wi | ~
-1
R* = (I-B)R(I-B) ", Q. = (yt-l-yt-Q"wt-’wt-l') F = (Fi’Fé’Fé’Fi;)'
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REMARK 1. We observe that

(12) F,= - CO(I-B)'l(I-B)R(I-B)"l = - T R*

Moreover R* 1is stable if and only if R is. Consequently the second
order difference equation in (10) is steble if and only if R* and ITO
are stable matrices, which is asserted by (A.2).

Generally, identification requirements will dictate that certain
variables be absent from certain equations, i.e., that some elements in
B, Cy» C; are known a priori to be null. Giving expression to these
requirements will be greatly facilitated by introducing the selection
matrices Si;]’ i=22....,m j=1,2,3 such that

(13) YS,. =Y

il i’ Y S Y, ws =w i=l,2,oo-’m

-1°12 T i1 137 "1

where Yi ’ in, W. are respectively the matrices of observations on the

i
Jointly dependent, lasgged endogenous and exogenous varisbles appearing in

the right member of the 1*" equation. Putting

(l"") Si = diag(sil,sie’s ), S = dj.ag(sl,sa,.-.,sm)

i3

we see that the ith equation of (1) after having imposed the & priori

restrictions may be written as

(15) Vg =288, +uy i=1,2...,m
and the entire model may be written as
(16) y = Z*S +u

Wwhere



(17) Z* = (Im® z)s, & = (5:1’5:2,---’5:1‘1)" u = (u:l’u:E""’u:m)'

6‘1 = (B:i)'}’fi:'}’:i)': y = (y:].’y:g,""y:m)‘

and B i,'y*fi,'\/. i are the ith columns of B, CO’ Cl respectively, after

the elements known to be zero have been suppressed, while Yy, 5’ u are,

i
respectively, the ith columns of Y = (yti) u = (uti)’ t=12,...,T
i-=1,2,...,m.

The FIDA estimator of & and R is given by the solution of the

equations

(28) [(Bx - (8 @ D)z2)) (371 @ 1) (2% - (R ® 1)2%)13

% - (R @ Dzx 1" (F1@ 1)+ F- (R ® 1)y ,)

~' ~ -l ~' ~ ~ _ ~ ~ _ ~ o~ ~
(U',0,)7 0,0, U=Y-2h, A-=(B,CypC)

=
]

where > is a prior consistent estimate of 2 and

(19) Z* - (1, ® 2)

Z being computed in accordance with (9).
Assuming no prior restrictions are imposed on R, writing

r.» 4=1,2,...,n for the 1" colum of R end
(20) r = (r:l,rzg,-cu,r:m)'

we conclu.de;L that, essymptotically,

= For details of the derivation see the Appendix
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1
(21) ool .
O REFAINT L U,
where Z*% = (1, ® Z), T = (T,Y_l,w), ¥-QF and

M= plim g (Z*-(R' ® D)z 1" (718 1) [Z*-(R' @ I)z4,]

Ty
1 , Y

(22) P, = g{,-"'; F Zx-(r'®1)2¢]" (I @ INI ®U,)

P - plim = (I ® ™Y) (I ® U'.)[2%-(R' ® I)z%.] = (S® o 1)p!

2= B T m -l -1 1
If we put

(1) =1) ~2) (2) ~(m) (m)

(VRS SHEE N CF AT AN IETLIPO L PO IPRITTL AN sag A M o)

where 5 1j is the Kronecker delts, Ei'i) is the row corresponding to

th

the t~ observation (row) vector in ZSi and 21(;%])_ is analogously

defined for Z-l Si’ then we can write compactly

M Pl 5-5 I 0 H’t

(21) JT - 1

— e'
- -l ' t‘
P, I For o0 L®a NT t=2 \ L ®u .

where

(25) H, = (Hé(l),...,né(m))' , chi) _ hgt) L

M P 8.5 1 o (Z% - (R ® T)zx.)" (=t 1y

€



i th -1
¢ is the 1" row of X" eand € = (Etl’ete”"’e'hn) is the vector

of structural errors at "time" +t.

The vectors of the sum in the right member of (24) do not represent
a sequence of independent rendom vectors. If in addition to (A.1l),
(A.2) we also assume

(A.3) The sequence {e; :t =0, +1,,..} has finite sixth order

moments

(A.4) The exogenous variables are uniformly bounded .nonstochast;lc

then it can be shown that the conditions of the Hoeffding-Robbins
theorem [4] or [2] on m-dependent varisbles apply to a truncated vector
sequence. The truncation mey be determined by using the results in
Mann and Wald [5] expecia.lly2 Lemma 1. We, thus, conclude that, asymp-
totically,

H
T t
(26) DY €~ N(O,Cx)
' t-
R J’i‘ t=2 Im® ut-l'
where
M Pé(Im® Q)
(27) C* =
(Im® n)P2 =® Q
2

A gsomewhat more general theorem, i.e., one that utilizes assumptions:
less restrictive than (A.3) and (A.L4) may be obtained by using the results

in Billingsley [1]. Such results, however, are unfamiliar in the literature of
econometriges and are not utilized here.



