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BATESIATT LEARNING IN DYNAMIC ECONOMIC MODELS*

I. Introduction

In recent years there has been a revival of interest in stochastic econom-
ic models where the basic varisbles are unchservable and must consequently be

estimated by the economic decision-msker as part of the optimizing process.

Friedman's well-known "permanent income" hypothesis of consumption is a notable
example. Herlove {1967) and Taylor (1970) have successfully used such models to
obtain conditions yielding estimators for the unobserved variebles in the form
of a distributed-lag function of past observations. Estimators with this prop-
erty have been widely used in econometric work, meking it a matter of some im-
portance that a solid theoretical underpinning should be established.

My goals here are less specific than the derivation of the distributed lag
function as an optimsl estimetor. While I shall use an economic model much
1like that of Nerlove and Taylor in that it is characterized by unobserved var-
iables - states of the system - I intend to study its properties with the aid
of the epparatus of decision theory and information theory. Rather then focus-
sing on the conditions vielding distributed-lag estimators, I shall study how thé
probabilities the decision-meker attaches to the states of the system in each
period are revised in the light of new information and what such revision im-
plies for his behavior. Thanks to the work of Blackwell and Girshick (195k),
Marschak (1971), and Marschak end Miyasewa (1968) there exist powerful theorems

that can be applied for this purpose. It is worth mentioning

»

I am deeply indebted to my colleague Joseph Ostroy, with whom I have had
meny helpful discussions, and whose perceptive comments on previous versions
of the paper I have found always useful {and sometimes disturbing!) Mr. Rakesh
Sarin has provided me with valusble research assistance in connection with the
similation work reported on in sections V and VI. I alone remain responsible
for the views expressed and all errors.

lyarschek (1963) has emphasired thet the 2-step procedure of first estima-
ting the parameter of interest and then teking an action based on this estimate
i{s generally incorrect, beceuse the optimal estimate is (in general) not inde-
pendent of the payoff function.



here that the decision-theoretic approach casts the question of distributed-
lag estimators in a different light, for one can now approach the problem

from the point of view of the obsolescence of information, using the concept of
the vaiue of information :developed by the sbove-mentioned writers.

The plan of the paper is as follows. Bection II contains an example of
the kind of economic situation we are modelling and lists some of the reasons
why the model deserves serious consideration. In the next section we pree¢nt-
the model formelly and explain how the probability vector is revised sequenti-
ally. Section IV deals with the obsolescence of information. In section V
we present a simulation of the working of the model for a simple case with only
two states of the system and two "observations" (also known as "messages” or
"gignals"). The question investigated by meamns of this example is that of the
number of periods it takes a decision—ma.ker on the average to realige that the
structure of the system has changed. In section VI the long-run properties of
the model are discussed - more specifically, the long-run behavior of the sub-
jective probebility vector. We look at the formation of expectations in sec-
tion VII. Our findings are summarized in section VIII. Finally, the Appendix
contains mathematical proofs of some of the statements made in sections III and

VII.



TI. The Model and Its Scope

Consider the example of & geller of some good who must determine the demand
ecurve facing him in the current period. He has a geries of past ‘observations of
prices and quantities sold, which he can - and will - use in some way to ootain
an estimete of the emounts that he will be able to gell at different prices to-
day. However, there eare two reascns why he does not know whether in fact the
past observations have all come from the same demand curve. Firstly, the demend.
curve in any periocd may be one of several, depending upon whet actions competi-
tors have teken, the inccmes of buyers, changes in tastes, etc. Although he
can guess st the degrce to which these forces have been operating, he does not
know their effects with full certeinty. Secondly, observations will not lie on
the demand curve that generates them because of trensient factors. Calling
the various possible demand curves states of the system, we assume that the pro-
cess generating thém' is a first-order Markov-process, known to the decision-
meker. This means that the conditional probebility of a particular state occur-
ring in period t, given that some state occurred in period t-1l, is independent
of states occurring before t-1. The decision-maker also knows , we assuue, the
conditionel probability distribution of observations, given the state of the
system. The knowledge of these probebility aistributions, together with the
history of pest observations, is s&ll he hes to go by.

We hasten- to remark that this model is very broad in scope and cen be ap-
plied to a variety of problem. For example, tne states of the. gystem can be in-
texrpreted as equilibrium exchange rates (or prices of any sort), the observe=
tions being the current surpluses in the balance of peyments of a country {or
number of unfilled orders). In Teylor's paper, for example, the “permanent"
demands for the goods produced by the firm are unobserved because of randon

disturbances and follow & first-order Markov process. The firm observes the



actual demands and uses these to estimate "permanent" demends with a view to
maintaining stocks of the various goods close to demand levels. All the random
variables involved are continuous.

The niodel is applicable in all situations in which it is desirable to dis-

tinguish the effects on observetions of changes in the underlying economic struc-

ture from the effects due to transient factors. This distinguishes it from

standard-models used to analyze inventory problems, problems of determining op-
timal international reserves, etc., where the underlying economic structure is
assumed to remain unchanged. Thus in all the:literature on opcimal internation-
al reserves the essumption is made that the equilibrium exchenge rates do not
change over the entire time~interval being considered, with all changes in the
balance-of-payments surplus ascribed to random factors. In inventory models,
the stendard assumption is that the probability distribution of demands re-
mains the- same in each period.

Attractive features of the model outlined above are:

(i) It presents & picture of the world that is more realistic than the alter-
natives used hitherto for two reasons: a) The wor;d as an economic decisiocn-
meker sees it is in a constant state of flux, where the past is an unrelieble
guide to the present, but is used because it is the only guide available. On
the other hand, the world is not pure anarchy. Our assumption that the stochas-
tic process is a Markov process is intended to capture some elements of stebll-
ity of the underlying structure. b) Because one can allow the observation re-
ceived by one individual in any period to be different from that received by
another in the same period, even when the underlying structure is the same, in-
dividuals will in general have different subjective probsbility vectors for the
states in any period.

(1i) It allows the decision-meker to form expectations about the future that



are much less rigid than a straightforward extrapolation of past observations
would be. These expectations will be affected by past observations in a marzer
that depends on the transition probabllities.

(1i1) Related to (i) sbove, the model suggests that the standard practice in
economic theory of separating the analysis of equilibrium from thet of the st
bility of this equilibrium is quite misleading. There is no such thing as static,
deterministic equilibrium; instead we have a series of processes that never set-

tle down.

(iv) Work done by Cyert and deGroot (1970) on the use of the Bayesien approach
to duopoly theory is very similar in spirit to this model and suggests, as we
have mentioned, that the model is appliceble to & wide variety of problems in

econonlc theory.



To summerize, the model is designed to study the adeptive behavior of ec-

onomic units as they respond to changes in the stochastic environment.l

1 In a recent paper, Cross (1973) has argued that velusble results can be ob-
tained by using the psychologist's learning approach in economic theory. Among
his results are the following two : a) the firm does not respond immediately to
changes in the economic situation, its "speed of adjustment ... depending on...
the potential gains from altered behavior and...the extent to which the indivi-
dual is wedded to traditional forms of behavior" (p. 258); b) "a firm canh be ex-
pected to spend much of its time out of 'equilibrium'" (p. 261). The latter re-
sult is essentially what we have argued in (iii) asbove. We shall see an example
of the former in our paper in section V. Therefore, I would take the position
that there is not much to be gained by sdopting the learning approach of the
psychologist in economics. Of course, Bayesian models are learning models -

the point is that they are perfectly ccmpatible with our basic postulate of the

maximization of expected utility.



III. Formal Outline of the Model

Notation

2y (t) (i = 1,...,m) indicates the i'th state in period t.

x, (t) (J = 1,...n) indicates the j'th observation in period t.

e (t,8) (k = 1,...,n""8) i3 the k'th member of the set of sequences
of observations from the periods s,...,t-1, where s is a positive
integer < t.

P(t) is the m x m Markov transition matrix with elements pik(t) =
p(,zk(tu)lzi(t) (i,k = 1,...,m), where p(*) refers to the probsbility
of the event in parenthesis.

Q(t) is the m x n Markov matrix with elements qu(t) = p(xJ(t)Izi(t)).

a,($) is the 1'th action availeble in period t (i = 1,...4).

po is an m=component vector giving the a priori protability for the various
states in the initial period.

J(t,tl) is en n x n Markov matrix whose elements 315‘(t’t1) =

p(xJ(tl)lp(xi(t)), vhere t, is any positive integer # t.

Assurptions

Al. The action in any period t must be tsken before the observation
xJ(t) is availeble, although all past observations are known. The
states of the system are never known

A2, The matrix P(t) is constant over time and written as P. P is non-
singular.

A3. The matrix Q(t) is constant over time and indicated by

Q and T respectively.

Consider the situation faecing our decision-maker in period t. He has a
series of past observations yk(t,o) and in addition knows the g priori probab-

ilities of observations in the current and future periods. He will use the past



observations to revise these prior probebilities in Bayesian fashion, and mske
_his decision with the aid of the revised probebility wvector. It is known that
this revision can be made sequentially, i.e., before the observation of period
t is known, 8ll previous cobservaticns are already incorporated in the revised

probability vector, which is then revised again according to Bayes' formulae af-

1l

ter observaetion t is obtained.” Let p(zi(t)lyk(t-l,o)) be the revised probeb-

ility of state i in period t, given a particular sequence k of cbservations
from the preceding periods. Then if cbservation xj is made in period t, the
nev revised probsbility of state i is

{q; ,p(z, (t) lyk(t-l,O))}
T{qijp(;i(t)m(t~l,0)‘)}

where s = p(xj(t)lzi(t)) to recall. The revised probability vector for the dif-
ferent states in periods t+1, t+2,..., given the sequence of observations frox
periods 0,...,t, is then obtained in straightforwaerd fashion by applying the
trensition matrix P and its higher powers Pz, P’, ete. to the vector whose 1'th
component is that given ebove.