Consequently, in view of (22), we have

§-8
(28) NT <“ ~ N(0,0pr7,)

r-r
where

- -1
(29) ton
29 Opron =
FIDA p sleg

We have therefore | proved

THEOREM 1. Consider the model in (1), (2), (3) subject to the

following conditions

(A.1) (‘I -B) is nonsingular

(A.2) CO(I - B)'l, R are both stable matrices

(A.3) The sequence {81'; :t=0,t1, +2,...} is one of 1.i.d.
random variables having finite sixth order moments

(A.4) The exogenous variable sequence {w,'c_ tt=0, 1, £2,...}

' is nonstochastic uniformly bounded

(A.S)r S as defined in (4) is an unrestricted positive definite
matrix

(A.6) The matrix M, defined in (22), exists as & nonsingular

nonstochastic probability limit of the right member of (22).

Then, the M.L. and FIDA estimators of the parsmeter vector (5',r')’

have the same asymptotic distribution which is given by



5.5
(30) NT ( )”N(O""pm)

where ©p.., 1s defined in (29) and (22).

COROLIARY 1. The marginal asymptotic distribution of the vector
JT (3 -85) is given by

where
(32) Cppp = M -Pl(z"l® n)Pi]-“l

Proof. Obvious from the theorem.

COROLLARY 2. If R = 0 but this fact is not utilized in the
egtimation process, then there is asymptotic loss of efficiency in
estimating 5.

22222. If the information is utilized then the asymptotic distribution
of AT (5 -5)R=0 is normal with mean zero and covariance mafrix Mal,
where M.o is the matrix defined in (22) for the special case where R = O.
We observe that P, #0 when R = 0. Thie immediately implies the

corollery.

REMARK 2. Thus, here we in&ur a certein cost when asutoregression in
the errors is assumed, when in fact it is ebsent. This is to be
contrasted to the case where the model contains no lagged endogenous
variables. In such a case no loss in (asymptotic) efficiency results,

vwhen one assumes & higher order of autoregression than is, in fact, true.
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REMARK 3. It is easily seen that the results of Theorem 1 gpeclalize
in the case where we deal with a single equation "system" containing a
lagged endogenous varisble and first order asutoregressive error, to the

result contained in Theorem 7.1 of [2, Ch. T].

Indeed the development and results obteined herein are a direct
generalizstion of the results contained in [2, Ch. 7], with respect to

the dynemic demand model with first order sutoregressive errors.

REMARK 4. Tt eppears that no additional complications are entailed
by the introduction of additional legs in the jointly dependent variables.
No additional complications are introduced by considering higher order
eautoregressions in the errors except for the obvious computational burden

of obtaining an expression for the covariance matrix of the structural

errors.
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APPENDIX

Here we made explicit the transition from (18) to (21) and hence.
to (24).

Substituting from (16) into (18) we obtain, for the K +15% iterate

(A1) (B-8)yy = [(Bx- (R ® zx)) (7 @ 1)(3x- () ® )zx) 172

{(Z- (Fy @ Nzs 1€ @ 1)- (e~ (R -R) @ Thu 1]

th

where in computing Ek we have used the k~ iterate gk'

Now we have

(1.2) HeR = (80,0,)76, 13- 0, &)
But by definition

(A.3) U= Y-ZA = U-2(R-A)

Hence

(a.k) U-U_ R=E-2(K-4) + z_, (K- )R

Writing (A.2) in column form we find

~ ~ ~ -lN ~\
(A.5) (r-7) = [1, ®(U1U,) Uy T le-(2*- (R @ T)2% ) (5-8) ]
Moreover, we note that

(A.6) [(ﬁ-n)l; ®Ilu, = (1, 8U) (r- r), -
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Hence, the iteration scheme in (18) can be written more conveniently as
~ o~ ~ ~ ~-]1
(A.7) M(B-8) , =[2*-(RE®D)zZx ]' (2~ @ 1I)e
~ ~ ~..l -
- [2% - (Rlé ® I)Z"_"]_]'(Z ® I)(Im ® U_l)(r— r)k
(A.8) (- r)k = [1'n ® (U_lU_l) Uy le
- [Im ® (U_'lU_l) U_l] (z*%- (R' ® I)Z"_"l) (8 8)k

For the converging iterate we can then write

(

- ——

HEX?

S I Ry C (3l
) J;[z*-(k ®1)zx, 1' (57 1)

U_'.]_U_l -1 Ui
I ® R S——— ——
m T ~/T

e

0 %(% )'1 [Z%- (R* ® T)z% 1" ' e I)(1, ®U_;)

5=8
uLo .\ -10 | . Jr ( )
I:Im ®< =1 '1> ‘1J [z-(R'® I-)Zfl] r-r

T

Multiplying through M the left by

o =3I



and rearranging terms we find

(A.10)
(

[ (- (® e mzy) Cren)

~

T -1

U.U . \-1
-1°-1 ~
I ® < ) U

It is, thus; easily verified that the solution vector in (A.1l0),

i.e., JT (? - 5) behaves asymptotically according to the relation

r-r
given in (21).