The fact that the revised probability vectors depend on all previous ob-
servations implies of course that the action teken by the decision-maker in per-
iod t will depend, inter alia, on the entire set of past observations. In the
simplest case, where the results of all past actions are embodied in the current
velue of some particular variadle (like current stocks in inventory models),
the optimal action in period t will then depend on both the value of this var-
iable in period t as well as the set of past observations. Although this is
also true in models where a particular p;ra.meter, assumed to be constant but

unknown, has to be estimated from past observations, the difference in our model

loee for exsmple Bellmsn and Dreyfus (1962), Chapter 8.



is that these past observations are not necessarily given the same weights when
used in the estimation procedure: In the limiting case, for example, where the
cbservations are linked in & one-to-one fashion to states of the world, only

one observation, that from the immediately preceding period, is required, for it

identifies exactly the state of the system prevailing in that period: any in-

formation sbout states in previous periods is useless because of the assumption
that they obey a first-order Markov process. A question of great interest is
under what conditions the weights attached to past cbservations decline, the
farther back in the past they come from; this is precisely the question inves-

tigated both by Nerlove and by Taylor. We turn to it now.
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IV. The Obsolescence of Informatiom

For the purpose of illustrating%the concept of the value of information,
we take the simplest case, where the; decision-meker must act on the basis of one
observation alone. Let us assume that the payoff depends on both the action taken
and the state of the system. There j.s a payoff matrix T whose i,J 'th element,
Ti 3 shows the payoff when action ai‘ is taken and the stste of the system is
4 (1 =1,...; 3 =1,...,m). The g priori vector of probebilities of states is
P> which is revised after the observation is made with the use of the matrix
Q. The expected value to the decision-maker of the obgervatica is then

Zlmax §Tid p(x |2, )p(z,)]

= I[max 21.,q,.p(z,)]1,
x i JiUJk J

wvhich clearly depends on the element}s of the matrix Q. For instance, should

Q = I, the identity matrix, or a permutation thereof, there is perfact informa-

tion, for each observation serves tg identify a particular state with probab-

ility:l. At the other extreme is the case where all rows of Q are identical,

j.e.,the observations are statistically independent of the states of the system.l
If there are two such information matrices Ql and Qe, then what Marschek

has called Blackwell's theorem states that the vslue of informetion from the

information structure represented by Ql will be not less than that from the in-

formation structure represented by Q2 for all payoff matrices and all g priori
probability vectors if and only if Q2 = Qll-’l, where M is some Markov matrix.2

We return to the model outlined in the preceding section, assuming that

lgee Marschak (1971), pp. 199, 200.

23ee Blackvell® and Girshick (1954), p. 328 (Theorem 12.2.2), or
Marschek and Miyasewa (1968), p. 152 (Theorem 8.1).
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the peyoff in each period depends on the action taken and on the observation
maede in that pericd. (Of course the action must betsken before the observa-
tion is known.) It is shown in the Appendix that, with mild restrictions on
the matrices Q and P, the value of an observation from any past period tl will
be not less than that from an earlier period t2 (t2<tl). For example, one re-
striction that will suffice is that the stochastic process governing - the
movement from one state to another over time is steble, the probability being
high that the system will stay in the same stete from one period to the next.
The same restrictions serve to ensure that a batch of observations from the im-
mediate past will be at least as valugble in meking the current decision as
another batch from the more distant past.

Whet is the significance of this obsolescence :of " information? As we
mentioned at the outset, it suggests that the weights attached to paest cbser-
vations for the purpose of taking todey's action will decline, the farther back
from the past they come. Care must be taken in interpreting this statement, for
it is not true for any individuel decision-maker. The concept of the value of
information applies to an entire information structure, hence, we are asserting
that the phenomenon of declining weights will oceur for the average individual.
This is to be contrasted with the Nerlove-Taylor epproach, where the goal is

to obtein estimates in the form of distributed lags for each individual.l

lBeca.use of their more stringent requirements, both Nerlove and Taylor
placed restrictions on their peyoff functions. In Nerlove's case this func-
tion took the form of minimizing the mean-squere-error. Taylor used a payoff
function quadratic in the action and state varisbles, amounts produced and de-
mended respectively. On the other hand, Taylor's objective function was a sum of
inventory costs and production costs, and the former clearly depends on past
actions (emourts produced) as well as the current action.
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V. Lags in Adjustment to Chenges in the Environment

We study in the section the case where n=m=2 and the matrix

N
0 1l
State 2 is thus an sbsorbing state. We shall assume that the system has moved
to state 2 in period 1 and that it was known by every individual that the sys-
tem was in state 1 prior to that. Thus the prior subjective probebility for
state 1 in period 1 is Py for each individual. The question of interest is
how long it takes the averasge individual to learn that the change has occurred,
and how this depends on the matrix Q. It is to be expected that it #ill nor-
mally take a few periods before the revised probability for state 1 will have
dropped to a reasonsbly low level (say .10) and thet the greater the value of
the information structure Q the shorter will be this lag.
For our exemple we put

[fs .2 .6 b
b, = .9, = and Q, =
2 ! 1.9 e 3.7

It is easily verified that Q2 is less informative than Ql’ i.e., that Q2 = QlM
for some Markov matrix M. With each of these information matrices the model
was simulated for 20 runs, the length of a run being 20 periods. The results

were as follows.

For each run & sequence of revised probabilities was obtained. The average
of these revised probsbilities in each period was then calculated., With the in-
formation structure of Ql the average revised probabilities for state 1 in per-
jods 2, 3, 4 and 5, givem the observations from the preceding periods, were
.63, .27, .14 and .065 respectively. The average individual had revised his
probaebility to below .10 after Juét three obgervations. The corresponding pro-
bebilities with Q, were .78, .63, .58 and .4k. (For period 11 it was still as
high as .19). When no observations are used at all the sequence of probabilities

is of course (.9)% = .81, (.9)% = .73, (.9)* = .66 and (.9)° = .59.
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The chief point we are trying to meke by means of this simple example is
that the introduction of uncertainty into models of economic behavior is suf-

ficlent to justify the use of lsgs even vhen a) large numbers of participants

are involved and b) there are no adjustment costs. When there has been a change

in the state of the system, it tskes a few periods before this chenge is dis-
cerned by the averaege individual. The length of this lapse will be determined

by the information pattern available to individuals.



14

VI. Some Long-run Feaxures of the Model

o We look in this secticn at the long~run behavior of the revised probability
vector for states in period t when t is large. The i'th component of this vec-
tor (when the J'th sequence of observations from the preceding t-1 periods has
occurred) is pl(z (t)IyJ(t 1)), i=21,...m; J = 1,...,nt "1, We assume that the
process described by the transition matrix P is acyclic and irreducible, so that
%—E: p P = p¥ .independently of P, Because of this, the dependence on P,

of tl-'xe.revised probability vector, which shall be indicated by P, (z(t)), will
clearly diminish at t increases. The question of interest is whether lim p (z(t))
exists under these circumstances. o

It is easy to see that the answer is generally in the negative. Assume that
n=m and put Q = I, the identity matrix. Then for eny t the state in period t-1
is known exactly by every individual. It follows that p.r( z(t)) = eiP, if the
system wes in state i in perj.od t-1, where ey ig the i'th unit vector. If p*
contains more than one positive component, the system will switch from one state
to another and pr( 2(t)) will fluctuate accordingly. More specifically, for large
tp r(z-(t)) will equal e,P with probebility p,. This is true for each individual
and hence also holds for the average individual.

It appeers that the behavior of pr(z(t)) for large t will depend on the in-
formation matrix Q@ and one is tempted to conjecture that the fluctuations will
be smaller in amplitude as the value of Q decreases, since it is clear that
1im p_(2z(t)) = p* if Q has zero information value. For the case where only one
g;;:rvation is used the sgbove conJecture is easily validated. It is not diffi-
cult to show that the matrix K(t,tl), whose i, j'th element is p(xJ(tl)lzi(t)),
= (P (£)*)"L(p*%1)%q. Let us take two information matrices @, and Q, such that

W=
where the subscript denotes the specific informetion matrix used to obtain K(t,t ).

M for some Markov matrix M. It follows easily that K(t 1-.1)Q = K(t tl) M,
2
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Let N(t,tl)Q be the n x m matrix whose i,)'th element is
p(z (t)lx (t = 1,.009m 7= 1yeeasny

where Q represents the informetion metrix. Then it follows from a theorem proved
by Marschak and Miyasewa ( 1968 Theorem 8.2, p. 15U4) that N('l:,'l:l)Q2 = M*N(t’tl)Ql’
vhere M* is some n x n Markov matrix. Since the rows of N(f:.,tl)Q give the re-
vised probabilities, this implies that the revised probabilities obtained with
information structure Q2 are convex linear combinations of those cbtained with
Q’l' Thus, the set of revised probability vectors obtained with Q.2 in any period
18 a subset of that obtained with Q‘l for the same period. This means that the
amplitude of the fluctuations of the revised probab'ility vector will be greater
as the value of the :lnformati;on matrix increases.

We conjecture that this result is also valid in the general case, where all
past observations are used. To gain an idea of the extent of the fluctuations

the model was simulated for 100 periods with the following matrices:

.8 . ] .8 .2 6 &}
i L3 T % l;l .9} % * [3 7J
In each case, the system started in state 2. When Ql was used, the revised pro-
bability of state 1 fluctuated between ,783 and .354. On the other hand, the
fluctuations ranged between .T16 and .47l when Q, wes used. Note that p*=(.6,.4)
and that therefore, were Q equal to I, the revised probability would be .8 roughly
60% of the time snd .3 the remaining 407 of the time.

Vhat are the implications of this result? The most important one appears
to be the following. If the action of a decision-maker is period t depends on
p,(z(t)) alone, one would expect more frequent changes in the optimal action
as the matrix Q becomes more informaetive, not merely for the individual deci-
sion-maker, but also for the group as a whole. To put the metter in a "common-

gense" form, economic responses will tend to follow fluctuations in the underly-
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ing structure more closely if the pattern of informetion available to decision~
makers is good and will remain more or less constant in the opposite case. An
interesting poseibility emerges as & corollary:if a public agency attempts to
improve the flow of information to decision-makers, this might have the unexpec-

ted effect of increasing the fluctustions of the economic variables that the lat-

ter control! 1

10f course our model presupposes that the environment {tgelf is subject to
gshifts. Also to be stressed is the hidden assumption t+het the Markov process
described by the matrix P is wnaffected by the actions of the individuels in-
volved. In a full-fledged general equilibrium model P itself would be endoge-

nous.
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VII. The Formation of Expectations

We turn now to the revision of the probebility vector of observations in
future periods with the use of past and current observations. Let F(t2 ,tl) be
the n°~%2 x n .Ma.rkov matrix whose i, J'th element is p(xj(tl)lyi(t,tz), i.e.,
the conditional probability of observation x‘1 in perilod tl (where tl>t.) , given
the perticular sequence i of observetions from the preceding t-t2 periods (t2<t) .
Then it is shown in the Appendix that conditions gsimilar to the conditions ensur-
ing the obsolescence of information mentioned in section IV yield the result
that F(t,,t,) = F(t,.t,' )M, vhere M is some Markov metrix end t,>t,'>t. What
are the implicstions of this result? Let fi(tz,tl) be the i'th row of F(tz,tl)
and x be a rendom varieble. '.'L'hen'»'f‘i(t2 ’tl)x, where x is the vector (xl,.. .,xn)
of cbservations, is the expected velue of the random varisble x in period tl’
given the sequence of observations Yi(t’tz)‘ Let x = max (xl,.. .,xn) end x =
min(xl,...,xn). It F(t,,t,) = F(t,,t, ' )M, then F(t,,t,)x = F(t,,t,")Mx. Since
M is a Markov matrix eny component of the vector Mx is a weighted average of
the components of x and lies therefore between x and ;. Thus, the range of the
conditional expected value of x in period t, is not greater than its range in

1
values of the meen of the random varisble X. More precisely, two persons ’shar-

period t.'. This suggests the inelasticity of expectations concerning future

ing the same assumptions sbout the transition matrix P and the informetion ma-
trix Q but receiving different obseryat;lons will tend to be in closer agreerent
ebout the expected mean of the random varisble x for periods farther out in the
future than for periods closer to the present. If these expectations affect their
current decisions, we have a factor inducing individuals to teke similar actions
in the present, despite different subjective probability vectors éibout current

states.
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VIII. Summary
The model studied in this peper is essentially the same as those used in

earlier studies by Nerlove (1967) and Taylor (1970) to justify the use of dis-
tributed lags in econométries. The unknown states of the system are sssumed

to be governed by a known Markov process; information sbout these states is pro-
vided by a set of observations more or less closely related to the states. The
matrix whose typical element is the conditional probebility of a particular ob-
servation, given a particular state, is called the information matrix.

The result discussed in section IV. bears on the obsolescence of infor-
mation, meaning that knowledge of an observation is less valuable on the aver-
age for current decision-making, the farther back in the past it lies. Conditions
are given in terms of the matrix of transition proi:abilities and the information
matrix that yields this result for the case where the number of observations is
less than or equal to that of states. The value of the result lies in the sug-
gestion that the model can Justify the use of distributed lags with declining
weights for any payoff functions, provided one is looking at the behavior of the
typicel individual.

In section V we argue that the uncertainty about states of the world is re-
sponsible for lags in adjustment to & shift to a new state, the length of the lag
depending on the jnformation structure, and demonstrate this by some simple ex-
smples. The long-run revised probability vectors for states of the world are
shown to fluctuste in section VI, even when the prior probabilities converge to
some limiting values, the extent of these fluctuations ggain depending on the
information metrix. Fimally, in section VII the seme considerations giving rise
to the obsolescence of informetion are shown to imply that the elasticity of ex-

pectations declines, the farther out in the future they lie.
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In addition to assumptions Al - Al in section III we need:
A5. The rank of Q is min(m,n);
A6. The decision-maker maximizes the discounted sum of the expected value

of the payoffs over all periods.

AT. The vector poPt, which gives the a priori rrobabilities of the states in

period t, is strictly positive for ell t.

Because of A5 and AT, the vector poPtQ, which gves the a priori probabil-
ities of observations in period t, is strictly positive for all t.

Our assumptions allow us to break down the maximization of the objective
function into a series of independent maximizations, one for each period. In
vhat follows we shall accordingly focus on the decision to be made in some spe-
cific period t alone. Lét us commence with the simplest case, where there is
only one past observation xJ(tl) (tl<t). Since the decision-meker's curreat
payoff depends only on a.i(t) and xJ(t), the matrix J (t_’tl) will determine the
value of an observetion from the period tl, as we saw in section III of the text.

Now p(x, (t )|x (t)) = _p(xd(tl), xi(t))/p(xi(t))

EE p(zr(tl), z,(t)) p(xJ(tl)|zr(tl)) p(x, (t)]2,(£)}/p(x; (£))
zZ p (z.(¢,)) plz_(t)]z,(¢;)) p(xJ(tl)lzr(tl)) p(xi(t)lzs(t))/p(xi(t))-

The numerstor of this lest expression is, for fixed value of § and J, &
quadratic form j.n the veriebles p(zr(tl)) p(xj(‘blﬂzr(tl)) and p(xi(t)lzs(t),
vhere r and s = 1,...,m. It can consequently be expressed as the 1,j'th ele-
ment of & certain matrix, which is the product of three matrices. Without

presenting the derivetion we proceed immediately to write the product matrix,

which is Tt
Q'{P " 1)'P (tl)*Q,
o .

where Po(tl)* is themxmnm diagoné,l matrix whose main disgonel is the vector

poPtl, and the primésgindicate the transposes of the corresponding matrices.
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p(xi(t)) igs of course the i'th component of the vector poPtQ. Let
Qo(t)* denote the n x n diagonal matrix whose main diagonal is this vector.
(Qo(t)*)-l exists by AT. Then it cen be verified that the matrix whose i, 3'th
element is p(xJ(tl)lxi(t))a
-1 t-t
= »* U 1)t # = .
I(t,t,) = (@ (£)*) 7 (P77 1)'p (£ )%Q,t, = 1,...,8-1 (1)
The process of deriving the elements of the matrix J (t,tl), where tl is
any positive integer > t, is similar and yields
3(6,8)) = (o (1M 7Rarp (8)°1%0,t = w1, (2)
o o 1l
Suppose we wish to compare the value of an observation from period tl <%
with one from some preceding period t2’ where t2 < tl. The two matrices of
conditional probebilities,
3(t,t,) = AP (t,)%, (3)
and 3(t,t,) = A(t)(E*172) 1P (+,)%, (1)
where A(t) = (a(6)") ™ Q" (?*7"1)".
The expected value to the decision-maker of an observation from any past
period tl
v(t,t;) = Elagx T vy pln (t))|plxy oty (4D (5)
How does v(t,tl) compare with v(t,tz)? Blackwell's theorem states that
v(t,ty) > vlt,t,) (6)
if end only if
I(tst,) = J(t,8,)0My, (7
where Ml is some n x n Markov matrix.
From (3) and (L), it is sufficient for (7) thet for some Markov matrix M,
t1-t2 #Q =
(p )'Po(tz) Q = Po(tl)*QM,

p_(t,)9)H(BP1T2) R (£)%.

or BQ = QMl, where B

Note that (Po(t',:‘_)")"'-L exists because of AT.
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Lema 1

B is a Markov matrix, i.e., its elements biJ > 0 (1,3, = 1,...,m), and
Bu = u, where u is the m-component vector (1,...,1).
Proof: It is clear that B, the product of three non-negative matrices, is non-
negative.

Now uPo(tz)* = poPte.

Therefore uPc)(tz)“Ptl"t2 = poPtthl“t2 = poPtl = uPo(tl)*.

Therefore uPo(ta)"Pqt"l"""z(Pc‘(tl)*)"l = u.

Teking transposes, we obtain immediately

(P ()9 H(E*1*2) B (5,)%u = u

Let 6, = {qlilwiqi = q}, where w, 20 and qi '4s the i'th column of Q.

We are now ready to state
Theorem 1

Iet n > m. A necessary condition that the value of information from
period tl should be not less than the value of informetion from an earlier per-

iod t,, vhere t, < by, is: qu € Q for all i (i=1,...,n).

2
Proof: Since n > m and the rank of P is m, it follows from A5 that the rank of

T = =
the matrix A(t) in (L) is m. u(t,ta) J(t,tl)Ml therefore implies that QM BQ,
where M, is ann x n Merkov matrix. Take the i'th colum of BQ,. qu. This
equals ini, where xul:L is the i'th column of Ml Since mli Z o,

qu £ qQ (i=1,...,n).

Theorem 2
Let n < m. Then a sufficient condition that the value of information from

period tl should be not less than the value of information from ah earlier period

i

t,s where t.<t., is: Bqg € Q for all i (i=1,...,n).

2 1
Proof: Since the rank of Q is n by A5, there exists an n x m matrix Q+ such

thet Qg = 1. Q" = (e'q)~Ya'. Also Q+um = Q+Q“n = Iu =u,, where u (u,) is
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the n-component (m-component) vector (1,...,1) end we have used the fact that
Quh =W, since Q is a Markov metrix. Now there exists by assumption a non-
negative n x n matrix M1 such that QMl = BQ. Also BQu.n = Bu.m = um. Therefore
+ + + +

Q BQun =Q L But Q BQun =qQ Q,Mlun = IMlun. Therefore Mlun =u and Ml
is the required Markov matrix that satisfies QM1 = BQ and it follows easily that

J(t,t,) = I(t,8. )M,

From Theorems 1 and 2 we obtain immediately

Theorem 3

Let m = n. Then a necessary and sufficient condition that the value of in-
formation from period tl should be not less than that from an earlier period t2
is: B €Q for all 1 (i=1,...,m).

Suppose we wished to compare the Markov matrices whose 1,3'th elements are
p(xJ(tl)lzi(t)) and p(xJ(tz)]zi(t)) for the velue of the informsticn they pro-
vide. The two matrices, it cen be easily shown, are (Po(t)*)-l(Pt-tl)'Po(tl)*Q
and (Po(t)*)-l(Pt—tz)'Po(tz)*Q respectively, and we shall indicate them ty |
K(t,tl) and K(t,t,). The proof of the following theorem is omitted because it

parallels that of Theorems 1 and 2.

Theorem L

(i) A necessary condition that K(t,tz) = K(t,tl)Mé for some n x n Markov
metrix M, is: Bq' €Q for all 1 (i=1,....n). |

(i1) This condition is sufficient if n < m.

We proceed now to the general case. Let L(t,tl) be the n x nt.tl Markov
matrix whose i,3'th element is p(yJ(t,tl)lxi(t)), where yd(t,tl), to repeat, is
a particular member of the set consisting of all possible sequences of observa-
tions from the preceding t-t, periods. Let ;J(tl,ta) represent the J'th member
from the set consisting of past observations from the preceding t—tl-l periods

plus the cbservation from the ta'th period, where t2 < tl. yJ(tl’t2) is thus
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cbtained from yJ(t t,) by replacing the t,'th observation by the t,'th one.

Let L(t tl,t ) be the n x nt %1 Markov matrix whose 1,J'th element is

P(yd(tl,tz)lxi(t)).

Lemma 2
If K(t,te)' = K(‘l‘.,tl)M2 for some Markov matrix Mz, then K(to,tz) = K(to,tl)M ,

where t.< t_ < ¢t.
1 (o}

Proof: By sssumption (Po(t)*)'l(Pt‘tz)'Po(tz)*q = (Po(t)*)'l(Pt-tl)'Po(tl)*QMa.
-1t
)

Premultiplying both sides by the matrix (Po(to)*)-l( (p o)'Po(t)* we

obtan (P (¢ )9)7L(BH02) 1P (1,)% = (B ()97 (B OTL) 1P (5 )4,

Theorem
Ir K(t,tz) = K(t, t, )M for some Markov matrix M,, then
(1) J(t,t,) = J(t,%,)M,, and
(11) L(t,tl,t ) = L(t,t,)M, for some n x n®~%1 Markov matrix M.

Proof:
(1) By assumption
(_(£)9) 7L b2) (2 )% = (B, (8)9) 1B L) R (8 )0,
Premultiplying both sides by the n x m matrix (Qo(t)*) Q'Po(t)* we obtain
the desired result.
(1i) The 1,)'th elements of‘i(t,tl,t ) and L(t,t,) are

p(x, (t,), x (t141)5. 005 x (t-l)lx (t)) and
Jgp 2 Jtljl Jg-1

p(thl(tl),--., th-l

Now plx

(t-1) [xi(t) ) respectively.

(t,)s x (£,%1) 5000y X (t-l)lxi(t))
t,

%3 1 J¢-
t,+1 t-1

J

(tl+1),..., xy (t-1), xi(t))/p(xi(t))

= P( (t )s J
t.+1 t-1

2 1
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(t"l) ’ xi(t) I

= [E: Ir ...zr p{(th (tz), Xy (tl+1,),._.., x3t-1

t, 1l t 5 tl'"l

Zy (te)’ e

(t,+1)5...s (t)}
1+ 1 zrt

t t,+1

x plz, (%), 2, (£,#1)50ees zrt(t)):l / plx,(£))
2 1 .

= [ Ir, qeeel) plx (t1+1)...

(t)]z. (t,)) plx (t.+1)]z
r. Ty 41 3. VepllZy Ep 4 1 r
t, 1 % t, t, t,+1 £+l

...p(xi(t)lzrt(t))p(z (tz), z, (t1+1),...,

r
+
t2 tl 1

t

=l zr .....5_ plx, )]z, (t,))p(x (t.+1)]z (t.+1)...
[rtz tl+l T, th 2 rt2 2 Jtl+l 1 rtl+l 1l

2., (t)ﬂ / plx, (t))

...p(xi(t)'zrt(t)) P(Zrt (tz)lzr (tl"'l)) 1)(zr (tlﬂ)l

o tl+l tl"'l

(02D pla  (e-Dla, (o) p(zrt(t))] / px, (£)

(t1+1) cee

+ dp_+ +
tl 1 t o Tt ty 1 ty 1

= [‘: ool p(xjt (152)|zr (t1+1)) {p(x (t1+l)|zr
(t1+2))..-p(zrt(t))§]

...p(xi(t)lzrt(t)) plz,, l('c.lﬂ)lzr

+ +
ty ty 2

/ plx, (£)

Now, from Lemma 2

p(xjtz(ta)lzrtlﬂ(tlﬂ)) =z p(xk(tl)lzrt +1(1:3'4-1))mk3,

where mk 3 is the k,J'th element of the matrix M2 Therefore, substituting in

the last but one expression for p(x, (t,)]z (t,+1)), we obtain
3 27 40 1

2 1l

(t1+1),... x (t-—l)lxi(t))

p(x'3t ,(ta)’ X, N

+
tll
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]
™

1 ...zrt):k p(xk(tl”zrtlﬂ(tlﬂ))mkj{ H /olx, (£))

B Bl leln () pa (e, (hyring }}
1 1 t.

/p(xi(t))

{pl{x (t.), (£.41) 5000
I etz (e x3t1+1 1 X

(t-1)|x,(t)
Jg-1 (6 m

Therefore, if the columns of the matrices L(t,tl) end L(t,tl,ta_) are
arranged so that each set of n columns conteins in numerical order the set of n

observations from periods tl and t2 respectively, the matrix M3 has the form

B T
M, 0...0
o M20l0 O
0 0 M,

= . -nd

with nt-tl']Mz metrices along the principsl diegonal and null matrices else-
where. Since M2 is & Narkov matrix, M3 will clearly be a Markov matrix as
well.

From Theorems 4 and 5 we obtain immediately

Theorem 6

Let n é m and Bq'ie Q’ i = l’!u"n.

Then L(t.tl,tz) = L(t,tl)M3 for some Markov matrix M.

Theorem 6 provides & sufficient condition that the value of the observa-
tions from the preceding t-tl periods should be not less than that from the

preceding t-tl-l periods plus the observation from period t2, where t2<t1<t.
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This condition involves the matrices Q and B, the latter being
(Po(tl)*)-l(Ptl_t2)'Po(tz)*. Since B (besides depending on P) depends not just
on the difference tl—tz, but on tl and t2, it is desirable to have a condition
free of the latter dependence.

We first note that, if J(t,tl)Mtl for every t,<t, then I(t,t,) = I(t,6 M
for some Markov metrix M for any t2<tl, a result implicit in the transitivity
of the ordering by value of informetion. Thus it suffices to lock at B for
6, =t -1 L. (2, (£, )M PP (£,-1)%.  If (P (£,)%) = P (t)-1)%, & condition
that will obtain for Markov processes whose limiting rrobebilities exist when
t is large, the elements on the principal diagonal of B will be approximately
equal to those on the principal diagonal of P. Now let B = AI + (1-))C, where
0< A<1and C is any m x m Markov matrix all of whose rows are ec,z_u.al.1 Then
BQ = AIQ + (1-A)BC = AQ + (1-A)D, vhere D is a Markov matrix with the same pro-
perty as C. Thus the columns of D are scalar multiples of the vector
u = (1,...,1). But u € a,because Q,un =us therefore the columns of D, and
hence thise of (l—k)Dea. Thus que a for all i. Taking now close to 1, we
find that B is a matrix with elements on the principal diagonal close to 1.
Since these elements are spproximately equal to elements on the principal dia-
gonal of P, we have & condition on the latter matrix, viz. pii'-‘-'l - 61 (61 small),
i{i=1,...,m, that should ensure that B& € a, i =1,...,n, independently of Q.
In terms of our model, this condition meens that the stochastic process govern-
ing the movement from one state to another is stable, the probability being high
that the environment will stey in the same state from one period to the next.

It is also clear that, for n = m, the condition Ba € a (1 =1i,...,n) is

likely to hold for Q=I independently of B, since it is trivially satisfied in

1 by P12
It is easy to show that any 2x2 matrix B = can be written

in this form provided bll>b2l and b22>b12. | 'b21 'b22
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the limiting case where Q = I. Indeed, in this limiting case the only obser-
vation of value is that from the preceding period, for 1t serves to identify
with probability 1 the state preveiling in that period.

We turn now to the revision of the probability distribution of observations
in future periods as a result of past and current observetions. The theorems
here are essentially similar to the preceding ones, and we shall therefore dis-
pense with proofs in general. If K(t,tl) is the m x n Markov matrix whose
1,j'th element is p(xd(tl)lzi(t)), where t,>t, then

ty~t

K(t,tl) =P Q, ty = t+1, t+2,...

Similsr to Theorem 4 is

Theorem

>t '>t.
Lettltl t

(1) A necessary condition that K(t,tl) = K(t,tl')Mh for some Markov me-

trix Mh is:
pt1-t1' ! ¢ q for a11 1 (i=1,....m).

(1) Ifn<m, & gsufficient ‘condi"bion thaet K(t,tl) = K(t,tl')Mh for some

Markov matrix Mh is:

Pqi € Q for all 1.

L&
Let t2 t tl.

nt-'ba x 1 Markov matrix whose i,]'th element is p(xj(tz)'lyi(t,ta)). A theorem

In section VII the matrix F(ta,tl) was defined as the

similar to Theorem 5 (ii) is

Theorem 8

If K(t,tl) = K(t,tl')Mh for some Markov matrix M), vhere t1>tl' , then
F(t2,t1) = F(tz,tl')Mh.

From Theorem T(ii) and Theorem 8 we obtain
Theorem 9

If n <m, a sufficient condition that F(ta,tl) = Ft,,t." M, for some

Markov matrix is: Pqi e Q for all i.



